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SUPPLEMENTARY INFORMATION GUIDE 

Supplementary Table 1 - Relevant clinical information for the eight TNBC tumors and four TNBC cell 
lines that were analyzed in this study. 

Supplementary Table 2 – Exome sequencing mutational information from bulk DNA exome of the 8 
TNBC tumors. 

Supplementary Table 3 - List of dual barcodes from ACT protocol. 

Supplementary Methods – Extensive description of the methodology used for the mathematical 
modeling section. 
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TNBC Tumors 
ID age ER PR HER2 grade pathology specimen size (cm) lymph treatment  ploidy cells reads per cell  %dup mean bin count 

TN1 60 <1% <1% neg 3 DCIS 1.4x1.2x1.0 neg AC 3.45 1100 954367 9.77 62.20 

TN2 79 <1% <1% neg 3 IDC 1.1x1.0x0.6 neg untreated 3.03 1024 1446404 9.72 90.10 

TN3 71 <1% <1% neg 3 IDC/DCIS 2.0x1.8x1.1 neg untreated 3.44 1101 938037 7.68 63.40 

TN4 53 <1% <1% neg 3 IDC/DCIS 0.9x0.9x0.7 neg untreated 3.76 1307 894304 7.92 55.70 

TN5 37 <1% <1% neg 3 IDC/DCIS 1.2x0.4x0.8 neg untreated 2.65 1238 919209 8.12 60.90 

TN6 50 <1% <1% neg 3 IDC 1.4x0.6x0.8 neg untreated 3.17 1378 1117188 12.40 69.10 

TN7 47 <1% <1% neg 3 IDC 0.8x1.2x0.5 neg untreated 3.15 1393 1321931 14.00 74.10 

TN8 74 <1% <1% neg 3 IDC/DCIS 0.6x0.6x0.9 neg untreated 3.95 1224 894949 10.4 54.4 

 

 
 
 
Cell Lines 

ID age ER PR HER2  ploidy cells reads per cell  %dup bin count 

MDA-MB-231 EX-2 NA <1% <1% neg 2.41 897 915415 6.98 66.99 

MDA-MB-231 EX-1 NA <1% <1% neg 2.41 995 810439 6.73 61.63 

MDA-MB-231 PARENTAL NA <1% <1% neg 2.41 820 1172793 9.68 89.57 

MDA-MB-157 NA <1% <1% neg 2.55 1210 94240 8.83 64.4 

BT-20 NA <1% <1% neg 2.7 1231 857024 9.82 54.9 

MDA-MB-453 NA <1% <1% neg 4.17 1260 912792 7.66 62.1 

 
Supplementary Table 1 – Clinical Tumor Information and Sequencing Metrics 
This table lists relevant clinical information for the eight TNBC tumors and four TNBC cell lines that were analyzed in this study.  Clinical information listed includes 

patient identifier, patient age, estrogen receptor and progesterone receptor IHC status, Her2 cytogenetic FISH status, tumor grade, pathological classification, 

tumor specimen size, lymph node status, prior treatment status and drug type, FACS mean ploidy of the aneuploid cell population, number of single cells 

sequenced, mean number of reads per cell, mean number of duplicate reads per cell and mean number of median bin counts in 220kb genomic intervals. 
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Patient somatic mutations nonsynonymous clonal subclonal TP53 mutation class TP53 mutation 

TN1 61 43 61 0 SNV c.C346T,p.R116W 

TN2 39 28 34 4 SNV c.C437G,p.P146R 

TN3 105 73 85 17 SNV c.A319G,p.N107D 

TN4 28 17 25 2 SNV c.G460A,p.E154K 

TN5 106 80 14 91 SNV c.G649T,p.E217X 

TN6 131 94 126 4 Indel del.7579356:GACGGA 

TN7 100 69 33 65 SNV c.C241T,p.R81X 

TN8 1728 1173 1294 387 SNV c.T188C:p.I63T 

 
 
Supplementary Table 2 – Bulk DNA Exome Sequencing Mutations 
This tables lists information about the exome sequencing data of the eight TNBC tumors including the number of somatic mutations, number of nonsynonymous 

mutations, number of clonal and subclonal mutations identified and information on the TP53 mutations detected in each tumor. 
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i7 primer i5 primer 

N703 AGGCAGAA S504 TCTACTCT 

N704 TCCTGAGC S505 CTCCTTAC 

N705 GGACTCCT S506 TATGCAGT 

N706 TAGGCATG S507 TACTCCTT 

N707 CTCTCTAC S508 AGGCTTAG 

N708 CAGAGAGG S510 ATTAGACG 

N709 GCTACGCT S511 CGGAGAGA 

N710 CGAGGCTG S513 CTAGTCGA 

N711 AAGAGGCA S515 AGCTAGAA 

N712 GTAGAGGA S516 ACTCTAGG 

N714 GCTCATGA S517 TCTTACGC 

N715 ATCTCAGG S518 CTTAATAG 

N716 ACTCGCTA S520 ATAGCCTT 

N718 GGAGCTAC S521 TAAGGCTC 

N719 GCGTAGTA S522 TCGCATAA 

N720 CGGAGCCT S525 AACGCTTA 

N722 ATGCGCAG S526 AAGACGGA 

N723 TAGCGCTC S527 AAGGTACA 

N724 ACTGAGCG S528 ACACAGAA 

N726 CCTAAGAC S529 ACAGCAGA 

N727 CGATCAGT S530 ACCTCCAA 

N728 TGCAGCTA S531 ACGCTCGA 

N731 AACGTGAT S532 ACGTATCA 

N732 AAACATCG S533 ACTATGCA 

N733 ATGCCTAA S534 AGAGTCAA 

N734 AGTGGTCA S535 AGATCGCA 

N735 ACCACTGT S536 AGCAGGAA 

N736 ACATTGGC S537 AGTCACTA 

N737 CAGATCTG S538 ATCCTGTA 

N738 CATCAAGT S539 ATTGAGGA 

N739 CGCTGATC S540 CAACCACA 

N740 ACAAGCTA S541 GACTAGTA 

  S542 CAATGGAA 

  S543 CACTTCGA 

  S544 CAGCGTTA 

  S545 CATACCAA 

  S546 CCAGTTCA 

  S547 CCGAAGTA 

  S548 CCGTGAGA 

Supplementary Table 3 – ACT Dual Barcoding Primer Sequences 
This table lists the dual barcodes sequences for the sixteen unique N7XX barcodes and 24 unique S5XX barcodes that 
are used for the ACT protocol (see Acoustic Cell Tagmentation Procedure, Methods). 



