

# Supporting Information

# Consecutive $\beta$ , $\beta'$ -Selective C(sp<sup>3</sup>)–H Silylation of Tertiary Amines with Dihydrosilanes Catalyzed by B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>

Huaquan Fang, Kaixue Xie, Sebastian Kemper, and Martin Oestreich\*

anie\_202016664\_sm\_miscellaneous\_information.pdf

# **Supporting Information**

# **Table of Contents**

| 1   | General Experimental Information                                             | <b>S</b> 3  |
|-----|------------------------------------------------------------------------------|-------------|
| 2   | Experimental Details for the Preparation of <i>N,N</i> -Dialkyl Benzylamines | S5          |
| 2.1 | General Procedure for the Preparation of N,N-Dialkyl Benzylamines            | S5          |
| 2.2 | Charaterization Data of the N,N-Dialkyl Benzylamines                         | S6          |
| 3   | Experiment Details for the Two-Fold C(sp <sup>3</sup> )–H Silylation         | <b>S</b> 7  |
| 3.1 | General Procedure for the Two-Fold C(sp <sup>3</sup> )–H Silylation          | S7          |
| 3.2 | Characterization Data of the 4-Silapiperidines                               | S8          |
| 3.3 | Unsuccessful Substrates                                                      | \$23        |
| 4   | Scale-Up ExperimentS                                                         | <b>32</b> 4 |
| 5   | Elaboration of an <i>N</i> -Benzylated 4-SilapiperidineS                     | \$25        |
| 5.1 | Debenzylation of Product 3aa                                                 | 325         |
| 5.2 | Oxidation of Product <b>3aa</b> S                                            | \$25        |
| 6   | Mechanistic InvestigationsS                                                  | \$27        |
| 6.1 | <sup>2</sup> H-Labeling ExperimentsS                                         | 327         |
| 6.2 | Stoichiometric ExperimentsS                                                  | 30          |
| 7   | NMR SpectraS                                                                 | 331         |
| 8   | References                                                                   | 39          |

#### **1** General Experimental Information

#### **Reagents and Solvents**

Toluene, benzene, chlorobenzene, chlorobenzene, and *p*-xylene were purified by distillation over LiAlH<sub>4</sub> and freshly distilled prior to use.  $CH_2Cl_2$  was dried over  $CaH_2$  and freshly distilled prior to use.  $B(C_6F_5)_3$  was purchased from Boulder Scientific Company, sublimed under vacuum at 130 °C prior to use, and stored in a nitrogen-filled glovebox. Di-*p*-tolylsilane (**2b**),<sup>[1]</sup> bis(4-(*tert*-butyl)phenyl)silane (**2c**),<sup>[2]</sup> bis(4-fluorophenyl)silane (**2d**),<sup>[2]</sup> 2,3-dihydro-1*H*benzo[*b*]silole (**2g**),<sup>[3]</sup> and dimesitylsilane (**2k**)<sup>[4]</sup> were prepared according to literature procedures.  $Ph_2SiD_2^{[5]}$  was prepared according to literature procedures. All other reagents were purchased from commercial sources and used as received unless specified otherwise.

#### Reactions

All manipulations were carried out in a nitrogen-filled glovebox or under an atmosphere of dry nitrogen using standard Schlenk techniques, unless otherwise stated.

#### Chromatography

Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 glass plates by *Merck*. Flash column chromatography was performed on silica gel 60 (40–63 µm, 230–400 mesh, ASTM) by *Grace* using the indicated solvents.

#### Nuclear Magnetic Resonance (NMR) Spectroscopy

<sup>1</sup>H, <sup>13</sup>C, and <sup>19</sup>F NMR spectra were recorded in CDCl<sub>3</sub> on Bruker AV500 instruments. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CHCl<sub>3</sub>:  $\delta$  = 7.26 ppm for <sup>1</sup>H NMR and CDCl<sub>3</sub>:  $\delta$  = 77.16 ppm for <sup>13</sup>C NMR; toluene:  $\delta$  = 7.09, 7.01, 6.97, 2.08 ppm for <sup>1</sup>H NMR). Data are reported as follows: chemical shift, multiplicity (br = broad signal, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration.

#### Gas Chromatography (GC)

Gas chromatography (GC) was performed on an *Agilent Technologies* 7820A gas chromatograph equipped with a HP-5 capillary column (30 m × 0.32 mm, 0.25  $\mu$ m film

thickness) by *Agilent Technologies/ CS-Chromatographie Service* using the following program: nitrogen carrier gas, injection temperature 250 °C, detector temperature 300 °C, flow rate: 1.7 mL/min; temperature program: start temperature 40 °C, heating rate 10 °C/min, end temperature 280 °C for 10 min.

#### Gas Chromatography–Mass Spectrometry (GC-MS)

Gas chromatography–mass spectrometry (GC-MS) was performed on an *Agilent Technologies* 5975C gas chromatograph equipped with an *Agilent Technologies* HP-5 column (30 m × 0.32 mm, 0.25 µm film thickness) using the following program: nitrogen carrier gas, injection temperature 280 °C, detector temperature 280 °C, flow rate: 0.8 mL/min; temperature program: start temperature 40 °C, heating rate 10 °C/min, end temperature 280 °C for 10 min.

#### Infrared Spectroscopy

Infrared (IR) spectra were recorded on an Agilent Technologies Cary 630 FT-IR spectrometer equipped with an ATR unit or a Jasco FT/IR-4100 spectrometer, and the bands are reported in wavenumbers (cm<sup>-1</sup>).

#### Mass Spectrometry

High resolution mass spectrometry (HRMS) analysis was performed by the Analytical Facility at the *Institut für Chemie, Technische Universität Berlin*.

#### **Compound Nomenclature**

The compound names were generated by the computer program *ChemDraw* according to the guidelines specified by the *International Union of Pure and Applied Chemistry* (IUPAC).

## 2 Experimental Details for the Preparation of *N*,*N*-Dialkyl Benzylamines

#### 2.1 General Procedure for the Preparation of *N*,*N*-Dialkyl Benzylamines



A mixture of benzyl bromides **S1** (10.0 mmol), dialkylamine (20.0 mmol), K<sub>2</sub>CO<sub>3</sub> (15.0 mmol) in THF (30 mL) was heated at 50 °C for 8 h. The mixture was cooled to room temperature and diluted with methyl *tert*-butyl ether (20 mL) and H<sub>2</sub>O (20 mL). Then the mixture was extracted with methyl *tert*-butyl ether (10 mL×3). The combined organic layers were washed with brine (15 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane to afford *N*,*N*-dialkyl benzylamines as a colorless liquid.

*N*,*N*-Dialkyl Benzylamines **1a**, **1o–q**, **1t**, and **1u** were purchased from commercial sources and used as received unless specified otherwise.

*N*,*N*-Dialkyl Benzylamines **1b**,<sup>[6]</sup> **1c**,<sup>[7]</sup> **1d**–**e**,<sup>[8]</sup> **1f**,<sup>[6]</sup> **1g**,<sup>[8]</sup> **1h**,<sup>[6]</sup> **1i**–**j**,<sup>[8]</sup> **1k**,<sup>[7]</sup> **1I**,<sup>[6]</sup> **1m**,<sup>[7]</sup> **1n**<sup>[6]</sup>, and **1v**<sup>[9]</sup> were prepared according to the general procedure and data were consistent with that reported.

#### 2.2 Charaterization Data of New N,N-Dialkyl Benzylamines



*N*-Benzyl-*N*-ethylpropan-1-amine (1r). The general procedure was followed with benzyl bromide (1.19 mL, 10.0 mmol), *N*-ethylpropan-1-amine (2.42 mL, 20.0 mmol), K<sub>2</sub>CO<sub>3</sub> (2.10 g, 15.0 mmol) in THF (30 mL) at 50 °C for 8 h. The residue was purified by flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent to afford **1r** as a colorless liquid (1.60 g, 90% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.36 – 7.30 (m, 4H), 7.24 (t, *J* = 7.0 Hz, 1H), 3.58 (s, 2H), 2.52 (q, *J* = 7.2 Hz, 2H), 2.41 (t, *J* = 7.4 Hz, 2H), 1.54 – 1.47 (m, 2H), 1.05 (t, *J* = 7.2 Hz, 3H), 0.89 (t, *J* = 7.4 Hz, 3H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 140.3, 129.0, 128.2, 126.7, 58.2, 55.4, 47.4, 20.3, 12.0, 11.9 ppm. HRMS (APCI): Calculated for C<sub>12</sub>H<sub>20</sub>N<sup>+</sup> [M+H]<sup>+</sup>: 178.1596; Found: 178.1586. IR (ATR):  $\tilde{v}$  2961, 2931, 2871, 2794, 1492, 1452, 1368, 1193, 1163, 1073, 1026, 727, 696.



*N*-Benzyl-*N*-ethylbutan-1-amine (1s). The general procedure was followed with benzyl bromide (1.19 mL, 10.0 mmol), *N*-ethylbutan-1-amine (2.73 mL, 20.0 mmol), K<sub>2</sub>CO<sub>3</sub> (2.10 g, 15.0 mmol) in THF (30 mL) at 50 °C for 8 h. The residue was purified by flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent to afford **1s** as a colorless liquid (1.80 g, 94% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.35 – 7.33 (m, 4H), 7.25 – 7.21 (m, 1H), 3.57 (s, 2H), 2.51 (q, *J* = 7.1 Hz, 2H), 2.43 (t, *J* = 7.3 Hz, 2H), 1.50 – 1.44 (m, 2H), 1.35 – 1.27 (m, 2H), 1.04 (t, *J* = 7.1 Hz, 3H), 0.89 (t, *J* = 7.4 Hz, 3H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 140.3, 129.0, 128.2, 126.8, 58.2, 53.1, 47.4, 29.4, 20.8, 14.2, 11.9 ppm. HRMS (APCI): Calculated for C<sub>13</sub>H<sub>22</sub>N<sup>+</sup> [M+H]<sup>+</sup>: 192.1752; Found: 192.1743. IR (ATR):  $\tilde{v}$  2957, 2929, 2869, 2793, 1493, 1452, 1368, 1187, 1160, 1071, 1027, 728, 696.

