Chemistry–A European Journal

Supporting Information

Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound**

Natalie Schäfer,^[a, b] Michael Bühler,^[b] Lisa Heyer,^[a, b] Merle I. S. Röhr,^[b] and Florian Beuerle^{*[a, b]}

Content

1	Synthetic Procedures	S2
2	Analytical Data	S4
3	NMR Experiments	S11
4	Molecular Modeling	S17
5	References	S19

1 Synthetic Procedures

Compounds S2,^[S1] 3,^[S2] 4,^[S1] 5^[S3] and $A^{[S4]}$ have been synthesized according to previously published procedures.

Scheme S1. Synthesis of diboronic acid C^{PhCOOH} : a) H₂SO₄, MeOH, 90 °C, 19 h, 93%, b) K₂CO₃, MeOH/H₂O, rt, 24 h, 93%, c) BF₃·OEt₂, 100 °C, 2 h, 38%, d) 1. **4**, NaOH, MeOH, 30 min, 2. Ac₂O, 160 °C, 2 h, 55%, e) B₂pin₂ / KOAc / Pd(dppf)Cl₂, DMF, reflux, 2 h 30 min, 71%, f) BBr₃, CH₂Cl₂, 3 h 45 min, 0 °C \rightarrow rt, 76%.

2 Analytical Data

Figure S4. FT-IR spectrum of 6.

Figure S8. FT-IR spectrum of C^{PhCOOH}.

* Indicates residual CHCl₃ and H₂O).

Figure S11. MS (MALDI-TOF, DCTB in CHCl₃, pos.) of $A_2C^{PhCOOH}_3$.

Figure S12. FT-IR spectrum of $A_2C^{PhCOOH}_3$.

Figure S13. 2D plot of DOSY NMR (600 MHz, CDCl3, 295.6 K) of A₂C^{PhCOOH}₃.

Figure S14. Monoexponential fit of the amplitude decay for selected proton signal at $\delta = 4.56$ ppm of cage $A_2C^{PhCOOH}_{3}$.

3 NMR Experiments

Figure S15. ¹H NMR (400 MHz, THF- d_8 , rt) spectra of **A**, **C**^{PhCOOH} and the reaction mixture directly, two days and four days after mixing both components (**A**:**C**^{PhCOOH} = 2:3, $c(\mathbf{A}) = 2.5 \times 10^{-2}$ mol L⁻¹) in THF- d_8 : a) overview; b) details of the aromatic region; c) details of the bridgehead area.

Figure S16. ¹H NMR (400 MHz, THF- d_8 , rt) spectra of **A**, **C**^{PhCOOH} and the reaction mixture directly, two days and five days after mixing both components in the presence of AcOH (**A**:**C**^{PhCOOH}:AcOH = 2:3:6, $c(\mathbf{A}) = 2.5 \times 10^{-2} \text{ mol } \text{L}^{-1}$) in THF- d_8 : a) overview (* denotes AcOH); b) details of the aromatic region; c) details of the bridgehead area.

Figure S17. MS (MALDI-TOF, DCTB in CHCl₃, pos.) of the reaction mixture from $A/C^{PhCOOH} = 2:3$ in THF-*d*₈ after five days ($c(A) = 2.5 \times 10^{-2} \text{ mol } \text{L}^{-1}$).

Figure S18. MS (MALDI-TOF, DCTB in CHCl₃, pos.) of the reaction mixture from $A/C^{PhCOOH} = 2:2$ in THF- d_8 after five days ($c(A) = 2.5 \times 10^{-2}$ mol L⁻¹).

between $A/C^{PhCOOH}/D = 4:4:2$ ($c(A) = 2.0 \times 10^{-2} \text{ mol } L^{-1}$) at the beginning of the reaction, after five days and after seven days in comparison to the cubic cage A_8D_{12} and the reaction mixture of $A_2C^{PhCOOH}_3$ after eight days as well as the starting materials A, C^{PhCOOH} and D.

Figure S20. MS (MALDI-TOF, DCTB in CHCl₃, pos.) of the reaction mixture for the self-sorting experiment $A/C^{PhCOOH}/D = 4:4:2$ ($c(A) = 2.0 \times 10^{-2}$ mol L⁻¹).

4 Molecular Modeling

Figure S21. Overlay of DFT-geometry optimized molecular structures for a) tetrahedral cages
A₄C^{Me₆} (black) and A₄C^{PhCOOH}₆ (red, PhCOOH substituents in yellow) and b) trigonal-bipyramidal cages A₂C^{Me₃} (black) and A₂C^{PhCOOH}₆ (red, PhCOOH substituents in yellow); to reduce computational time and resources, "Bu groups at the apical position of A have been replaced with Me groups and 'BuPh substitutents in 5'-position of C^{PhCOOH} have been replaced with H atoms; for the images, H atoms are omitted for clarity.

Figure S22. Ten MD trajectories for AC^{PhCOOH}_{2} with different starting conformations at 298 K for 1 ns (the dashed black line marks the B-B distance in the $A_2C^{PhCOOH}_{2}$ macrocycles).

Figure S23. Right: MD trajectories for one starting conformation of $AC^{PhCOOH_2}(1.)$ with ten randomly generated initial velocities at 298 K for 1 ns (the dashed black line marks the B-B distance in the $A_2C^{PhCOOH_2}$ macrocycles); left: Two selected trajectories leading to fixed U-shaped conformer (2., red trace) or a more compact metastable conformer (3., blue trace)

Figure S24. DFT-geometry optimized molecular structures for a) AC^{Me_2} and b) the two fixed conformers for AC^{PhCOOH_2} obtained from MD simulations.

5 References

- [S1] R. Breslow, P. Marks, A. Mahendran, Y. Yao (Columbia University), US20180118709, 2018.
- [S2] S. Klyatskaya, N. Dingenouts, C. Rosenauer, B. Müller, S. Höger, J. Am. Chem. Soc. 2006, 128, 3150–3151.
- [S3] A. B. Vliegenthart, F. A. L. Welling, M. Roemelt, R. J. M. Klein Gebbink, M. Otte, *Org. Lett.* 2015, 17, 4172–4175.
- [S4] S. Klotzbach, T. Scherpf, F. Beuerle, Chem. Commun. 2014, 50, 12454–12457.