Breast Tumors Maintain a Reservoir of Subclonal Diversity During

Primary Expansion: Mathematical modeling

This document provides the mathematical details of our study. The workflow is summarized in Fig. 1. In
brief, we used a mathematical modeling approach to investigate whether the patient data can more likely be
explained by a stochastic model in which individual copy number alterations arise gradually during tumor
evolution at a constant rate (‘the gradual model’) or at a higher rate during an early phase of transient
genomic instability followed by a phase in which alterations emerge at the baseline rate (‘the transient
instability model’). The computational pipeline starts with the single cell copy number sequencing data,
which is first segmented to obtain shared breakpoints. This approach enables us to determine the breakpoint
frequencies, i.e. the fraction of cells harboring a specific breakpoint, and in turn to obtain the number of
breakpoints at a given frequency – the breakpoint frequency spectrum. The frequency spectrum is then
examined using a maximum likelihood framework, incorporating breakpoint detection error, to determine
which of the two stochastic models are more likely to explain the data for each individual patient. In the
sections below we discuss each step of the pipeline in detail.

1 Model and approximations

We developed a computational framework capable of detecting a transient period of elevated genomic in-
stability in the patient single cell copy number data. The accumulation of structural variants is modeled
as a branching process [1] – a stochastic process model in which individual cells can divide with or without
accumulating a new set of breakpoints, or die.

As copy number alterations may be subject to natural selection [2], in the context of this model, cells that
acquire alterations also obtain heritable changes to their fitness (i.e. reproductive ability), with the changes
drawn from a flexible fitness distribution. However, simulation-based inference using such a model when
the final number of simulated cells matches those detected in patients (⇡ 3 ⇥ 109 cells) is computationally
infeasible. To circumvent this issue, we developed the following strategy (Fig. 1): we considered a reduced
fitness distribution, according to which mutations are either lethal or selectively neutral, which is analytically
tractable so that analytical expressions can be derived. Using this approximate model, we then developed
an inference scheme, which was applied to simulations including a more complex fitness distribution in order
to evaluate the di↵erence in model predictions using the reduced and full fitness distribution assumptions.
Since the simulations using the full distribution are computationally expensive, they were only simulated to
105 cells. This approach demonstrated that the biological conclusions obtained via the analytic model are
robust in the presence of a complex fitness distribution (Fig. 2). We proceed to discuss the ‘full model’
before providing details on the approximations.

In the full model, a tumor starts from a single cell with division rate b and death rate d. This originating
cell possesses k

0

copy number alterations (CNAs). The tumor grows until a final observation size N . Upon
a cell dividing, one of the daughter cells acquires a CNA with probability µ per cell division. To account for
the potential selective e↵ect of CNAs [2], each CNA heritably alters the division rate such that the birth rate
of the cell acquiring the CNA changes to b 7! b + �b, where �b follows a double exponential distribution
(a.k.a. the Laplace distribution) with parameter ↵ (�b > 0 with probability 1/2, and E[|�b|] = ↵

�1).
The double exponential fitness distribution has previously been used in cancer modeling [3, 4] and further
justification for using this distribution can be found in ref. [5]. To explore transient instability, we allow for
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Figure 1: Schematic of workflow. Here we aim to determine whether a stochastic model of breakpoint
accumulation with an early phase of genomic instability provides a superior explanation of the patient data
than a model assuming a constant rate of breakpoint accumulation. To this end, we first segment the
single cell copy number data to find shared breakpoints, thus determining the frequency of breakpoints in
the population. We then determine the frequency spectrum (i.e. number of breakpoints present at greater
than a given frequency), which is analyzed using a likelihood framework, incorporating breakpoint detection
errors, to examine whether the gradual evolution or transient instability models have a higher likelihood of
explaining the data.
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Figure 2: Model approximations. Due to computational intractability, we approximate the ‘full model’
in two ways. Biological conclusions remain robust under both approximations.

the possibility that µ is a function of the tumor size, and in particular we assume that there exists N
c

such
that

µ =

(
µ

1

until population size exceeds N
c

for the first time

µ

2

thereafter.

The process is depicted schematically in Fig. 3. We make the infinite sites assumption (each new CNA
results in two new unique breakpoints in the copy number profiles) and provide justification for doing so in
Section 8. Our aim is to detect whether there is a period of transient instability µ

1

> µ

2

, which we contrast
with gradual accumulation µ

1

= µ

2

. Sample realizations for both cases are displayed as Muller plots in Fig.
4, which were generated using the package ggmuller [6].

Our stochastic model starts from a single cell initiating an exponentially expanding population. This
cell is defined by possessing the clonal structural variants, which may have arisen during an event previously
termed ‘the punctuated burst’ [4]. From then on, two di↵erent scenarios can occur: 1) Immediately after
the punctuated burst, population expansion occurs and genomic instability remains resulting in subclonal
structural variants. 2) After the punctuated burst, the clonal lineage persists for many generations. At a
later point, population expansion begins in tandem with an increase in genomic instability. If scenario 1)
holds true, then the stochastic model starts at the punctuated burst. If scenario 2) holds true, the model
starts at the population expansion.