## 3 Experiment Details for the Two-Fold C(sp<sup>3</sup>)–H Silylation

#### 3.1 General Procedure for the Two-Fold C(sp<sup>3</sup>)–H Silylation

In a nitrogen-filled glovebox, a 10-mL sealed tube equipped with a magnetic stir bar was charged with the desired amount of amine, hydrosilane, solvent, additive, and  $B(C_6F_5)_3$ . The sealed tube was fitted with a cap, and the reaction stirred at required temperature for indicated time in a preheated oil bath. After the resulting reaction mixture was cooled to room temperature, the volatile were removed under reduced pressure. *In the case of R<sub>3</sub>SiOTf as an additive, the solution was neutralized upon stirring with NaOH (5 mL, 10% aq.) for 30 min. The mixture was extracted with methyl tert-butyl ether (10 mL×3). The combined organic layers were washed with brine (15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under reduced pressure. Mesitylene (0.500 equiv) was added as an internal standard, and the yield was determined by <sup>1</sup>H NMR spectroscopy. The residue was purified by a sequence of flash column chromatography on silica gel with methyl <i>tert*-butyl ether / cyclohexane for *N*-benzyl-substituted 4-silapiperidines or MeOH / methyl *tert*-butyl ether for *N*-alkyl-substituted 4-silapiperidines as the eluent and Kugelrohr distillation.

#### 3.2 Characterization Data of the 4-Silapiperidines

**1-Benzyl-4,4-diphenyl-1,4-azasilinane (3aa)**. The general procedure was followed with *N*-benzyl-*N*-ethylethanamine (**1a**, 8.20 mg, 0.0500 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 18.4 mg, 0.100 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (3.60 μL, 20.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (5.10 mg, 10.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (200 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (12.5 mg, 73% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.60 – 7.57 (m, 4H), 7.44 – 7.33 (m, 10H), 7.29 – 7.25 (m, 1H), 3.62 (s, 2H), 2.86 (t, *J* = 6.3 Hz, 4H), 1.40 (t, *J* = 6.3 Hz, 4H) ppm. <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>): δ 139.6, 136.0, 134.8, 129.5, 128.9, 128.3, 128.0, 126.9, 62.8, 52.4, 11.5 ppm. <sup>1</sup>**H**/<sup>29</sup>**Si HMQC NMR** (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.60 – 7.57/–15.4, 2.86/–15.4, 1.40/–15.4 ppm. **HRMS** (APCI): Calculated for C<sub>23</sub>H<sub>26</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 344.1835; Found: 344.1828. **IR** (ATR):  $\tilde{v}$  2920, 2891, 2794, 2758, 1452, 1226, 1185, 1109, 968, 864, 724, 694. Spectral data is in agreement with published data.<sup>[10]</sup>



**1-([1,1'-BiphenyI]-4-yImethyI)-4,4-diphenyI-1,4-azasilinane (3ba)**. The general procedure was followed with *N*-([1,1'-biphenyI]-4-yImethyI)-*N*-ethylethanamine (**1b**, 23.9 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (240 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (23.9 mg, 57% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.65 – 7.58 (m, 8H), 7.48 – 7.35 (m, 11H), 3.66 (s, 2H), 2.89 (t, *J* = 6.5 Hz, 4H), 1.43 (t, *J* = 6.5 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 141.2, 139.9, 138.7, 136.0, 134.8, 129.5, 129.3, 128.9, 128.1, 127.2, 127.2, 127.1, 62.5, 52.5, 11.5 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.58/–15.5, 2.89/–15.5, 1.43/–15.5 ppm. HRMS (APCI): Calculated for C<sub>29</sub>H<sub>30</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 420.2148; Found: 420.2138. IR (ATR):  $\tilde{v}$  2920, 2892, 2792, 2758, 1485, 1426, 1226, 1185, 1110, 1007, 970, 867, 727, 695.

**1-(2-Methylbenzyl)-4,4-diphenyl-1,4-azasilinane** (**3ca**). The general procedure was followed with *N*-ethyl-*N*-(2-methylbenzyl)ethanamine (**1c**, 17.7 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (21.1 mg, 59% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.58 – 7.55 (m, 4H), 7.42 – 7.33 (m, 7H), 7.18 – 7.14 (m, 3H), 3.52 (s, 2H), 2.83 (t, *J* = 5.2 Hz, 4H), 2.37 (s, 3H), 1.36 (t, *J* = 5.2 Hz, 4H) ppm. <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>): δ 137.8, 137.5, 136.1, 134.8, 130.3, 129.5, 128.1, 126.9, 125.6, 60.7, 52.6, 19.4, 11.6 ppm. <sup>1</sup>**H/<sup>29</sup>Si HMQC NMR** (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.58 – 7.55/–15.4, 2.83/–15.4, 1.36/–15.4 ppm. **HRMS** (APCI): Calculated for C<sub>24</sub>H<sub>28</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 358.1991; Found: 358.1984. **IR** (ATR):  $\tilde{v}$  2920, 2889, 2795, 2758, 1459, 1426, 1226, 1185, 1110, 969, 865, 728, 697.



**1-(3-Methylbenzyl)-4,4-diphenyl-1,4-azasilinane** (**3da**). The general procedure was followed with *N*-ethyl-*N*-(3-methylbenzyl)ethanamine (**1d**, 17.7 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (20.8 mg, 58% yield). <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.58 – 7.56 (m, 4H), 7.42 – 7.36 (m, 6H), 7.24 – 7.16 (m, 3H), 7.08 (d, *J* = 7.3 Hz, 1H), 3.58 (s, 2H), 2.85 (t, *J* = 6.0 Hz, 4H), 2.37 (s, 3H), 1.40 (t, *J* = 6.1 Hz, 4H) ppm. <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>): δ 137.9, 136.0, 134.8, 129.8, 129.5, 128.2, 128.1, 127.8, 126.1, 62.7, 52.4, 21.6, 11.3 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.58 – 7.56/–15.8, 2.85/– 15.8, 1.40/–15.8 ppm. HRMS (APCI): Calculated for C<sub>24</sub>H<sub>28</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 358.1991; Found: 358.1983. IR (ATR):  $\tilde{v}$  3045, 2921, 2794, 1427, 1389, 1227, 1112, 970, 865, 728, 698.



**1-(4-Methylbenzyl)-4,4-diphenyl-1,4-azasilinane** (3ea). The general procedure was followed with *N*-ethyl-*N*-(4-methylbenzyl)ethanamine (1e, 17.7 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (2a, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (21.8 mg, 61% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.58 – 7.56 (m, 4H), 7.42 – 7.36 (m, 6H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 3.58 (s, 2H), 2.84 (t, *J* = 6.1 Hz, 4H), 2.36 (s, 3H), 1.39 (t, *J* = 6.2 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 136.6, 136.1, 135.9, 134.8, 129.5, 129.0 (2C), 128.1, 62.5, 52.3, 21.2, 11.4 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.58 – 7.56/–15.6, 2.84/– 15.6, 1.39/–15.6 ppm. HRMS (APCI): Calculated for C<sub>24</sub>H<sub>28</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 358.1991; Found: 358.1985. IR (ATR):  $\bar{v}$  3045, 2920, 2792, 1426, 1186, 1111, 970, 867, 728, 698.



**1-(4-(***tert***-Butyl)benzyl)-4,4-diphenyl-1,4-azasilinane (3fa)**. The general procedure was followed with *N*-(4-(*tert*-butyl)benzyl)-*N*-ethylethanamine (**1f**, 21.9 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (230 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (26.7 mg, 67% yield). <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.59 – 7.57 (m, 4H), 7.43 – 7.35 (m, 8H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.60 (s, 2H), 2.86 (t, *J* = 5.7 Hz, 4H), 1.41 (t, *J* = 5.7 Hz, 4H), 1.35 (s, 9H) ppm. <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>): δ 149.9, 136.0, 135.9, 134.8, 129.5, 128.7, 128.1, 125.2, 62.4, 52.4, 34.6, 31.5, 11.3 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.59 – 7.57/–15.5, 2.86/–15.5, 1.41/–15.5 ppm. **HRMS** (APCI): Calculated for C<sub>27</sub>H<sub>34</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 400.2461; Found: 400.2451. **IR** (ATR):  $\tilde{v}$  3066, 2958, 2792, 1465, 1426, 1389, 1226, 1109, 970, 906, 867, 726, 696.

**1-(4-Fluorobenzyl)-4,4-diphenyl-1,4-azasilinane (3ga)**. The general procedure was followed with *N*-ethyl-*N*-(4-fluorobenzyl)ethanamine (**1g**, 18.1 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (25.3 mg, 70% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.56 – 7.54 (m, 4H), 7.41 – 7.35 (m, 6H), 7.32 – 7.29 (m, 2H), 7.02 – 6.98 (m, 2H), 3.55 (s, 2H), 2.81 (t, *J* = 6.1 Hz, 4H), 1.37 (t, *J* = 5.9 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 162.0 (d, *J* = 244.6 Hz), 135.9, 135.3, 134.8, 130.3 (d, *J* = 7.9 Hz), 129.5, 128.1, 115.0 (d, *J* = 21.1 Hz), 62.0, 52.3, 11.5 ppm. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): δ 7.56 – 7.54/–15.6, 2.81/–15.6, 1.37/–15.6 ppm. HRMS (APCI): Calculated for C<sub>23</sub>H<sub>25</sub>FNSi<sup>+</sup> [M+H]<sup>+</sup>: 362.1740; Found: 362.1727. IR (ATR):  $\tilde{v}$  3066, 2922, 2793, 1602, 1506, 1427, 1221, 1112, 971, 866, 729, 700.

