
Supplementary Materials

Proof of Theorem 1

We first restate the convergence theorem to be proved.

Theorem 1. There exists a constant ρ0 such that if ρ ≥ ρ0, every limit point of the sequence
(X(i),S(i)) generated by the algorithm described in (8), (9), (10), and (11) is a stationary
solution of the optimization problem (7) (i.e. a solution that satisfies the KKT condition).

We first explain more details of the transformation outlined in the proof sketch. Denote
X1 = vec(Xmet), X2 = vec(Xmm), X0 = vec(S). Here vec is the standard vectorization
operation of a matrix, i.e. write a matrix (Mij)1≤i≤n1,1≤j≤n2 as a vector of size n1n2. The main
purpose of this vectorization is to write the linear constraint in the standard form. Denote A
as a diagonal matrix whose diagonal entries are all the entries of vec(B). Then the constraint
B � (Xmet + Xmm) = S can be written as AX1 + AX2 = X0. To be consistent, we also
need to express the objective as a function of the vectorized variables. Therefore we rewrite
λ1

∑N
n=1 ‖Nmet(X

n
met)−Xn

met‖22 as a function of the vectorized variable X1, denoted as g1(X1).
It is not hard to write down the closed form expression of g1, but for the proof we do not
need this expression, so we skip it. Similarly, we can rewrite λ2

∑N
n=1 ‖Nmm(Xn

mm)−Xn
mm‖22,

as a function of X2, denoted as g2(X2). We rewrite

‖d− Ω{FX0}‖22 + λ3‖DwB̄�X0‖2F , (16)

as a function of the vectorized variable X0, which we denote as `(X0).

Then our optimization problem in Eq. (7) can be written in the general form of

min
X1∈X1,X2∈X2,X0

g1(X1) + g2(X2) + `(X0)

s.t. AX1 + AX2 = X0.
(17)

This is a special case of the sharing problem [1]. And our algorithm (8), (9), (10), (11) is
a special case of Algorithm 4 in [1], which converges to a stationary point under certain
technical conditions described in Assumption C in [1]. Next, we verify these conditions.

Assumption C1 in [1] contains two sub-assumptions: the objective `(X0) is Lipschitz
smooth, and the constraint coefficient matrix A is full column rank (the original sub-
assumption requires the coefficient matrix for each variable is full column rank; here the
coefficient matrix for X1 and X2 are the same). The objective function

`(X0) = ‖d− Ω{FX0}‖22 + λ3‖DwB̄�X0‖2F (18)

is a quadratic function of X0, thus Lipschitz smooth, i.e., there exists L such that ‖∇`(X0)−
∇`(X̃0)‖F ≤ L‖X0 − X̃0‖F . for any X0, X̃0. In fact, L can be chosen as the maximum
eigenvalue of the Hessian of `(X0). This verifies the first sub-assumption. Recall that A is
a diagonal matrix whose diagonal entries are all the entries of vec(B). Based on the MRSI
physics, each entry of B is a non-zero number, thus A has full column rank. This verifies
the second sub-assumption.
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Assumption C2 in [1] contains two sub-assumptions: the subproblems are strongly con-
vex with modulus γ1(ρ), γ2(ρ) and γ0(ρ) respectively (these quantities may depend on ρ,
thus appear in the bracket), and the penalty parameter ρ satisfies ρ > max{2L2/γ0(ρ), 2L2}.
Since the feasible set of Xi is bounded, the minimum eigenvalue of the Hessian of gi(Xi)
has a lower bound λmin. For any δ > 0, if we pick ρ > (δ − λmin)/mini,j |Bi,j|, then the
subproblem defined in (8), (9) is strongly convex with modulus at least δ. The subproblem
defined in (10) is strongly convex with modulus at least ρ (since the final term is a quadratic
function with the second order coefficient being ρ/2), i.e., γ0(ρ) ≥ ρ. Thus the first sub-
assumption holds. Since γ0(ρ) > ρ, we only need to pick ρ > max{

√
2L, 2L2} to satisfy the

second sub-assumption ρ > max{2L2/γ0(ρ), 2L2}.
Assumption C3 requires that the objective function is lower bounded. In our problem,

the objective function is non-negative, thus this assumption holds.

Assumption C4 requires that gi’s are smooth functions (possibly non-convex) and are
Lipschitz smooth, i.e., there exists Li such that

‖∇gi(Xi)−∇gi(X̃i)‖ ≤ Li‖Xi − X̃i‖, ∀Xi, X̃i ∈ Xi. (19)

As we are using smooth activation functions in the neural networks, the neural network
mappings Nmet and Nmm are both smooth functions of the input. The function gi consists
of two terms, each of which is a concatenation of the quadratic loss function and a neural
network mapping, thus gi is smooth. Since the feasible set X0 is a bounded set, the maximum
eigenvalue of ∇2gi has an upper bound Li in the feasible set. Thus there exists Li such that
(19) holds.