2 Analytical models and expected frequency spectra

To derive analytical results for the model outlined above, we now consider situations in which CNAs do not
a↵ect the division or death rates of cells (Pr(�b = 0) = 1). Subsequent results also hold in the scenario in
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Figure 3: Model illustration. We model the acquisition of CNAs during tumor growth. To assess whether
a period of transient instability exists early in tumorigenesis we suppose that the probability of acquiring a
CNA, µ, is dependent on the tumor size.
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Figure 4: CNAs are acquired in a period of transient instability or gradually during tumor
growth. The panels display sample realizations of the model with gradual CNA accumulation (left), or
during a period of transient instability. Realizations were obtained by exact simulation of the model with
the following parameters: gradual accumulation model: N = 100, b = 1.5, d = 0.3, µ

1

= 0.08, ↵ = 104;
transient instability model: N = 500, µ

1

= 0.2, µ
2

= 0.01, N
c

= 100, and all other parameters were the
same as for the gradual accumulation model. Simulations were displayed as Muller plots using the package
ggmuller. The relative abundance displayed corresponds to the last time the population achieved the x-axis
size, which is required as the population size can be non-monotone in time.
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which a CNA is instantly lethal with probability u, with the mapping µ 7! µ(1 � u). Currently we focus
on the scenario in which there is one change in the rate of CNA accumulation, µ. The more general setting
with multiple CNA rate changes was not found to give increased explanatory power (see Section 6).

Any new CNA emerges in a daughter cell resulting from a division event. The lineage initiated by this
daughter cell may eventually become extinct with probability � = d/b [1]. CNAs emerging in daughter cells
whose lineage goes extinct are unobservable and we therefore only consider surviving CNAs; the term CNA
henceforth only refers to these. Let the total number of unique CNAs when the tumor is diagnosed be K

N

.
We consider the site frequency spectrum:

F

N

(x) =
K

NX

i=1

1(CNA i is at a frequency � x ) + k

0

and in particular its expectation for large N ,

f(x) ⇡ E[F
N

(x)] for N � 1.

The appearance of k
0

in Eq. 2 is because those CNAs which are present in the founding cell will always be
at frequency 1. At places, our derivation uses formal arguments, and thus we term our statements ‘results’.

In Section 9 we provide a derivation which shows that the expected site frequency spectrum is well
approximated by

Result 1.

f(x) = µ

1

r(x)� r(x)Nc

+1

x(1� �)
+ µ

2

r(x)Nc

+1

x(1� �)
+ k

0

, (1)

where r(x) = 1� x(1� �). The expected number of clonal CNAs is thus f(1) = µ1�+�

N

c

+1
(µ2�µ1)

1��

+ k

0

.

The number of CNAs present at frequencies in (a, b) is f(a) � f(b). While f(x) concerns the expected
frequency spectrum, it well describes the shapes of the frequency spectra obtained by individual realizations
as shown in Fig. 7. For these simulations, we used the package SIApopr [7]. To obtain an intuitive
understanding of the system, we also provide the following cruder approximation to f(x) (with derivation
again in Section 9). Let x

1

= µ2

µ1(1��)N

c

and x

2

= 1

(1��)N

c

, then f(x) can be crudely approximated by

f(x) ⇡ f

crude

(x) =

8
><

>:

N

c

(µ
1

� µ

2

) + µ2

x(1��)

+ k

0

x < x

1

,

µ

1

N

c

+ k

0

x

1

 x < x

2

,

µ1

x(1��)

+ k

0

x

2

 x  1.

(2)

Comparisons of f(x) and f

crude

(x) are shown in Fig. 5. Thus f(x) has three main regimes and to be able
to distinguish between the cases of µ

1

> µ

2

and µ

1

= µ

2

, we require the detection window of [x
1

, x

2

) to
be su�ciently large. The frequency spectrum is often plotted on a doubly logarithmic scale; therefore, note
that with a logarithmic base-10 x-axis, the detection window is of size log

10

(x
2

/x

1

) = log
10

(µ
1

/µ

2

). If
either N

c

! 1 (causing x

1

, x

2

! 0), or µ

1

= µ

2

, we collapse to the case of no change in the rate of CNA
accumulation.
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Figure 5: CNA accumulation rate change has a window of detection. Comparison of f(x) with
f

crude

(x). Observe that the general form of f
crude

(x) holds. Red vertical lines indicate the region where
the lack of intermediate frequency CNAs is apparent; this window is of size log

10

(µ
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/µ

2

). Parameters are
µ
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= .6, µ
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= 5⇥ 10�3

, � = 0.9, N
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= 100, k
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= 0.
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Figure 6: Expected frequency spectrum: simulations vs analytic formula. Comparison of the
expected site frequency spectrum obtained from simulation and theory, Eq. (1). Parameters (common)
N = 105, b = 1.1, d = 1 (green) µ

1

= 0.5, µ
2

= 0.001, N
c

= 30 (blue) µ
1

= 0.5, µ
2

= 0.005, N
c

= 30 (red)
µ

1

= 1, µ
2

= 10�4

, N

c

= 60. For simulations the fitness distribution parameter was ↵ = 103. Simulated
results are averaged over 500 realizations.
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3 Breakpoint detection analysis

While our interest is in the accumulation of CNAs, breakpoints in the obtained copy number profiles are
more easily detected and are less likely to be obscured by further alterations. Thus we compare our model
to the frequency of breakpoints detected in the segmented copy number profiles. To obtain the frequency
of a breakpoint we jointly segment the copy number profiles obtained for each sample using the package
Piet as described in [8]. In this section we aim to: (i) determine reasonable parameters of the segmentation
algorithm used, (ii) determine a plausible error model which may be used in our inference to account for
errors in ascertaining the frequencies of breakpoints.