CI N Si-Ph Ph

**1-(4-Chlorobenzyl)-4,4-diphenyl-1,4-azasilinane** (**3ha**). The general procedure was followed with *N*-ethyl-*N*-(4-chlorobenzyl)ethanamine (**1h**, 19.7 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (230 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (24.6 mg, 65% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.56 – 7.54 (m, 4H), 7.42 – 7.35 (m, 6H), 7.30 – 7.27 (m, 4H), 3.56 (s, 2H), 2.82 (t, *J* = 6.0 Hz, 4H), 1.38 (t, *J* = 6.0 Hz, 4H) ppm. <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>): δ 137.8, 135.7, 134.8, 132.7, 130.3, 129.6, 128.5, 128.1, 62.0, 52.4, 11.4 ppm. <sup>1</sup>**H**/<sup>29</sup>**Si HMQC NMR** (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.56 – 7.54/–16.0, 2.82/–16.0, 1.38/–16.0 ppm. **HRMS** (APCI): Calculated for C<sub>23</sub>H<sub>25</sub>ClNSi<sup>+</sup> [M+H]<sup>+</sup>: 378.1445; Found: 378.1440. **IR** (ATR):  $\tilde{v}$  3066, 2922, 2796, 1488, 1427, 1112, 1015, 971, 868, 699.

**1-(4-Bromobenzyl)-4,4-diphenyl-1,4-azasilinane (3ia)**. The general procedure was followed with *N*-ethyl-*N*-(4-bromobenzyl)ethanamine (**1i**, 24.2 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (230 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (28.8 mg, 68% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.57 – 7.54 (m, 4H), 7.45 – 7.36 (m, 8H), 7.24 (d, *J* = 8.3 Hz, 2H), 3.54 (s, 2H), 2.82 (t, *J* = 6.2 Hz, 4H), 1.38 (t, *J* = 6.2 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 138.3, 135.7, 134.8, 131.4, 130.6, 129.6, 128.1, 120.8, 62.1, 52.4, 11.4 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.57 – 7.54/–15.7, 2.82/–15.5, 1.38/–15.5 ppm. HRMS (APCI): Calculated for C<sub>23</sub>H<sub>25</sub>BrNSi<sup>+</sup> [M+H]<sup>+</sup>: 422.0940; Found: 422.0933. IR (ATR):  $\tilde{v}$  3066, 2922, 2795, 1485, 1427, 1388, 1112, 1011, 971, 699.



**1-(4-lodobenzyl)-4,4-diphenyl-1,4-azasilinane (3ja)**. The general procedure was followed with *N*-ethyl-*N*-(4-iodobenzyl)ethanamine (**1j**, 28.9 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (30.1 mg, 64% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.57 – 7.55 (m, 4H), 7.43 – 7.36 (m, 6H), 7.12 (d, *J* = 8.3 Hz, 2H), 3.53 (s, 2H), 2.82 (t, *J* = 6.1 Hz, 4H), 1.38 (t, *J* = 6.2 Hz, 4H) ppm. <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>): δ 139.3, 137.4, 135.8, 134.8, 130.9, 129.5, 128.1, 92.3, 62.2, 52.4, 11.5 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.57 – 7.55/–15.8, 2.82/–15.8, 1.38/–15.8 ppm. HRMS (APCI): Calculated for C<sub>23</sub>H<sub>25</sub>INSi\* [M+H]\*: 470.0801; Found: 470.0782. **IR** (ATR):  $\tilde{v}$  3065, 2920, 2792, 1586, 1480, 1425, 1386, 1110, 969, 906, 865, 726, 695.

**4,4-Diphenyl-1-(4-(trifluoromethyl)benzyl)-1,4-azasilinane (3ka)**. The general procedure was followed with *N*-ethyl-*N*-(4-(trifluoromethyl)benzyl)ethanamine (**1k**, 23.1 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (21.1 mg, 51% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.60 – 7.57 (m, 6H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.44 – 7.38 (m, 6H), 3.65 (s, 2H), 2.84 (t, *J* = 6.2 Hz, 4H), 1.41 (t, *J* = 6.2 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 143.9, 135.7, 134.8, 129.6, 129.2 (q, *J* = 32.4 Hz), 128.9, 128.1, 125.3 (q, *J* = 3.6 Hz), 124.5 (q, *J* = 271.9 Hz), 62.3, 52.6, 11.5 ppm. <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>): δ -62.3 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.60 – 7.57/–15.8, 2.84/–15.8, 1.41/– 15.8 ppm. HRMS (APCI): Calculated for C<sub>24</sub>H<sub>25</sub>F<sub>3</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 412.1708; Found: 412.1694. IR (ATR):  $\vec{v}$  3067, 2922, 2795, 1426, 1321, 1159, 1110, 1063, 1017, 970, 867, 697.



**3-((4,4-Diphenyl-1,4-azasilinan-1-yl)methyl)phenol (3la)**. The general procedure was followed with *N*-ethyl-*N*-(3-methoxybenzyl)ethanamine (**1**I, 19.3 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 1 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (18.1 mg, 50% yield). <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.53 – 7.51 (m, 4H), 7.41 – 7.34 (m, 6H), 7.15 (t, *J* = 7.8 Hz, 1H), 6.84 – 6.81 (m, 2H), 6.76 (dd, *J* = 8.0, 1.8 Hz, 1H), 6.07 (br, 1H), 3.56 (s, 2H), 2.87 (t, *J* = 6.2 Hz, 4H), 1.39 (t, *J* = 6.2 Hz, 4H) ppm. <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>): δ 156.7, 139.3, 135.3, 134.9, 129.6, 129.5, 128.1, 121.5, 117.0, 115.2, 62.6, 52.4, 10.8 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.53 – 7.51/–16.0, 2.87/–16.0, 1.39/–16.0 ppm. HRMS (APCI): Calculated for C<sub>23</sub>H<sub>26</sub>NOSi<sup>+</sup>

[M+H]<sup>+</sup>: 360.1784; Found: 360.1778. **IR** (ATR): ṽ 3295, 3045, 2924, 2084, 1588, 1454, 1265, 1112, 972, 908, 861, 699.



**1-(Naphthalen-2-ylmethyl)-4,4-diphenyl-1,4-azasilinane (3ma)**. The general procedure was followed with *N*-ethyl-*N*-(naphthalen-2-ylmethyl)ethanamine (**1m**, 21.3 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (240 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (18.2 mg, 46% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.86 – 7.83 (m, 3H), 7.78 (s, 1H), 7.60 – 7.56 (m, 5H), 7.51 – 7.45 (m, 2H), 7.44 – 7.38 (m, 6H), 3.78 (s, 2H), 2.91 (t, *J* = 6.2 Hz, 4H), 1.43 (t, *J* = 6.3 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 137.1, 136.0, 134.8, 133.5, 132.9, 129.5, 128.1, 128.0, 127.8, 127.8, 127.4, 127.4, 126.0, 125.6, 62.9, 52.5, 11.4 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.60 – 7.56/–15.7, 2.91/–15.7, 1.43/–15.7 ppm. HRMS (APCI): Calculated for C<sub>27</sub>H<sub>28</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 394.1991; Found: 394.1982. IR (ATR):  $\tilde{v}$  3046, 2920, 2798, 1426, 1328, 1110, 971, 864, 727, 698.



**1,4-Bis((4,4-diphenyl-1,4-azasilinan-1-yl)methyl)benzene (3na)**. The general procedure was followed with *N,N'*-(1,4-phenylenebis(methylene))bis(*N*-ethylethanamine) (**1n**, 24.8 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 73.6 mg, 0.400 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (14.4 µL, 80.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (20.4 mg, 40.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 1 as the eluent and Kugelrohr distillation (250 °C, 0.2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (28.7 mg, 47% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.56 (d, *J* = 7.4 Hz, 8H), 7.41 – 7.36 (m, 12H), 7.29 (s, 4H), 3.59 (s, 4H), 2.84 (t, *J* = 5.5 Hz, 8H), 1.38 (t, *J* = 5.5 Hz, 8H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 138.0, 136.0, 134.8, 129.5, 128.8, 128.1, 62.5, 52.4, 11.4 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K,

optimized for *J* = 7 Hz): δ 7.56/–15.8, 2.84/–15.8, 1.38/–15.8 ppm. **HRMS** (APCI): Calculated for C<sub>40</sub>H<sub>45</sub>N<sub>2</sub>Si<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 609.3121; Found: 609.3119. **IR** (ATR): ṽ 2921, 2893, 2792, 2757, 1426, 1387, 1226, 1185, 1110, 969, 906, 866, 725, 696.

**1-Cyclohexyl-4,4-diphenyl-1,4-azasilinane (30a)**. The general procedure was followed with *N*,*N*-diethylcyclohexanamine (**10**, 15.5 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with MeOH / methyl *tert*-butyl ether = 1 : 10 as the eluent and Kugelrohr distillation (180 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (12.8 mg, 38% yield). <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.56 – 7.54 (m, 4H), 7.40 – 7.34 (m, 6H), 2.97 (t, *J* = 6.5 Hz, 4H), 2.52 (t, *J* = 7.7 Hz, 1H), 1.86 – 1.77 (m, 4H), 1.62 (d, *J* = 13.8 Hz, 1H), 1.38 (t, *J* = 6.5 Hz, 4H), 1.28 – 1.17 (m, 4H), 1.11 – 1.03 (m, 1H) ppm. <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>): δ 136.0, 134.9, 129.5, 128.1, 64.4, 48.8, 29.1, 26.5, 26.3, 11.8 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.56 – 7.54/–14.6, 2.97/–14.6, 1.38/–14.6 ppm. **HRMS** (APCI): Calculated for C<sub>22</sub>H<sub>30</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 336.2148; Found: 336.2142. **IR** (ATR):  $\bar{v}$  3065, 2922, 2850, 2795, 1374, 1227, 1110, 987, 863, 728, 698.



