ChemBioChem

Supporting Information

Structure of the O-Antigen and the Lipid A from the Lipopolysaccharide of *Fusobacterium nucleatum* ATCC 51191

Pilar Garcia-Vello, Flaviana Di Lorenzo, Dimitra Lamprinaki, Anna Notaro, Immacolata Speciale, Antonio Molinaro, Nathalie Juge, and Cristina De Castro*

Author Contributions

P.G.-V. Formal analysis:Lead; Investigation:Lead; Writing - original draft:Lead

F.D. Investigation:Equal; Writing - original draft:Equal

D.L. Resources:Supporting

A.N. Investigation: Supporting

I.S. Investigation:Supporting

A.M. Conceptualization:Supporting; Investigation:Supporting; Supervision:Supporting; Writing – review & editing:-Supporting

N.J. Resources:Supporting; Writing – review & editing:Supporting

C.D. Conceptualization:Lead; Investigation:Lead; Supervision:Lead; Writing - review & editing:Lead

Figure S1. Electrophoresis analysis of bacterial LPS. A. E. coli O111:B4 LPS (8 µg). B. F. nucleatum ATCC 51191 LPS (8 µg) C. BlueEye protein standard. The samples were run on a 12 % SDS-PAGE and visualized by silver staining.

Figure S2. GC-MS profile of *F. nucleatum* ATCC 51191 LPS A. acetylated methyl glycosides, B. lipid compositional analysis. I: impurities; 16:1 and 18:0 are impurities or cell derived fatty acids.

Figure S3: Chromatogram profile of *F. nucleatum* ATCC 51191 O-antigen purification on a Sephacryl S200 column. The O-antigen corresponds to the second (highest) peak of the chromatogram.

Figure S4: ¹H NMR spectrum of the O-antigen of *F. nucleatum* ATCC 51191 showing the lack of signals around 8 ppm and therefore the absence of a formyl group (600 MHz, 25 °C, 550 µL of D₂O, neutral pH).

Figure S5. Negative-ion MALDI MS/MS spectrum of precursor ion at *m/z* 1801.1 of the lipid A of *F. nucleatum* ATCC 51191. This is a representative ion peak of the cluster ascribed to hexa-acylated lipid A species decorated by two phosphates. The main fragments' assignment is indicated in the spectrum. The proposed structure is reported in the inset. The loss of C₁₂H₂₄O (184 mass units) and C₁₄H₂₈O (212 mass units) is also indicated and was due to a rearrangement typically occurring on primary acyl chains only when their 3-OH group is free, thus contributing to the establishment of the location of the secondary acyl substitution.

Table S1. The main MALDI-TOF MS ion peaks *F. nucleatum* ATCC 51191 lipid A. The table reports the predicted mass and the proposed interpretation of the substituting fatty acids and phosphates on the *F. nucleatum* ATCC 51191 lipid A backbone. See Figure 6 for full spectrum.

Predicted mass (Da)	Observed ion peaks (<i>m/z</i>)	Acyl substitution	Proposed fatty acid/phosphate composition
1364.96	1364.68	Tetra-acyl	HexN ₂ P [14:0(3-OH)][16:0(3-OH)] ₂ (14:0)
1444.92	1444.69	Tetra-acyl	HexN ₂ P ₂ [14:0(3-OH)] [16:0(3-OH)] ₂ (14:0)
1591.15	1590.86	Penta-acyl	HexN ₂ P [14:0(3-OH)] ₂ [16:0(3-OH)] ₂ (14:0)
1671.11	1670.87	Penta-acyl	HexN ₂ P ₂ [14:0(3-OH)] ₂ [16:0(3-OH)] ₂ (14:0)
1801.35	1801.15	Hexa-acyl	HexN ₂ P [14:0(3-OH)] ₂ [16:0(3-OH)] ₂ (14:0) ₂
1881.31	1881.15	Hexa-acyl	HexN ₂ P ₂ [14:0(3-OH)] ₂ [16:0(3-OH)] ₂ (14:0) ₂