To do so we simulated copy number profiles and then segmented them using the same process used on the
patient and cell line samples. Note that below in Section 5 we discuss simulations from a branching process
to obtain the frequency of breakpoints. Here we will assume known frequencies of breakpoints, simulate
copy number profiles and assess our ability to detect breakpoints at the correct frequency. Our aim here is
to broadly assess the robustness of our conclusions, which is reflected in our simulation methodology.

3.1 Simulating copy number profiles

In this section we outline the simulation process. We simulate a population of 1393 cells (which matches
the number of cells sequenced for TN7) with stochastically generated copy number profiles. We generated
500 simulated ‘populations’ of cells. The input to the segmentation process is the bin counts: the number
of reads mapped to a specific genomic region. As each chromosome arm is segmented independently, it is
su�cient to simulate the bin counts of a single arm. The simulated arm length was chosen as 279 bins, as,
the average chromosome arm length is 279 bins, in units of the variable bins with average genomic length
200kb. The simulation comprises three steps.

First, for each of the 500 ‘populations’ the total number of CNAs in the population, and how many
cells possessed each CNA, was determined. Of the 500 populations, each received 2-5 CNAs, in equal
proportions. Each population had the same evolutionary tree - specifying the order and relation of CNAs -
T = {(0), (0, 1), (0, 2), (0, 1, 3), (0, 1, 4)} (so any cell can be labelled by x 2 T , e.g. a cell is (0, 1) if it possesses
the first two CNAs). For those populations with only two CNAs, only (0) and (0, 1) are simulated - the
analogous statement holds for populations with 3 or 4 CNAs. The CNA represented in the tree as (0) was
always present in all cells in a population. For the remaining CNAs, let l

x

be the number of cells labelled
as x 2 T . Then for each x, we let the number of cells labelled as x be uniformly distributed between 1 and
‘the number of cells which possessed the parent of x’ �1, while keeping the tree structure intact. In detail,

l

(0,1)

⇠ Unif(1, X � 1)

l

(0,2)

⇠ Unif(1, X � l

(0,1)

)

l

(0,1,3)

⇠ Unif(1, l
(0,1)

� 1)

l

(0,1,4)

⇠ Unif(1, l
(0,1)

� l

(0,1,3)

).

If the population of cells has only four CNAs in total, then l

(0,1,4)

is set to zero, and similarly when having
two or three total CNAs. If k CNAs are specified but

P
x

1(l
x

> 0) 6= k (which could happen if e.g. l
(0,2)

= 1
so l

(0,1,3)

= 0 by the above designation), we resample all l
x

.
Second, we build the true ploidy profile for each cell, based on which CNAs each cell acquired and in

which order (the order being specified by the tree). For each alteration, a starting position S is uniformly
chosen between 1 and 279 - the simulated chromosome arm length. The alteration length is then sampled
according to L ⇠ Geom(3/279). The end of the segment is given by E = S + L, if S < 279/2 (alteration
starts in left-half of segment), else E = S � L. If E < 1, E > 279, or either S or E has been sampled for
a CNA higher up the tree (which would contradict our infinite sites assumption for breakpoints), we repeat
the process starting with sampling S. Each CNA is assigned to be either an amplification or a deletion with
equal probability. The true ploidy profiles are then created for all cells, starting with a ‘neutral’ ploidy value
of 3 since the mean ploidy for TN7 obtained by DAPI staining is 3.15 (and roughly 3 for most other tumor
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Figure 8: Simulated vs true copy number profiles. Example copy number profiles from sequenced cells,
right, and from the simulation scheme described in Section 3.1, left.

samples), i.e. each cell is initiated with a vector (3, 3, . . . , 3) of length 279. Then appropriate vectors are
added for each cell depending on their final genotype.

Finally, the ‘observed’ copy number profiles are generated. For each bin in each cell, we sample a negative
binomial distribution. As the mean ploidy for TN7 is roughly 3 and the median bin count is 63, we expect
a bin with true ploidy of 1 to have a count of 63/3. Therefore we specified that the mean of the negative
binomial distribution is ‘the true ploidy of that cell at that bin’ ⇥63/3 (where ’true ploidy’ of a simulated
cell is determined by step 2 of the simulation described in the preceding paragraph). The index of dispersion
(iod) of the negative binomial distribution was chosen to be 1.33, which matches the median iod for TN7.

3.2 Segmentation error and parameters

After obtaining the simulated copy number profiles, they are segmented using a group fused lasso approach
[8]. The output of this segmentation approach provides a list containing the observed breakpoints, the
location of those breakpoints, and the number of cells each observed breakpoint is detected in. As our
profiles are simulated we also have a list containing the true number of breakpoints, their true location, and
how many cells possessed each breakpoint. Each observed breakpoint was matched to a true breakpoint
by Euclidean distance, which was applied to the location and

p
count (the square root was applied due

to the larger range of cell counts, 0-1393, relative to location, 1-279; this was empirically found to more
faithfully match breakpoints). True breakpoints which where not matched to an observed breakpoint are
termed dropouts, while observed breakpoints which are not the closest to their matched true breakpoint are
false positives. Thus we obtained the number of false positives, dropouts, and for those true breakpoints
detected, the observed vs true cell count.

Next we used this information to select reasonable parameters for breakpoint detection. While we sim-
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Figure 9: Selecting optimal breakpoint detection parameters. We simulated 500 populations of 1,393
cells, each with either 4, 6, 8, or 10 total breakpoints. Using this data, we investigated the dropouts (i.e.
undetected breakpoints), false positives, errors on the number of cells possessing a true detected breakpoint
(rel.err = |inferred count/ true count -1|), and the misclassification of clone breakpoints. The median/mean
was taken over the 500 populations. We proceeded with the segmentation parameter equal to 70. Details
for simulating the copy number profiles are provided in the main text.

ulated populations of di↵ering cell numbers corresponding to the sampled number of cells per patient, for
the parameter selection we focused on those populations containing 1,393 cells, corresponding to TN7. The
errors obtained as a function of the segmentation parameter is displayed in Fig. 9. Based on these results,
we proceeded with the segmentation parameter as 70.