**1-Ethyl-4,4-diphenyl-1,4-azasilinane (3pa)**. The general procedure was followed with triethylamine (**1p**, 10.1 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with MeOH / methyl *tert*-butyl ether = 1 : 10 as the eluent and Kugelrohr distillation (150 °C, 2 mbar) to afford th e 4-silapiperidine product as a colorless viscous liquid (16.9 mg, 60% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.56 – 7.54 (m, 4H), 7.42 – 7.35 (m, 6H), 2.93 (t, *J* = 6.1 Hz, 4H), 2.64 (q, *J* = 7.2 Hz, 2H), 1.47 (t, *J* = 6.1 Hz, 4H), 1.14 (t, *J* = 7.2 Hz, 3H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 135.0, 134.9, 129.7, 128.2, 52.0, 51.9, 11.7, 10.8 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.56 – 7.54/–15.6, 2.93/–15.6, 1.47/–15.6 ppm.

**HRMS** (APCI): Calculated for C<sub>18</sub>H<sub>24</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 282.1678; Found: 282.1669. **IR** (ATR):  $\tilde{v}$  3066, 2923, 2799, 1427, 1229, 1111, 984, 867, 707.

**1-Methyl-4,4-diphenyl-1,4-azasilinane (3qa)**. The general procedure was followed with *N*-ethyl-*N*-methylethanamine (**1q**, 8.70 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with MeOH / methyl *tert*-butyl ether = 1 : 10 as the eluent and Kugelrohr distillation (150 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (12.9 mg, 48% yield). <sup>1</sup>H **NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.56 – 7.53 (m, 4H), 7.42 – 7.35 (m, 6H), 2.77 (t, *J* = 6.2 Hz, 4H), 2.34 (s, 3H), 1.42 (t, *J* = 6.2 Hz, 4H) ppm. <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>): δ 135.3, 134.9, 129.6, 128.1, 54.9, 47.2, 11.7 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.56 – 7.53/–16.5, 2.77/–16.5, 1.42/–16.5 ppm. HRMS (APCI): Calculated for C<sub>17</sub>H<sub>22</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 268.1522; Found: 268.1514. IR (ATR):  $\tilde{v}$  3066, 2924, 2781, 1464, 1374, 1246, 1181, 1112, 968, 729, 707.



**1-Benzyl-3-methyl-4,4-diphenyl-1,4-azasilinane (3ra).** The general procedure was followed with *N*-benzyl-*N*-ethylpropan-1-amine (**1r**, 17.7 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (16.5 mg, 46% yield). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.62 – 7.57 (m, 4H), 7.44 – 7.34 (m, 10H), 7.29 – 7.26 (m, 1H), 3.63 (q, *J* = 15.7 Hz, 2H), 3.04 – 2.99 (m, 1H), 2.92 – 2.88 (m, 1H), 2.86 – 2.81 (m, 1H), 2.52 – 2.47 (m, 1H), 1.72 – 1.68 (m, 1H), 1.49 – 1.44 (m, 1H), 1.37 – 1.31 (m, 1H), 1.11 (dd, *J* = 7.6, 2.3 Hz, 3H) ppm. <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>): δ 139.8, 136.0, 135.9, 135.0, 134.6, 129.5, 129.4, 128.9, 128.3, 128.0, 127.8, 126.9, 63.3, 61.1, 53.2, 17.8, 14.9, 11.1 ppm. <sup>1</sup>**H**/<sup>29</sup>**Si HMQC NMR** (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz):

δ 7.62 – 7.57/–13.7, 3.04 – 2.99/–13.7, 2.92 – 2.88/–13.7, 1.49 – 1.44/–13.7, 1.37 – 1.31/– 13.7, 1.11/–13.7 ppm. **HRMS** (APCI): Calculated for  $C_{24}H_{28}NSi^+$  [M+H]<sup>+</sup>: 358.1991; Found: 358.1982. **IR** (ATR):  $\tilde{v}$  2921, 2863, 2794, 2756, 1452, 1426, 1314, 1186, 1107, 993, 960, 886, 695.

**1-Benzyl-3-ethyl-4,4-diphenyl-1,4-azasilinane (3sa).** The general procedure was followed with *N*-benzyl-*N*-ethylbutan-1-amine (**1s**, 19.1 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (14.2 mg, 38% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.57 – 7.53 (m, 4H), 7.41 – 7.30 (m, 10H), 7.26 – 7.23 (m, 1H), 3.64 – 3.54 (m, 2H), 2.90 – 2.78 (m, 3H), 2.53 (t, *J* = 8.0 Hz, 1H), 1.60 – 1.53 (m, 1H), 1.44 – 1.40 (m, 3H), 1.28 (s, 1H), 0.79 (t, *J* = 7.0 Hz, 3H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 139.8, 136.1, 135.8, 135.1, 134.6, 129.4, 129.0, 128.3, 128.0, 127.9, 127.0, 63.4, 57.5, 53.2, 25.7, 22.2, 13.9, 11.4 ppm. <sup>1</sup>H/<sup>2</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.57 – 7.53/–14.5, 2.90 – 2.78/–14.5, 2.53/–14.5, 1.60 – 1.53/–14.5, 1.44 – 1.40/–14.5 ppm. HRMS (APCI): Calculated for C<sub>25</sub>H<sub>30</sub>NSi\* [M+H]\*: 372.2148; Found: 372.2137. **IR** (ATR):  $\tilde{v}$  2955, 2922, 2869, 2796, 1453, 1427, 1109, 973, 865, 699.

Me N Si-Ph Ph Me

**3,5-Dimethyl-4,4-diphenyl-1-propyl-1,4-azasilinane (3ta,** *cis:trans* = **58:42).** The general procedure was followed with tripropylamine (**1t**, 14.3 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20  $\mu$ L, 40.0  $\mu$ mol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0  $\mu$ mol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with MeOH / methyl *tert*-butyl ether = 1 : 30 as the eluent and Kugelrohr distillation (180 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless

viscous liquid (13.3 mg, 41% yield, *cis:trans* = 58:42). The stereochemistry of **3ta** was determined by 2D-NOESY. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 – 7.51 (m, 4H), 7.44 – 7.33 (m, 6H), 3.07 – 2.83 (m, 2H), 2.58 – 2.49 (m, 3H), 2.45 – 2.32 (m, 1H), 1.76 – 1.69 (m, 1H), 1.64 – 1.56 (m, 2H), 1.55 – 1.48 (m, 1H), 1.03 – 0.98 (m, 6H), 0.94 – 0.90 (m, 3H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  137.0, 136.0, 135.3, 134.9, 134.5, 132.4, 129.6, 129.4, 129.3, 128.0, 127.8, 127.7, 61.9, 61.7, 61.5, 60.7, 20.6, 20.3, 18.3, 15.9, 15.4, 13.9, 12.2, 12.1 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz):  $\delta$  7.62 – 7.51/–10.6, 3.07 – 2.83/–10.6, 2.58 – 2.49/–10.6, 1.76 – 1.69/–10.6, 1.03 – 0.98/–10.6 ppm. HRMS (APCI): Calculated for C<sub>21</sub>H<sub>30</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 324.2148; Found: 324.2137. IR (ATR):  $\tilde{v}$  2935, 2863, 2766, 1457, 1425, 1376, 1195, 1108, 997, 885, 696.



1-Ethyl-6-methyl-4,4-diphenyl-1,2,3,4-tetrahydrobenzo[b][1,4]azasiline The (4ua). general procedure was followed with N,N-diethyl-4-methylaniline (**1u**, 16.3 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (2a, 36.8 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl tert-butyl ether / cyclohexane = 1 : 100 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (19.0 mg, 55% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.66 – 7.64 (m, 4H), 7.46 – 7.39 (m, 6H), 7.22 (s, 1H), 7.13 (dd, J = 8.5, 2.2 Hz, 1H), 6.77 (d, J = 8.6 Hz, 1H), 3.53 – 3.46 (m, 4H), 2.24 (s, 3H), 1.53 (t, *J* = 6.3 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 153.7, 137.7, 136.2, 135.7, 131.8, 129.5, 127.9, 125.3, 116.5, 112.9, 48.7, 47.4, 20.4, 12.6, 11.4 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz):  $\delta$  7.66 – 7.64/–20.7, 7.22/–20.7, 6.77/–20.7, 3.53 – 3.46/–20.7, 1.53/– 20.7 ppm. **HRMS** (APCI): Calculated for C<sub>23</sub>H<sub>26</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 344.1835; Found: 344.1828. **IR** (ATR): v 3065, 2969, 2926, 1604, 1487, 1426, 1332, 1277, 1108, 1068, 802, 699.

S19



8-Methyl-1,1,6,6-tetraphenyl-2,3,5,6-tetrahydro-1*H*,4*H*-3a-aza-1,6-disilaphenalene (5ua). The following residue was further purified by Kugelrohr distillation (250 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (4.30 mg, 8% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.61 – 7.59 (m, 8H), 7.39 – 7.34 (m, 12H), 7.22 (s, 2H), 3.49 – 3.45 (m, 4H), 2.12 (s, 3H), 1.51 – 1.49 (m, 4H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ 162.2, 139.6, 136.3, 135.7, 129.5, 128.0, 125.7, 117.3, 52.8, 20.5, 12.6 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz):  $\delta$  7.61 – 7.59/–19.5, 7.39 – 7.34/–19.5, 7.22/–19.5, 3.49 – 3.45/–19.5, 1.51 – 1.49/–19.5 ppm. HRMS (APCI): Calculated for C<sub>35</sub>H<sub>34</sub>NSi<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 524.2230; Found: 524.2215. IR (ATR):  $\tilde{v}$  3066, 2934, 2809, 2134, 1536, 1483, 1427, 1262, 1109, 827, 733, 698.