Now we have verified Assumption C in [1]. Applying [1, Theorem 3.4], we obtain the
desired convergence result.
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Numerical Phantom Generation

Segmented brain compartments and tissue fraction maps, i.e., gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF), were first obtained from an experimentally acquired
brain T1-weighted MPRAGE image (by SPM12, https://www.fil.ion.ucl.ac.uk/spm/). Com-
partmental concentrations and T ∗2 /linewidths for the metabolites and MMs were assigned
by adapting literature values [2–4]. More specifically, for metabolites (NAA, Glu, Cr1, Cr2,
mI, Gln, Cho, GABA, GSH, and Lac), the concentrations (cm) in the GM were 12.25, 9.25,
7.5, 4.25, 6.5, 9.25, 2.5, 1.5, 2.25, and 0.6 mM, respectively. And the T ∗2 s were 250, 80, 150,
150, 150, 80, 200, 80, 70, and 220 ms, respectively. The concentrations for the WM were
decreased by 30% with the T ∗2 randomly decreased by 15%-20% for different molecules. In
addition, the concentrations for all molecules in the CSF were assigned to be 0.1% of the
concentrations in GM. For MMs (peaks located at 0.9, 1.21, 1.38, 1.63, 2.01, 2.09, 2.25,
2.61, 2.96, 3.11, 3.67, 3.8, and 3.96 ppm), the relative concentrations coefficients (bl) in the
GM were 0.72, 0.28, 0.38, 0.05, 0.45, 0.36, 0.36, 0.04, 0.2, 0.11, 0.64, 0.07, 1, respectively.
And the linewidths (Wl) were 21.2, 19.16, 15.9, 7.5, 29.03, 20.53, 17.89, 5.3, 14.02, 17.89,
33.52, 11.85, 37.48 Hz, respectively. Similarly, the concentrations coefficients for the WM
were decreased by 30% with the linewidths remains the same for different MMs. And the
concentrations for all MMs in the CSF were also assigned to be 0.1% of the concentrations
in GM. Next, a global scaling factor (similar to [4], on top of the individual coefficieint varia-
tions) for MM signals were introduced to reflect experimentally observed metabolite-to-MM
signal ratios. The regional concentrations and linewidths were subsequently combined using
the tissue fraction maps as weightings in a voxel-by-voxel fashion, generating continuously
varying concentration and linewidth maps. A lesion-like feature was generated in the image
with a significantly altered metabolite ratio, i.e., a factor of 3 higher Cho concentration and
a factor of 3 lower concentrations for other metabolites compared to the GM. Finally, the
simulated metabolite basis ({vm}) and the spectral parameters at different voxels were fed
into Eq. (2) to synthesize FIDs at individual voxels. To mimic practical scenarios, we also
simulated voxel-dependent random frequency shifts for different molecules (with mean zero
and a standard deviation of 5 Hz) as well as residual B0 field inhomogeneity (mean zero and a
standard deviation of 10 Hz). Noisy data were simulated by adding complex white Gaussian
noise. The SNR is defined as the ratio between the maximum NAA peak amplitude (across
the NAA map) and noise standard deviation (σ):

SNR =
maxr |ρ(r, fNAA)|

σ
,

where fNAA denotes the NAA peak frequency at around 2 ppm.
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Supplementary Figures

This section shows the supplementary results mentioned in the main text.

Figure S1: Reconstructed and separated spectra produced by the proposed method from
the same data used in Figs. 3-7 with the real parts of the spectra shown (phase corrected).
The voxel locations are marked (red squares) in the anatomical images on the left. The first
row shows the results from the simulation phantom, while the second and third rows show
spectra from the in vivo FID-MRSI and sLASER data, respectively.
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Figure S2-1: Experimental results from another volunteer (data acquired using the FID-
MRSI sequence with TR/TE = 1500/4 ms, FOV = 220×220 mm2, slice thickness = 10 mm,
matrix size = 24 × 24, spectral bandwidth = 2000 Hz, and 512 FID samples): a) and b)
Maps of NAA, Cr, and MM estimated from the separated signals produced by the proposed
method (a) and the direct parametric fitting method (b). The maps were overlaid on an
anatomical image for the matched slice; c) Spatially-resolved spectra (voxel location marked
by the blue symbol) with the first and second rows showing the results from the proposed
method (orange) and parametric fitting (blue), respectively. The original spectra are shown
in black. A similar comparison to other data can be observed, with the results from the
proposed method showing less spatial artifacts and less spectral under/over estimation.
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Figure S2-2: Same as Fig. S2-1 with spectra shown in real parts.

6



Figure S3: Simulation results from data with a higher SNR (SNR=60) a) A representative
spectrum (real parts) from the phantom illustrating the noise level; b) Mapping results from
the data: maps of NAA, Cr, Cho, and MM (∼0.9 ppm peak) from the ground truth (Gold
Standard, column 1), the direct parametric fitting method (column 2), and the proposed
method (column 3) are compared, along with relative `2 errors for the separated metabolite
and MM signals (shown in images). With the higher SNR, reduced spatial variances and
lower errors can be observed, as expected.
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Figure S4: The DAE structure used. X denotes the collection of FID training data (each with
a length T ). The real and imaginary parts of these data are concatenated (thus a dimension
of 2T ) to be used as input to the network. The DAE uses a fully connected “bottleneck”
structure with an encoder (red) and a decoder (blue), and a middle feature layer with a
dimension L (also referred to as the model order for our learned representations).
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Figure S5: Experimental results from the in vivo FID-MRSI (top panel) and sLASER data
(bottom panel). The top rows in each panel contain the molecular maps (NAA, Cr, Cho,
Glu and MM) estimated from the separated signals produced by the proposed method (a
and c), while the second rows in each panel the direct parametric fitting results (b and d).
As can be seen, all the maps from the proposed method exhibit substantially less artifacts
than those from the direct fitting, consistent with the comparison shown in the main text.
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Figure S6: Comparison of the in-house fitting implementations against that provided by the
jMRUI package. Different metabolite and MM spectra were simulated using experimental
spectral parameters. As can be seen, our implementation produced almost the same results
as those from jMRUI.
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