At the selected segmentation parameter, we still observed significant errors in terms of the number of true
breakpoints not detected (dropouts), clonal breakpoints being detected at lower frequencies, and generally
in the inferred cell count of detected breakpoints. All 3 errors may bias our results, and so to account for
these errors we used our simulations to construct a parametric error model.

3.3 Parametric error model

There are 3 error types we include in our error model: breakpoints not detected (dropouts), clonal breakpoints
being detected at lower frequencies, and random noise in the frequency of detected non-clonal beakpoints.
Note that the formulas in the error model are neither derived from the branching process model, nor the
model used to generate the simulated copy number profiles; instead these expressions are used for capturing
the key features of the observed breakpoint detection errors based on the simulated copy number profiles. To
incorporate the errors due to dropouts we note that - based on the simulated copy numbers - the probability
of not observing a breakpoint as a function of the number cells which possess the breakpoint, x, is well
described by p(x, 0) = �e

��x for x 2 {1, . . . , n}, see Fig. 10. Second, from our simulated copy numbers, the
error on clonal breakpoints that are detected is well described by a trunctated Geometric distribution. That

is for y 2 {1, . . . , n}, p(n, y) = (1� p(n, 0)) q(1�q)

n�y

1�(1�q)

n

. Finally for non-clonal detected breakpoints in x cells

we desired p(x, y) to be integer valued and have variance increasing with x. Hence we model the number of
cells we detect the breakpoint in, y, as having a negative binomial distribution with mean x and variance
x, truncated between {1, . . . , n}.

The error model has 4 parameters �, �, q, , and we sought reasonable estimates for these based on the
simulated copy number profiles. However sensitivity analysis was carried out to explore the dependency of
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Figure 10: Incorporating errors in breakpoint detection into likelihood. There are 3 sources of error
we take into account. In each case we select an appropriate parametric form to model the error, and select
the parameters of the parametric function based on the simulated copy number profiles. (a) Probability
of not observing a breakpoint as a function of the number of cells the breakpoint is in. (b) Probability of
observing a clonal breakpoint at a reduced cell count. (c) For non-clonal detected breakpoints, the detection
error is modeled by a negative binomial distribution centered at the true count and trunctated to be in the
range [1, n]. The variance of the negative binomial was set by comparison with the simulated copy number
profiles.

our conclusions based on these parameter estimates. Least square fits were used to determine �, �, q and
resulted in � = 0.57, � = 7.5 ⇥ 10�4

, q = 6.1 ⇥ 10�3 (for n = 1393 this q corresponds to an average error
on clonal breakpoints of ⇡ 163). For non-clonal detected breakpoints (x < n, y > 0), we binned the true
breakpoint count into bins of size 100, and then estimated the variance on the detected number of cells with
the breakpoint. The least squares fit resulted in  = 45.6.
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4 Statistical model to detect transient instability

Here we present a statistical scheme to detect the existence of transient instability based on the results
presented in Section 2. We first outline the statistical model assuming no measurement error, and then
describe the modifications used to incorporate the uncertainty in breakpoint detection.

4.1 Statistical model without breakpoint detection error

If we neglect stochastic drift – i.e. assume that the number of cells carrying a given CNA increases with
deterministic exponential growth, and suppose that CNAs occur at a rate proportional to the population
size (so that CNA arrival times are drawn from a nonhomogeneous Poisson process with rate (bµe(b�d)s)

s�0

)
- then (i) the number of CNAs present at frequencies in (a, b) is Poisson distributed, and (ii) the number of
CNAs present at frequencies (a

1

, b

1

) and (a
2

, b

2

) are independent, assuming the two intervals are disjoint.
Motivated by this observation, that our data takes integer values, and that each CNA event ideally contributes
two new breakpoints, we assume that the breakpoint frequency spectrum follows

(g
N

(x))1
x=2/n

⇠ (Pois(2(f(x)� f(x+ 1))1
x=2/n

, (3)

where all g
N

(x) are independent and we set f(x) = 0 for x > 1. We neglect those breakpoints present in
only one cell (frequency 1/n). Our statistical model does not distinguish between the sampled frequency
spectrum (obtained by sampling n cells) and that acquired via sequencing the whole tumor. Mathematically
this extension is possible, but one obtains hypergeometric functions which are computationally expensive
(relevant as we numerically maximize likelihoods). However the simulations presented below in Section 5 do
include sampling, and the results presented there demonstrate the adequacy of the statistical model. Note
that for the model as currently stated, the number of breakpoints present at frequencies (a, b) should simply
be twice the number of CNAs present in the same frequency range - hence the number of breakpoints present
in y cells should always be a multiple of 2. However, due to experimental artifacts, the data do not follow
such a rule. The modification of doubling the Poisson parameter in Eq. 3 allows us to roughly account for
each CNA introducing two new breakpoints, while ensuring a computationally tractable likelihood.

To assess whether a change in the CNA accumulation rate has occurred, we adopt a model selection
approach: we numerically maximize the likelihood of our observed breakpoint frequency spectrum under
gradual accumulation, µ

1

= µ

2

, and transient instability, µ
1

> µ

2

. The package bbmle [9] was used for
likelihood maximization for both models. We chose the underlying optimization algorithm to be simulated
annealing (“SANN” in R). Simulated annealing uses an adaptation of the Metropolis-Hastings algorithm to
find an approximate optimum over the parameter space; hence there is no guarantee that a global optimum
has been found. However, when applied to simulations, this approach has a reasonable performance, see
Section 5. Having found the approximate maximum likelihood for both models, the AIC provides a means
to assess superior model fit while penalizing the extra two parameters that have been introduced for the
transient instability model (µ