**1-Benzyl-4,4-di-***p***-tolyl-1,4-azasilinane (3ab)**. The general procedure was followed with *N*-benzyl-*N*-ethylethanamine (**1a**, 16.3 mg, 0.100 mmol), di-*p*-tolylsilane (**2b**, 42.5 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (24.1 mg, 65% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.45 (d, *J* = 7.9 Hz, 4H), 7.37 – 7.30 (m, 4H), 7.26 – 7.23 (m, 1H), 7.19 (d, *J* = 7.5 Hz, 4H), 3.60 (s, 2H), 2.83 (t, *J* = 5.8 Hz, 4H), 2.37 (s, 6H), 1.35 (t, *J* = 5.7 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 139.5, 139.3, 134.9, 132.4, 129.0, 128.9, 128.3, 127.0, 62.8, 52.5, 21.6, 11.6 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 7.45/–16.0, 2.83/–16.0, 1.35/–16.0 ppm. HRMS (APCI): Calculated for C<sub>25</sub>H<sub>30</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 372.2148; Found: 372.2135. IR (ATR):  $\tilde{v}$  3027, 2920, 2796, 1601, 1452, 1391, 1188, 1107, 970, 866, 799, 727.



1-Benzyl-4,4-bis(4-(tert-butyl)phenyl)-1,4-azasilinane (3ac). The general procedure was followed mmol), with *N*-benzyl-*N*-ethylethanamine (1a, 16.3 0.100 mg, bis(4-(tert-butyl)phenyl)silane (2c, 59.3 mg, 0.200 mmol), p-xylene (0.800 mL), Me<sub>3</sub>SiOTf  $(7.20 \ \mu\text{L}, 40.0 \ \mu\text{mol})$  and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 \ \mu\text{mol}) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl tert-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (240 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (29.6 mg, 65% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.52 (d, J = 8.2 Hz, 4H), 7.41 (d, J = 8.2 Hz, 4H), 7.37 (d, J = 7.4 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.26 (t, J = 7.2 Hz, 1H), 3.62 (s, 2H), 2.85 (t, J = 6.2 Hz, 4H), 1.37 (t, J = 6.1 Hz, 4H), 1.35 (s, 18H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 152.3, 139.8, 134.7, 132.6, 128.9, 128.3, 126.9, 125.0, 62.7, 52.5, 34.8, 31.4, 11.6 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz):  $\delta$  7.52/-16.8, 2.85/-16.8, 1.37/-16.8 ppm. HRMS (APCI): Calculated for C<sub>31</sub>H<sub>42</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 456.3087; Found: 456.3071. **IR** (ATR): ỹ 3066, 2959, 2797, 1598, 1458, 1387, 1267, 1136, 1086, 970, 866, 820, 724.



1-Benzyl-4,4-bis(4-fluorophenyl)-1,4-azasilinane (3ad). The general procedure was followed N-benzyl-N-ethylethanamine 16.3 with (1a, mg, 0.100 mmol), bis(4-fluorophenyl)silane (2d, 44.1 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl tert-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (220 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (25.5 mg, 67% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.52 – 7.48 (m, 4H), 7.36 – 7.30 (m, 4H), 7.27 – 7.24 (m, 1H), 7.10 – 7.05 (m, 4H), 3.59 (s, 2H), 2.81 (t, J = 6.3 Hz, 4H), 1.34 (t, J = 6.1 Hz, 4H) ppm. <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$  164.1 (d, J = 248.8 Hz), 139.4, 136.7 (d, J = 7.3 Hz), 131.2, 128.9, 128.3, 127.1, 115.4 (d, J = 19.8 Hz), 62.9, 52.3, 11.8 ppm. <sup>19</sup>**F NMR** (471 MHz, CDCl<sub>3</sub>):  $\delta$  –111.1 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC **NMR** (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz):  $\delta$  7.52 – 7.48/–15.0, 2.81/– 15.0,1.34/–15.0 ppm. HRMS (APCI): Calculated for C<sub>23</sub>H<sub>24</sub>F<sub>2</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 380.1646; Found: 380.1635. **IR** (ATR):  $\tilde{v}$  3026, 2922, 2797, 1585, 1497, 1388, 1230, 1161, 1105, 971, 867, 821, 728.



1-Benzyl-4-(naphthalen-1-yl)-4-phenyl-1,4-azasilinane (3ae). The general procedure was followed with N-benzyl-N-ethylethanamine 16.3 0.100 (1a, mg, mmol), naphthalen-1-yl(phenyl)silane (2e, 46.9 mg, 0.200 mmol), p-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl tert-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (230 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (26.8 mg, 68% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.97 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.81 (dd, J = 6.8, 1.2 Hz, 1H), 7.60 (dd, J = 7.7, 1.5 Hz, 2H), 7.53 (dd, J = 8.2, 6.9 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.39 – 7.31 (m, 8H), 7.27 – 7.24 (m, 1H), 3.63 (s, 2H), 2.95 – 2.85 (m, 4H), 1.65 - 1.54 (m, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 139.6, 137.3, 136.9, 135.2, 134.8, 133.7, 133.5, 130.5, 129.4, 129.1, 128.9, 128.6, 128.3, 128.1, 127.0, 125.9, 125.6, 125.2, 62.9, 52.6, 12.6 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz): δ 7.81/-15.8, 7.60/-15.8, 2.95 - 2.85/-15.8, 1.65 - 1.54/-15.8, ppm. HRMS (APCI): Calculated for C<sub>27</sub>H<sub>28</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 394.1991; Found: 394.1978. **IR** (ATR): v 2923, 2895, 2796, 2759, 1426, 1389, 1317, 1226, 1106, 969, 905, 867, 795, 776, 723, 696.

#### N Si-Me Ph

**1-Benzyl-4-methyl-4-phenyl-1,4-azasilinane (3ag)**. The general procedure was followed with *N*-benzyl-*N*-ethylethanamine (**1a**, 16.3 mg, 0.100 mmol), methyl(phenyl)silane (**2g**, 24.4 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20  $\mu$ L, 40.0  $\mu$ mol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg,

20.0 µmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (180 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (11.3 mg, 40% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.57 – 7.56 (m, 2H), 7.38 – 7.31 (m, 7H), 7.27 – 7.24 (m, 1H), 3.62 (s, 2H), 2.87 – 2.82 (m, 2H), 2.79 – 2.74 (m, 2H), 1.21 – 1.16 (m, 2H), 0.99 – 0.96 (m, 2H), 0.32 (s, 3H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  139.1, 138.1, 134.0, 129.3, 129.1, 128.3, 128.0, 127.0, 62.8, 52.5, 12.6, –4.0 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz):  $\delta$  7.57 – 7.56/–11.5, 2.87 – 2.82/– 11.5, 1.21 – 1.16/–11.5, 0.99 – 0.96/–11.5, 0.32/–11.5, ppm. HRMS (APCI): Calculated for C<sub>18</sub>H<sub>24</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 282.1678; Found: 282.1673. IR (ATR):  $\tilde{v}$  2919, 2794, 2756, 1391, 1250, 1110, 972, 868, 788, 730, 697.



**1-Benzyl-4,4-diethyl-1,4-azasilinane (3ai)**. The general procedure was followed with *N*-benzyl-*N*-ethylethanamine (**1a**, 16.3 mg, 0.100 mmol), diethylsilane (**2i**, 17.6 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 μL, 40.0 μmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 μmol) at 150 °C for 2 h. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether / cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (140 °C, 2 mbar) to afford the 4-silapiperidine product as a colorless viscous liquid (10.5 mg, 42% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.35 – 7.30 (m, 4H), 7.26 – 7.23 (m, 1H), 3.60 (s, 2H), 2.73 (t, *J* = 6.3 Hz, 4H), 0.96 (t, *J* = 8.0 Hz, 6H), 0.79 (t, *J* = 6.4 Hz, 4H), 0.57 (t, *J* = 8.0 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 138.9, 129.2, 128.3, 127.1, 62.7, 52.6, 9.9, 7.4, 3.7 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz): δ 2.73/–3.1, 0.96/–3.1, 0.79/–3.1, 0.57/–3.1, ppm. HRMS (APCI): Calculated for C<sub>15</sub>H<sub>26</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 248.1835; Found: 248.1831. IR (ATR):  $\tilde{v}$  2950, 2910, 2794, 1465, 1391, 1230, 1010, 976, 865, 730, 697.

## 3.3 Unsuccessful Substrates

Further investigation of the substrate scope revealed that tertiary benzylamines having two isopropyl, cyclohexyl, isobutyl, or phenethyl groups as well as 1-benzylazepane failed to furnish the corresponding 4-silapiperidine derivative.



#### 4 Scale-Up Experiment



In a nitrogen-filled glovebox, a 50-mL single-neck round bottom flask equipped with a magnetic stir bar was charged with *N*-benzyl-*N*-ethylethanamine (**1a**, 0.820 g, 5.00 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**, 1.84 g, 10.0 mmol), *p*-xylene (20.0 mL), Me<sub>3</sub>SiOTf (362  $\mu$ L, 2.00 mmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (512 mg, 1.00 mmol). The single-neck round bottom flask was fitted with a cap, and the reaction was then removed from the glovebox. After a condenser was attached to the flask, the mixture was stirred at 150 °C for 12 h in a preheated oil bath with a continous flow of nitrogen gas. After the resulting reaction mixture was cooled to room temperature, NaOH (20.0 mL, 10% aq.) was added and the mixture stirred for 30 min. The mixture was extracted with methyl *tert*-butyl ether (20 mL×3). The combined organic layers were washed with brine (15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under reduced pressure. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether : cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (200 °C, 2 mbar) to afford **3aa** as a colorless viscous liquid (1.12 g, 65% yield).

#### 5 Elaboration of an *N*-Benzylated 4-Silapiperidine

#### 5.1 Debenzylation of Product 3aa<sup>[11]</sup>



A flame-dried 50-mL two-neck flask equipped with a magnetic stir bar and a reflux condenser was charged with **3aa** (0.340 g, 1.00 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (15 mL) under an atmosphere of nitrogen. Then, 1-chloroethyl chloroformate (0.135 mL, 1.25 mmol) was added dropwise at 0 °C within 5 min. The mixture was heated at reflux for 1 h and was then stirred at room temperature for a further 20 h. After that, the solvent was removed under reduced pressure. The resluting oily residue was dissolved in MeOH (10 mL), and the mixture was heated at reflux for 1 h. After the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure to give viscous oil which was triturated with diethyl ether to obtain the product **6** as a white solid (217 mg, 75% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  9.63 (br, 2H), 7.56 – 7.55 (m, 4H), 7.46 – 7.38 (m, 6H), 3.44 (t, *J* = 6.2 Hz, 4H), 1.74 (t, *J* = 6.3 Hz, 4H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  134.8, 132.0, 130.5, 128.6, 44.3, 9.1 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz):  $\delta$  7.56 – 7.55/–16.5, 3.44/– 16.5, 1.74/–16.5 ppm. Spectral data is in agreement with published data.<sup>[12]</sup>

#### 5.2 Oxidation of Product 3aa<sup>[13]</sup>



A flame-dried 50-mL two-neck flask equipped with a magnetic stir bar and a reflux condenser was charged with **3aa** (0.340 g, 1.00 mmol) and  $CH_2Cl_2$  (20 mL) under a atmosphere of nitrogen. Then benzyltriethylammoniumchlorid (0.680 g, 3.00 mmol) and KMnO<sub>4</sub> (0.470 g, 3.00 mmol) was added, and the reaction mixture was heated at reflux for 3 h. After the reaction mixture was cooled to room temperature, the suspension was quenched by aq. sodium thiosulphate and filtered. The resulting solution was extracted with  $CH_2Cl_2$  (20 mL×3),

and the combined organic layers were washed with brine (15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under reduced pressure. The product was purified by flash column chromatography on silica gel with methyl *tert*-butyl ether : cyclohexane = 1 : 3 as the eluent to afford **7** as a white solid (197 mg, 55% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.56 – 7.54 (m, 4H), 7.45 – 7.38 (m, 11H), 4.00 (br, 2H), 3.64 (br, 2H), 1.56 (br, 2H), 1.27 (br, 2H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  171.1, 136.9, 134.6, 134.5, 130.0, 129.4, 128.5, 128.3, 126.5, 47.1, 42.0, 13.0, 11.3 ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for *J* = 7 Hz):  $\delta$  7.56 – 7.54/–14.2 ppm. HRMS (APCI): Calculated for C<sub>23</sub>H<sub>24</sub>NOSi<sup>+</sup> [M+H]<sup>+</sup>: 358.1627; Found: 358.1618. IR (ATR):  $\tilde{v}$  2927, 2894, 1626, 1426, 1296, 1112, 969, 831, 731, 701.

#### 6 Mechanistic Investigations

#### 6.1 <sup>2</sup>H-Labeling Experiments

#### 6.1.1 Reaction of 1a with Ph<sub>2</sub>SiD<sub>2</sub> (2a-d<sub>2</sub>) Under Standard Conditions



In a nitrogen-filled glovebox, a 10-mL sealed tube equipped with a magnetic stir bar was charged with N-benzyl-N-ethylethanamine (**1a**, 16.3 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**- $d_2$ , 37.2 mg, 0.200 mmol), p-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol), and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol). The sealed tube was fitted with a cap, and the reaction stirred at 150 °C for 2 h in a preheated oil bath. After the resulting reaction mixture was cooled to room temperature, NaOH (5.00 mL, 10% aq.) was added and the mixture stirred for 30 min. The mixture was extracted with methyl tert-butyl ether (20 mLx3). The combined organic layers were washed with brine (15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under reduced pressure. The residue was purified by a sequence of flash column chromatography on silica gel with methyl tert-butyl ether : cyclohexane = 1 : 10 as the eluent and Kugelrohr distillation (200 °C, 2 mbar) to afford **3aa**- $d_3$  as a colorless viscous liquid (24.2 mg, 70% yield). Deuterium incorporation: 2.70 D/molecule (<sup>1</sup>H NMR). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.57 – 7.56 (m, 4H), 7.42 – 7.31 (m, 10H), 7.27 – 7.24 (m, 1H), 3.60 (d, J = 13.8 Hz, 1.18H, 41%D), 2.89 – 2.78 (m, 2.36H, 41%D), 1.40 – 1.35 (m, 3.74H, 6%D) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 139.4, 135.9, 134.8, 129.5, 129.0, 128.3, 128.1, 127.0, 62.7 –62.2 (m), 52.4 – 51.8 (m), 11.2 (t, J = 16.1 Hz) ppm. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz):  $\delta$  7.57 – 7.56/– 15.8, 2.89 – 2.78/–15.8, 1.40 – 1.35/–15.8 ppm. **HRMS** (APCI): Calculated for C<sub>23</sub>H<sub>23</sub>D<sub>3</sub>NSi<sup>+</sup> [M+H]<sup>+</sup>: 347.2023; Found: 347.2009. IR (ATR): v 3064, 3021, 2919. 2786, 1491, 1427, 1214, 1110, 962, 874, 698.

| Table S1. | Ratio  | of | different | deuterated | products | <b>3aa-</b> <i>d</i> <sub>n</sub> | (n = | 0~6) | determined | by | mass |
|-----------|--------|----|-----------|------------|----------|-----------------------------------|------|------|------------|----|------|
|           | spectr | os | сору.     |            |          |                                   |      |      |            |    |      |

| <b>3aa</b> - <i>d</i> <sub>n</sub> | Compared to each other in %(intensity : sum of all intensity * 100%) |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| 3aa                                | 2                                                                    |  |  |  |  |
| <b>3aa</b> - <i>d</i> <sub>1</sub> | 10                                                                   |  |  |  |  |
| <b>3aa</b> - <i>d</i> <sub>2</sub> | 22                                                                   |  |  |  |  |
| <b>3aa</b> - <i>d</i> <sub>3</sub> | 28                                                                   |  |  |  |  |
| <b>3aa</b> - <i>d</i> <sub>4</sub> | 22                                                                   |  |  |  |  |
| <b>3aa</b> - <i>d</i> ₅            | 11                                                                   |  |  |  |  |
| <b>3aa</b> - <i>d</i> <sub>6</sub> | 1                                                                    |  |  |  |  |

The overall deuteration grades of **3aa**- $d_3$  determined by mass spectrometry is 2.87 D.

#### 6.1.2 Reaction of 1v with Ph<sub>2</sub>SiD<sub>2</sub> (2a-d<sub>2</sub>) Under Standard Conditions



In a nitrogen-filled glovebox, a 10-mL sealed tube equipped with a magnetic stir bar was charged with *N*-benzyl-*N*-butylbutan-1-amine (**1v**, 21.9 mg, 0.100 mmol), Ph<sub>2</sub>SiH<sub>2</sub> (**2a**-*d*<sub>2</sub>, 37.2 mg, 0.200 mmol), *p*-xylene (0.800 mL), Me<sub>3</sub>SiOTf (7.20 µL, 40.0 µmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 20.0 µmol). The sealed tube was fitted with a cap, and the reaction stirred at 150 °C for 2 h in a preheated oil bath. After the resulting reaction mixture was cooled to room temperature, NaOH (5.00 mL, 10% aq.) was added and the mixture stirred for 30 min. The mixture was extracted with methyl *tert*-butyl ether (20 mL×3). The combined organic layers were washed with brine (15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under reduced pressure. The residue was purified by a sequence of flash column chromatography on silica gel with methyl *tert*-butyl ether : cyclohexane = 1 : 5 as the eluent to afford **1v**-*d*<sub>3</sub> as a colorless liquid (16.8 mg, 75% yield). Deuterium incorporation: 2.85 D/molecule (<sup>1</sup>H NMR). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.33 – 7.28 (m, 4H), 7.22 (t, *J* = 7.0 Hz, 1H), 3.58 – 3.50 (m, 1.37H, 32%D), 2.42 – 2.38 (m, 2.71H, 32%D), 1.48 – 1.42 (m, 4H), 1.33 – 1.26 (m, 3.06H, 24%D), 0.88 (t, *J* = 7.4 Hz, 6H) ppm. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  140.2, 129.0, 128.2, 126.8, 58.7 –58.2 (m), 53.6 – 53.1 (m), 29.3 – 29.0 (m), 20.7 – 20.2 (m), 14.2 – 14.0 (m) ppm. HRMS (APCI): Calculated for

 $C_{15}H_{23}D_3N^+$  [M+H]<sup>+</sup>: 223.2254; Found: 223.2244. **IR** (ATR):  $\tilde{v}$  2955, 2928, 2869, 2795, 1453, 1376, 1170, 731, 697.

**Table S2.** Ratio of different deuterated products  $1v-d_n$  (n = 0~7) determined by massspectroscopy.

| <b>1v</b> - <i>d</i> <sub>n</sub> | Compared to each other in %(intensity : sum of all intensity * 100%) |
|-----------------------------------|----------------------------------------------------------------------|
| 1v                                | 3                                                                    |
| <b>1v</b> - <i>d</i> <sub>1</sub> | 12                                                                   |
| <b>1v</b> - <i>d</i> <sub>2</sub> | 23                                                                   |
| <b>1v</b> - <i>d</i> <sub>3</sub> | 27                                                                   |
| <b>1v</b> - <i>d</i> <sub>4</sub> | 21                                                                   |
| <b>1v</b> - <i>d</i> <sub>5</sub> | 10                                                                   |
| 1v- <i>d</i> 6                    | 3                                                                    |
| <b>1v</b> - <i>d</i> <sub>7</sub> | 1                                                                    |

The overall deuteration grades of  $1v-d_3$  determined by mass spectrometry is 2.98 D.