2

and N

c

). We uniformly sampled 50 initial values used as starting parameters
for the maximization from the following grids:

log
10

µ

1

2 [�4,�1], � 2 [.01, .99], k
0

2 {0, . . . , 50} Gradual Accumulation

log
10

µ

1

2 [�1.5, 0], log
10

µ

2

2 [�4,�1.5], N
c

2 {1, . . . , 1500} Transient Instability

� 2 [.01, .99], k
0

2 {0, . . . , 50}

The optimization scheme will depart from these initial parameters but some brief justification for these
parameter ranges are as follows. Regarding k

0

, the median number of clonal CNAs that separated diploid cells
from aneuploid (cancer) cells in [4] was approximately 25, while the range for � is discussed in [10] which takes
into account in vitro, epidemiological and sequencing data. For CNA rates, firstly we have our cell line data
which resulted in rates in the range [0.08, 0.3], which agrees with the values obtained by ref. [11]. Furthermore
Refs. [12, 13] find an amplification rates for specific genes of ⇡ 10�4. The CNA rate for a specific gene = CNA
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rate ⇥ Pr(CNA a↵ects specific gene), hence the CNA rate ⇡ 10�4(Pr(CNA a↵ects specific gene))�1 � 10�4

(as Pr(CNA a↵ects specific gene)�1 � 1). For the transient instability scenario we keep roughly the same
parameter space however we are also partially motivated by identifiability considerations. If µ

1

⇡ µ

2

, or N
c

is too large or too small, then no di↵erences between the models exist - we require the detection window
displayed in Fig. 5 to be su�ciently large. While we do not explicitly model the biological mechanism
behind an elevated CNA rate, taking the scenario of breakage-fusion-bridge (BFB) cycles as an example, the
logarithm of the corresponding N

c

would be proportional to the number of generations the BFB phenomenon
persists for.

Of the 50 searches, the search leading to the highest likelihood was selected for further analysis, from
which AICs were obtained. Control parameters used for the stochastic optimization algorithm SANN were:
parscale - N

c

= 1, � = 0.02, µ
1

= 0.02, µ
2

= 0.001, k

0

= 1) and maxiter = 2000, which were found to have
reasonable performance on simulated data (see Section 5).

4.2 Incorporating breakpoint detection errors

To incorporate the breakpoint detection errors into our statistical model we include p(w, z) representing
the probability a breakpoint truly in w cells is detected in z cells, as discussed in Section 3.3 (with w 2
{1, . . . , n}, z 2 {0, . . . , n}). Then our updated likelihood is

(g
N

(y))1
y=2/n

⇠

0

@Pois

2

4
1X

x=1/n

p(nx, ny)2(f(x)� f(x+ 1))

3

5

1

A
1

y=2/n

, (4)

where, as before, n is the number of cells sampled and f(x) is defined in Eq. 1. Note that in Eq. 4
x 2 {1/n, . . . , 1} and therefore nx 2 {1, . . . , n}, and similar for y.

5 Inference on simulated data

We applied the inference scheme presented in Section 4 to simulated data in order to (i) examine its validity,
and (ii) provide context to the point estimates obtained from the true data. Simulations were performed
using the R-package SIApopr [7] with a modification to allow for a CNA accumulation rate change. Note
that in the analytical model of Section 2, non-lethal CNAs have no e↵ect on division and death rates, while
in the stochastic simulation framework, CNAs alter the birth rate of cells as described in Section 1. For
each realization of the stochastic process, we continued the simulation until the population reached 105

cells, a value which was chosen for computational e�ciency. We then uniformly sampled 1,393 cells – the
number of cells sequenced for TN7. In the simulation, any CNA contributed two breakpoints, from which
we constructed the sampled breakpoint frequency spectrum. To account for measurement error for any
breakpoint present in x cells we sampled from the distribution p(x, y), where p(x, y) is detailed in Section
3.3. This gives the ‘observed’ breakpoint frequency spectrum

Overall, we performed 60,000 simulations for each model. Parameters for the simulations were as follows.
For all simulations d = 1, and equal proportions of simulations were carried out for b = 1.01, 1.1, 1.5, which
correspond to slow, medium, and fast growing tumors, and cover the hypothesized range for � = d/b based
on sequencing data, observed division/death rates, and incidence data [10]. The remaining parameters were
uniformly sampled from

log
10

µ

1

2 [�4,�1], k
0

2 {0, . . . , 50}, log
10

(↵) 2 [2, 5] Gradual Accumulation

log
10

µ

1

2 [�1.5, 0], log
10

µ

2

2 [�4,�1], N
c

2 {1, . . . , 1000} Transient Instability

k

0

2 {0, . . . , 40}, log
10

(↵) 2 [2, 5]

Across all patients we see a range of 280-631 observed breakpoints present in greater than 1 cell. To make
the signal strength of the data comparable with the patient data, and to exclude simulations with minimal
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numbers of CNAs, only simulations yielding greater than 40 breakpoints present in greater than 1 cell
were considered. As we performed our simulations until the total population size reached 105 cells due to
computational cost, we cannot be sure that these parameter ranges carry biological significance since an
unknown size-dependent rescaling of the parameter ranges might have to be applied. However, for reference,
the selective advantage of driver mutations in a similar model [14] was estimated to be of the order of 10�3,
which corresponds approximately (due to model di↵erences) to log

10

↵ = 3. A discussion of the parameter
regime for the other parameters (not pertaining to selection) was given in Section 4.1.

The initial birth and death rates control much of the stochasticity and number of CNAs observed since
a high � - the ratio of the death rate to the initial birth rate - increases the variance in the tumor size as
a function of time and thus the expected number of CNAs. Due to this, we present the results separately
for each initial birth rate b. Fig. 11 displays the di↵erence of the AIC assuming the gradual accumulation
and the AIC assuming transient instability, obtained from applying the likelihood model to the simulated
data from either model (AIC GA model - AIC TI model > 0 implies a better fit for the transient instability
scenario). The vertical red bars in Fig. 11 display the di↵erence in AICs obtained for the patient data.
Given that all patient samples are better explained by the transient instability scenario, our main concern
is the false positive rate (misclassification of gradual accumulation simulations as transient instability). The
false positive rate for the three di↵erent birth rates was 0.06, 0.05, and 0.05 (for b = 1.5, 1.1, 1.01). We note
that if the simulated data is not perturbed to account for breakpoint-detection errors, greater sensitivity and
specificity can be obtained with this method.