#### 6.2 Stoichiometric Experiments





In a nitrogen-filled glovebox, a J-Young tube was charged with **1a** (8.20 mg, 0.0500 mmol), mesitylene (3.50 µL, 0.0250 mmol), toluene- $d_8$  (0.5 mL), and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (25.6 mg, 0.0500 mmol). After shaking 15 min at RT, the reaction mixture was analyzed by NMR spectroscopy (internal standard material: mesitylene, 3.50 µL, 0.0250 mmol). *Crude NMR data of 8a*: <sup>11</sup>B NMR (161 MHz, toluene- $d_8$ ; selected data of 8a):  $\delta$  –23.8 (d, J = 81.2 Hz) ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 8a):  $\delta$  –133.8 (d, J = 30.0 Hz), –161.2 (t, J = 20.8 Hz), –165.4 – 165.5 (m) ppm. *Crude NMR data of 9a*: <sup>11</sup>B NMR (161 MHz, toluene- $d_8$ ; selected data of 9a):  $\delta$  –13.9 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 9a):  $\delta$  –132.5 (d, J = 28.0 Hz), – 159.4 (t, J = 21.4 Hz), –164.2 – –164.4 (m) ppm. *Crude NMR data of 10a*: <sup>11</sup>B NMR (161 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.6 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.7 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data of 10a):  $\delta$  –13.5 ppm; <sup>19</sup>F NMR (471 MHz, toluene- $d_8$ ; selected data

#### 6.2.2 Stoichiometric Reaction of **1a**, Me<sub>3</sub>SiOTf, and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1:1:1)



In a nitrogen-filled glovebox, a J-Young tube was charged with **1a** (8.20 mg, 0.0500 mmol), mesitylene (3.50  $\mu$ L, 0.0250 mmol), toluene-*d*<sub>8</sub> (0.5 mL), and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (25.6 mg, 0.0500 mmol). After shaking 15 min at RT, the reaction mixture was analyzed by NMR spectroscopy (internal standard material: mesitylene, 3.50  $\mu$ L, 0.0250 mmol).

# 7 NMR Spectra

Figure S1. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of *N*-benzyl-*N*-ethylpropan-1-amine (1r).



# Figure S2. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of *N*-benzyl-*N*-ethylpropan-1-amine (1r).

| Me | 140.35 | 128.29<br>126.72 | 58.22<br>55.43<br>47.44 | 20.35<br>12.05<br>11.88 |
|----|--------|------------------|-------------------------|-------------------------|
| Me |        | \ /              |                         | ΙV                      |



Figure S3. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of *N*-benzyl-*N*-ethylbutan-1-amine (1s).



# Figure S4. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of *N*-benzyl-*N*-ethylbutan-1-amine (1s).



Figure S5. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of **1-benzyl-4,4-diphenyl-1,4-azasilinane (3aa)**.



Figure S6. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4,4-diphenyl-1,4-azasilinane (3aa).




Figure S7. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-benzyl-4,4-diphenyl-1,4-azasilinane (3aa)**.

Figure S8. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-([1,1'-biphenyl]-4-ylmethyl)-4,4-diphenyl-1,4-azasilinane (3ba).



Figure S9. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-([1,1'-biphenyl]-4-ylmethyl)-4,4-diphenyl-1,4-azasilinane (3ba).



Figure S10. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of

1-([1,1'-biphenyl]-4-ylmethyl)-4,4-diphenyl-1,4-azasilinane (3ba).



Figure S11. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of **1-(2-methylbenzyl)-4,4-diphenyl-1,4-azasilinane (3ca)**.



# Figure S12. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(2-methylbenzyl)-4,4-diphenyl-1,4-azasilinane (3ca).

| N              | 137.84<br>137.45<br>136.07<br>130.35<br>130.35<br>130.35<br>130.35<br>130.35<br>130.35<br>130.35<br>125.64<br>125.64 | 60.66<br>52.58 | 19.43 | 11.64 |
|----------------|----------------------------------------------------------------------------------------------------------------------|----------------|-------|-------|
| Me Si-Ph<br>Ph |                                                                                                                      |                |       |       |





Figure S13. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-(2-methylbenzyl)-4,4-diphenyl-1,4-azasilinane** 

Figure S14. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(3-methylbenzyl)-4,4-diphenyl-1,4-azasilinane (3da).



### Figure S15. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of **1-(3-methylbenzyl)-4,4-diphenyl-1,4-azasilinane (3da)**.

| Me          | 137.91<br>135.96<br>129.75<br>129.75<br>128.08<br>127.79<br>127.79<br>126.10 | 62.73 | 21.55<br>11.33 |
|-------------|------------------------------------------------------------------------------|-------|----------------|
| Si-Ph<br>Ph |                                                                              |       |                |





Figure S16. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-(3-methylbenzyl)-4,4-diphenyl-1,4-azasilinane

Figure S17. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-methylbenzyl)-4,4-diphenyl-1,4-azasilinane (3ea).



### Figure S18. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-methylbenzyl)-4,4-diphenyl-1,4-azasilinane (3ea).





Figure S19. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-(4-methylbenzyl)-4,4-diphenyl-1,4-azasilinane

Figure S20. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-(*tert*-butyl)benzyl)-4,4-diphenyl-1,4-azasilinane (3fa).



## Figure S21. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-(*tert*-butyl)benzyl)-4,4-diphenyl-1,4-azasilinane (3fa).

ppm



Figure S22. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-(4-(*tert*-butyl)benzyl)-4,4-diphenyl-1,4-azasilinane

Figure S23. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-fluorobenzyl)-4,4-diphenyl-1,4-azasilinane (3ga).



#### Figure S24. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-fluorobenzyl)-4,4-diphenyl-1,4-azasilinane (3ga).



Figure S25. <sup>19</sup>F NMR spectrum (471 MHz, CDCl<sub>3</sub>, 298 K) of **1-(4-fluorobenzyl)-4,4-diphenyl-1,4-azasilinane (3ga)**.

Ρh

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ppm

- -116.18



Figure S26. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-(4-fluorobenzyl)-4,4-diphenyl-1,4-azasilinane

Figure S27. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-chlorobenzyl)-4,4-diphenyl-1,4-azasilinane (3ha).



Figure S28. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-chlorobenzyl)-4,4-diphenyl-1,4-azasilinane (3ha).





Figure S29. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-(4-chlorobenzyl)-4,4-diphenyl-1,4-azasilinane

Figure S30. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-bromobenzyl)-4,4-diphenyl-1,4-azasilinane (3ia).



Figure S31. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-bromobenzyl)-4,4-diphenyl-1,4-azasilinane (3ia).





Figure S32. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-(4-bromobenzyl)-4,4-diphenyl-1,4-azasilinane

Figure S33. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-iodobenzyl)-4,4-diphenyl-1,4-azasilinane (3ja).



### Figure S34. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(4-iodobenzyl)-4,4-diphenyl-1,4-azasilinane (3ja).





Figure S35. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCI<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-(4-iodobenzyl)-4,4-diphenyl-1,4-azasilinane (3ja).

Figure S36. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 4,4-diphenyl-1-(4-(trifluoromethyl)benzyl)-1,4-azasilinane (3ka).



Figure S37. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 4,4-diphenyl-1-(4-(trifluoromethyl)benzyl)-1,4-azasilinane (3ka).



Figure S38. <sup>19</sup>F NMR spectrum (471 MHz, CDCl<sub>3</sub>, 298 K) of 4,4-diphenyl-1-(4-(trifluoromethyl)benzyl)-1,4-azasilinane (3ka).

| N<br>Si-Ph<br>Ph | -62.27 |      |  |
|------------------|--------|------|--|
|                  |        |      |  |
|                  |        |      |  |
|                  |        |      |  |
|                  |        |      |  |
|                  |        |      |  |
|                  |        |      |  |
|                  |        | <br> |  |

### Figure S39. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of

4,4-diphenyl-1-(4-(trifluoromethyl)benzyl)-1,4-azasilinane (3ka).



Figure S40. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 3-((4,4-diphenyl-1,4-azasilinan-1-yl)methyl)phenol (3la).



Figure S41. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 3-((4,4-diphenyl-1,4-azasilinan-1-yl)methyl)phenol (3la).





Figure S42. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 3-((4,4-diphenyl-1,4-azasilinan-1-yl)methyl)phenol
Figure S43. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-(naphthalen-2-ylmethyl)-4,4-diphenyl-1,4-azasilinane (3ma).



Figure S44. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-(naphthalen-2-ylmethyl)-4,4-diphenyl-1,4-azasilinane (3ma).



Figure S45. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of

1-(naphthalen-2-ylmethyl)-4,4-diphenyl-1,4-azasilinane (3ma).



Figure S46. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of **1,4-bis((4,4-diphenyl-1,4-azasilinan-1-yl)methyl)benzene (3na)**.



Figure S47. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of **1,4-bis((4,4-diphenyl-1,4-azasilinan-1-yl)methyl)benzene (3na)**.



# Figure S48. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of



1,4-bis((4,4-diphenyl-1,4-azasilinan-1-yl)methyl)benzene (3na).

Figure S49. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-cyclohexyl-4,4-diphenyl-1,4-azasilinane (3oa).



### Figure S50. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-cyclohexyl-4,4-diphenyl-1,4-azasilinane (3oa).





Figure S51. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-cyclohexyl-4,4-diphenyl-1,4-azasilinane (30a)**.

Figure S52. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-ethyl-4,4-diphenyl-1,4-azasilinane (3pa).



Figure S53. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-ethyl-4,4-diphenyl-1,4-azasilinane (3pa).





Figure S54. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-ethyl-4,4-diphenyl-1,4-azasilinane (3pa)**.

Figure S55. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-methyl-4,4-diphenyl-1,4-azasilinane (3qa).



# Figure S56. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of **1-methyl-4,4-diphenyl-1,4-azasilinane (3qa)**.





Figure S57. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-methyl-4,4-diphenyl-1,4-azasilinane (3qa)**.

Figure S58. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-3-methyl-4,4-diphenyl-1,4-azasilinane (3ra).



### Figure S59. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-3-methyl-4,4-diphenyl-1,4-azasilinane (3ra).





| 63.32<br>61.05 | 53.15 |  | 17.83 | 14.86 | 11.13 |
|----------------|-------|--|-------|-------|-------|
|                |       |  |       |       |       |





Figure S60. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 1-benzyl-3-methyl-4,4-diphenyl-1,4-azasilinane

Figure S61. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-3-ethyl-4,4-diphenyl-1,4-azasilinane (3sa).