We next examined how accurately we could estimate the extent of the elevated instability, µ
1

/µ

2

. From
the discussion surrounding Fig. 5, we expect that the detection window is of size log

10

(µ
1

/µ

2

) hence we
focus on estimating the order of magnitude of the CNA accumulation rate change. From the set of 6⇥ 105

simulations of the model with transient instability, we again restricted our analysis to only those that acquired
greater than 40 breakpoints present in more than 1 cell. The histogram of the estimation error, i.e. the true
log

10

(µ
1

/µ

2

) - inferred log
10

(µ
1

/µ

2

), obtained over all simulations is shown in Fig. 12(a), (b). From this data
we observed that the CNA accumulation rate change is likely to be underestimated. This underestimation
is due to the lower limit of the ‘detection window’ (x

1

- defined in the paragraph immediately preceding Eq.
(2)) falling below the lower limit of frequencies observed, 2/1393). Restricting to only those simulations with
x

1

, x

2

2 [2/1393, 1] extinguishes the underestimation bias and increases the accuracy. While this remark
explains the bias in the simulated data it o↵ers no information on the error of the inferred fold change from
the patient data, as x

1

, x

2

would be unknown for the patient data. Similarly, as for x 2 [x
1

, x

2

], f(x) is
approximately µ

1

N

c

+ k

0

, we looked to see whether the composite parameter µ

1

N

c

could be inferred for
simulations from the transient instability model that were correctly classified. The results are shown in Fig.
12 (c), demonstrating that the order of magnitude of µ

1

N

c

can be inferred using our likelihood method.
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Figure 11: Model selection scheme applied to simulated data. We applied our likelihood framework
described in Section 4 to simulated data. Simulations incorporate CNAs which heritably alter cells’ division
rate, subsampling of cells to mimic the experimental process, and breakpoint detection error as described in
Section 5. Panels correspond to di↵erent initial division rates for fast, medium and slowly growing tumors
(b = 1.5, 1.1, 1.01 (a), (b), (c)), and the red vertical lines denote the di↵erence in AIC obtained for the
patient samples. Our aim is to minimize the false positive rate (misclassification of gradual accumulations
simulations). For the three di↵erence replication rates the false positive rate was 0.06, 0.05, 0.05. Parameters
were sampled from specified prior distributions for each simulated realization. 2 ⇥ 104 simulations were
performed for each model for each initial division rate. Simulations that yielded too few CNAs were discarded
in order to maintain a comparable signal to the patient data.
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Figure 12: Estimation of parameters on simulated data. (a) We applied our likelihood framework
described in Section 4 to simulations of the transient instability model which were correctly classified to
estimate the increase in the CNA accumulation rate. From Fig. 5 we expect to be able to estimate the order
of magnitude of the CNA accumulation rate change (log

10

(µ
1

/µ

2

) – the size of the detection window in Fig.
5). The error in the estimates when all simulations are considered is displayed. Note that log

10

(µ
1

µ

2

) is
likely to be underestimated in this case. (b) We restrict the analysis to only simulations where the detection
window is within the frequencies at which we detect CNAs (both x

1

, x

2

2 [2/1393, 1], where x

1

, x

2

are
defined immediately before Eq. (2)). The underestimation of the CNA accumulation rate change in the
panel (a) is therefore due to the detection window extending below the lowest CNA frequency observed.
(c) Errors on the estimate of the product of the elevated CNA rate and the population size at which the
instability subsides. 21



6 Patient and cell expansions analysis

We then applied the statistical model of Section 4 to the breakpoint frequency distributions of the 8 sequenced
patient samples and the two cell expansions. Breakpoint frequency spectra for each sample were obtained
using the package Piet as described in [8], with parameters ⇢

1

= 0, ⇢
2

= 0, ⇢
3

= 70. Brief justification
for these parameter choices and an analysis of the errors the segmentation process introduces was given in
Section 3.

Figs. 13 and 14 demonstrate the fit obtained by maximizing the likelihood of the patient data, using
the likelihood of Eq. 4 for the cases of transient instability, µ

1

> µ

2

, and gradual accumulation, µ
1

= µ

2

.
The di↵erence in AIC under each model provides a measure of whether including a period of transient
instability in the model results in a superior fit. As outlined in the figures, we found a superior fit of the
transient instability model for all patient samples, and that the gradual accumulation model provided a
better explanation for the cell expansion data. However we do note the far smaller di↵erence in AICs for
TN8. Of further note is that the lower frequency breakpoints appear to follow a power-law decay (notice the
double-logarithmic scales in Fig. 14) as theoretically predicted for exponentially growing tumors [15], and
more general tumor growth patterns [16].

Assuming a period of transient instability, we can also obtain point estimates of the extent of the increased
CNA accumulation rate. For the reasons given in Section 5 we focus on inferring the composite variable
µ

1

/µ

2

. Point estimates for the patients were 16, 18, 15, 8, 22, 18, 14, and 11, for TN1, TN2, TN3, TN4, TN4,
TN5, TN6, TN7, and TN8 respectively. Under a log

10

transform, these values are also the distance between
the red vertical lines in Fig. 15 for reasons given in the discussion surrounding Fig. 5. We recall that when
we estimated the CNA fold change on simulated data, discussed in Section 5, we typically underestimated
the change: therefore the values obtained for the patients are likely to be lower bounds. The point estimates
are those obtained for the simulated-annealing search which resulted in the maximum likelihood (among the
50 initiated simulated-annealing searches). The log-fold change for all 50 approximate maximum likelihoods
is given in Fig. 17. Additionally we estimate the composite parameter µ

1

N

c

, that is the product of the
elevated CNA rate and the population size at which the instability subsides. The estimates for µ

1

N

c

were
35.7, 42, 30.4, 74.9, 63.8, 55.5, 55, 13.