## Figure S62. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-3-ethyl-4,4-diphenyl-1,4-azasilinane (3sa).

| N          | 139.80<br>135.14<br>135.14<br>135.06<br>145.06<br>145.08<br>145.08<br>129.02<br>128.03<br>128.03<br>122.02<br>127.02 | 63.39<br>57.51<br>53.17 | 25.74<br>22.24<br>13.91<br>11.40 |
|------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|
| Si-Ph      |                                                                                                                      |                         |                                  |
| ∣ Ph<br>Et |                                                                                                                      |                         |                                  |





Figure S63. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-benzyl-3-ethyl-4,4-diphenyl-1,4-azasilinane (3sa)**.

Figure S64. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 3,5-dimethyl-4,4-diphenyl-1-propyl-1,4-azasilinane (3ta) (d.r. = 58:42).



Figure S65. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of **3,5-dimethyl-4,4-diphenyl-1-propyl-1,4-azasilinane (3ta) (d.r. = 58:42)**.





Figure S66. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **3,5-dimethyl-4,4-diphenyl-1-propyl-1,4-azasilinane** 

Figure S67. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-ethyl-6-methyl-4,4-diphenyl-1,2,3,4-tetrahydrobenzo[*b*][1,4]azasiline (4ua).



Figure S68. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-ethyl-6-methyl-4,4-diphenyl-1,2,3,4-tetrahydrobenzo[*b*][1,4]azasiline (4ua).



**Figure S69.** <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCI<sub>3</sub>, 298 K, optimized for J = 7 Hz) of

1-ethyl-6-methyl-4,4-diphenyl-1,2,3,4-tetrahydrobenzo[b][1,4]azasiline (4ua).



#### Figure S70. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of

8-methyl-1,1,6,6-tetraphenyl-2,3,5,6-tetrahydro-1*H*,4*H*-3a-aza-1,6-disilaphenalene (5ua).





Figure S71. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of

**Figure S72.** <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of

8-methyl-1,1,6,6-tetraphenyl-2,3,5,6-tetrahydro-1*H*,4*H*-3a-aza-1,6-disilaphenalene (5ua).



Figure S73. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4,4-di-*p*-tolyl-1,4-azasilinane (3ab).



Figure S74. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4,4-di-*p*-tolyl-1,4-azasilinane (3ab).





Figure S75. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-benzyl-4,4-di**-*p*-tolyl-1,4-azasilinane (3ab).

Figure S76. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4,4-bis(4-(*tert*-butyl)phenyl)-1,4-azasilinane (3ac).



Figure S77. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4,4-bis(4-(*tert*-butyl)phenyl)-1,4-azasilinane (3ac).



### Figure S78. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of



1-benzyl-4,4-bis(4-(*tert*-butyl)phenyl)-1,4-azasilinane (3ac).
**Figure S79.** <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of **1-benzyl-4,4-bis(4-fluorophenyl)-1,4-azasilinane (3ad)**.



Figure S80. <sup>13</sup>C NMR spectrum (125 MHz, CDCI<sub>3</sub>, 298 K) of 1-benzyl-4,4-bis(4-fluorophenyl)-1,4-azasilinane (3ad).



Figure S81. <sup>19</sup>F NMR spectrum (471 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4,4-bis(4-fluorophenyl)-1,4-azasilinane (3ad).





Figure S82. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-benzyl-4,4-bis(4-fluorophenyl)-1,4-azasilinane** 

Figure S83. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4-(naphthalen-1-yl)-4-phenyl-1,4-azasilinane (3ae).



Figure S84. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4-(naphthalen-1-yl)-4-phenyl-1,4-azasilinane (3ae).





Figure S85. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of

Figure S86. <sup>1</sup>H NMR spectrum (500 MHz, CDCI<sub>3</sub>, 298 K) of **1-benzyl-4-methyl-4-phenyl-1,4-azasilinane (3ag)**.



## Figure S87. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4-methyl-4-phenyl-1,4-azasilinane (3ag).

| N N         | 139.11<br>138.06<br>133.07<br>129.28<br>129.09<br>128.02<br>128.02<br>128.02<br>128.02<br>127.05 | 52 83<br>52 52 | -3.95 |
|-------------|--------------------------------------------------------------------------------------------------|----------------|-------|
| Śi-Me<br>Ph |                                                                                                  |                |       |





Figure S88. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-benzyl-4-methyl-4-phenyl-1,4-azasilinane (3ag)**.

Figure S89. <sup>1</sup>H NMR spectrum (500 MHz, CDCI<sub>3</sub>, 298 K) of **1-benzyl-4,4-diethyl-1,4-azasilinane (3ai)**.



## Figure S90. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of 1-benzyl-4,4-diethyl-1,4-azasilinane (3ai).





Figure S91. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of **1-benzyl-4,4-diethyl-1,4-azasilinane (3ai)**.





Figure S93. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of **4,4-diphenyl-1,4-azasilinane hydrochloride (6)**.







Figure S94. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of 4,4-diphenyl-1,4-azasilinane hydrochloride (6).

Figure S95. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of (4,4-diphenyl-1,4-azasilinan-1-yl)(phenyl)methanone (7).



Ρh

Figure S96. <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>, 298 K) of (4,4-diphenyl-1,4-azasilinan-1-yl)(phenyl)methanone (7).







Figure S97 <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of (4,4-diphenyl-1,4-azasilinan-1-yl)(phenyl)methanone

Figure S98. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of 4,4-diphenyl-1-(phenylmethyl-d)-1,4-azasilinane-2,6-d<sub>2</sub> (3aa-d<sub>3</sub>).







Figure S100. <sup>1</sup>H/<sup>29</sup>Si HMQC NMR (500/99 MHz, CDCl<sub>3</sub>, 298 K, optimized for J = 7 Hz) of



4,4-diphenyl-1-(phenylmethyl-d)-1,4-azasilinane-2,6-d<sub>2</sub> (3aa-d<sub>3</sub>).

Figure S101. <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of *N*-benzyl-*N*-butylbutan-1-amine-*d*<sub>3</sub> (1v-*d*<sub>3</sub>).









**Figure S103.** <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of the stoichiometric reaction of **1a** and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1:1).

**Figure S104.** <sup>11</sup>B NMR spectrum (161 MHz, 1,2-C<sub>6</sub>D<sub>4</sub>Cl<sub>2</sub>, 298 K) of the stoichiometric reaction of **1a** and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1:1).





**Figure S105.** <sup>19</sup>F NMR spectrum (471 MHz, 1,2-C<sub>6</sub>D<sub>4</sub>Cl<sub>2</sub>, 298 K) of the stoichiometric reaction of **1a** and  $B(C_6F_5)_3$  (1:1).



## **Figure S106.** <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>, 298 K) of the stoichiometric reaction of **1a**, Me<sub>3</sub>SiOTf, and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1:1:1).

**Figure S107.** <sup>11</sup>B NMR spectrum (161 MHz, 1,2-C<sub>6</sub>D<sub>4</sub>Cl<sub>2</sub>, 298 K) of the stoichiometric reaction of **1a**, Me<sub>3</sub>SiOTf, and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1:1:1).





**Figure S108.** <sup>19</sup>F NMR spectrum (471 MHz, 1,2-C<sub>6</sub>D<sub>4</sub>Cl<sub>2</sub>, 298 K) of the stoichiometric reaction of **1a**, Me<sub>3</sub>SiOTf, and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1:1:1).

## 8 References

- [1] P. D. Prince, M. J. Bearpark, G. S. McGrady, J. W. Steed, *Dalton Trans.* 2008, 271–282.
- X. Yang, C. Wang, Angew. Chem. Int. Ed. 2018, 57, 923–928; Angew. Chem.
  2018, 130, 935–940.
- [3] a) S. J. Aspin, S. Taillemaud, P. Cyr, A. B. Charette, *Angew. Chem. Int. Ed.* 2016, *55*, 13833–13837; *Angew. Chem.* 2016, *128*, 14037–14041; b) G. Zhan, H.-L. Teng, Y. Luo, S.-J. Lou, M. Nishiura, Z. Hou, *Angew. Chem. Int. Ed.* 2018, *57*, 12342–12346; *Angew. Chem.* 2018, *130*, 12522–12526.
- [4] N. T. Tran, T. Min, A. K. Franz, *Chem. Eur. J.* **2011**, *17*, 9897–9900.
- [5] N. Gandhamsetty, S. Park, S. Chang, J. Am. Chem. Soc. 2015, 137, 15176– 15184.
- [6] S. E. Varjosaari, V. Skrypai, P. Suating, J. J. M. Hurley, A. M. D. Lio, T. M. Gilbert, M. J. Adler, *Adv. Synth. Catal.* **2017**, *359*, 1872–1878.
- [7] S. R. Tamang, A. Singh, D. Bedi, A. R. Bazkiaei, A. A. Warner, K. Glogau, C. McDonald, D. K. Unruh, M. Findlater, *Nat. Catal.* **2020**, *3*, 154–162.
- [8] W. Yao, H. Fang, Q. He, D. Peng, G. Liu, Z. Huang, J. Org. Chem. 2019, 84, 6084–6093.
- C. Li, K.-f. Wan, F.-y. Guo, Q.-h. Wu, M.-I. Yuan, R.-x. Li, H.-y. Fu, X.-I. Zheng, H. Chen, *J. Org. Chem.* 2019, *84*, 2158–2168.
- [10] H. Seo, M. H. Katcher, T. F. Jamison, *Nat. Chem.* **2017**, *9*, 453–456.
- [11] a) R. Tacke, R. Bertermann, C. Burschka, S. Dörrich, M. Fischer, B. Müller, G. Meyerhans, D. Schepmann, B. Wünsch, I. Arnason, R. Bjornsson, *ChemMedChem* 2012, 7, 523–532; b) B. Seetharamsingh, R. Ramesh, S. S. Dange, P. V. Khairnar, S. Singhal, D. Upadhyay, S. Veeraraghavan, S. Viswanadha, S. Vakkalanka, D. S. Reddy, *Acs Med. Chem. Lett.* 2015, *6*, 1105–1110.
- [12] M. Fischer, R. Tacke, Organometallics 2013, 32, 7181–7185.
- [13] D. S.Reddy, R. Ramesh, S. S. Balamkundu, PCT Int. Appl., WO2014097322A1.