To assess the dependency of our conclusions on the parameters of the error model we performed sen-
sitivity analysis. We again maximized the likelihood of the patient data under both models for � 2
{0.47, 0.57, 0.67}, � 2 { 7.5

2

⇥ 10�4

, 7.5 ⇥ 10�4

, 15 ⇥ 10�4}, q 2 { 6.1

2

⇥ 10�3

, 6.1 ⇥ 10�3

, 12.2 ⇥ 10�3},  2
{35.6, 45.6, 55.6}. The resulting di↵erences in AICs are shown in Fig. 18, where we have stratified the results
by the clonal loss parameter q (controlling the extent of underestimation in the frequency of truly clonal
breakpoints), which we found to have the dominant e↵ect. We see that our conclusions are robust unless
clonal breakpoints are detected at a substantially lower frequency (note that q = 6.1

2

⇥ 10�3 corresponds
to an average error of 307 breakpoints for n = 1393, that is clonal breakpoints are detected on average in
1393- 307 = 1086 cells). Indeed for all but one of the samples (TN8) we do not see a qualitative di↵erence
in conclusion without q = 6.1

2

⇥ 10�3.
For reasons of biological relevance, and statistical identifiability, we have focused on the scenario where

the CNA rate alters at a critical size threshold. However, a more general scenario may be treated similarly.
For the setting where the CNA rate changes multiple times, the modifications to f(x) (the expected number
of CNAs present at frequency � x) can be found in Section 9. The likelihood method discussed in Section
4.1 may then be applied with the modified f(x). To assess whether a further CNA rate change improves our
fit, we maximized the likelihood of the breakpoint frequencies using Eq. 4 with 2 CNA rate changes. The
resulting AICs are given in Fig. 19, and provide support that further alterations to the CNA rate do not
improve explanatory power of the model given the patient data.

22



Observed
MLE fit − gradual accumulation
MLE fit − transient instability

260

270

280

290

300

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN1
AIC GA model = 826
AIC TI model = 805

400

420

440

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN2
AIC GA model = 1037
AIC TI model = 1021

250

260

270

280

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN3
AIC GA model = 793
AIC TI model = 764

330

340

350

360

370

380

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN4
AIC GA model = 1144
AIC TI model = 1108

460

480

500

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN5
AIC GA model = 1419
AIC TI model = 1379

500

520

540

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN6
AIC GA model = 1185
AIC TI model = 1130

420

440

460

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN7
AIC GA model = 1264
AIC TI model = 1226

210

220

230

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

TN8
AIC GA model = 774
AIC TI model = 773

90

95

100

105

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

MDA−MB−EX1
AIC GA model = 512
AIC TI model = 515

100

105

110

115

0.1 0.5 0.8

frequency f

n
u

m
b

e
r 

o
f 

b
re

a
kp

o
in

ts
 ≤

 f

MDA−MB−EX2
AIC GA model = 536
AIC TI model = 539

Figure 13: Support for transient instability in patient samples but not in cell line data. The
likelihood of the observed frequency spectrum was maximized in the settings of transient instability (TI,
µ

1

> µ

2

) and gradual accumulation (GA, µ
1

= µ

2

) using (3). For each sample, the plots show the best fit
under each model together with the corresponding AIC values. Any di↵erence between the models would
be expected to exist at intermediate frequencies, and so we focus on this region and display the data as the
cumulative number of breakpoints present at less than or equal to a frequency f .
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Figure 14: Support for transient instability in patient samples but not in cell line data. The
likelihood of the observed frequency spectrum was maximized in the settings of transient instability (TI,
µ

1

> µ

2

) and gradual accumulation (GA, µ
1

= µ

2

) using (3). For each sample, the plots show the best fit
under each model together with the corresponding AIC values. Here the data is displayed as the number
of breakpoints present at a frequency f . The y axis is displayed on a log(1 + y) scale. The low frequency
breakpoints follow a power-law trend as expected by theory.
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Figure 15: Comparison of patient samples with expected breakpoint frequency. For the patient
samples, we compare the fits obtained with the general shape of the breakpoint frequency spectrum, see the
discussion around in Eqn 2. Here the data is displayed as the cumulative number of breakpoints present at
greater than or equal to a frequency f . Vertical red lines correspond to point estimates of x

1

= µ2

µ1(1��)N

c

(left line) and x

2

= 1

(1��)N

c

(right line) and these should be compared to Fig. 5.
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Figure 16: Estimates of the fold change of the CNA accumulation rate. We used a stochastic
optimization scheme to obtain approximate maximum likelihoods, starting at 50 random initial parameter
vectors. The panels show the log-likelihoods obtained at the end of the optimization scheme versus the
inferred CNA accumulation rate fold change resulting from the approximate maximum likelihood fits. The
right-most point on each panel corresponds to the CNA accumulation rate change reported in the text, and
its value is indicated by the red horizontal line..
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Figure 17: Estimates of µ
1

N

c

. We used a stochastic optimization scheme to obtain approximate maximum
likelihoods, starting at 50 random initial parameter vectors. The panels show the log-likelihoods obtained
at the end of the optimization scheme versus the inferred µ

1

N

c

change resulting from the approximate
maximum likelihood fits. The right-most point on each panel corresponds to the estimated µ

1

N

c

reported
in the text, and its value is indicated by the red horizontal line.
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Figure 18: Conclusions are robust without severe errors in detecting clonal breakpoints. Here
we fit each dataset with the model incorporating errors in breakpoint detection Eq. (4), across di↵erent
parameters for the error model. For each set of parameters, we display the di↵erence in the AIC. Due to the
strong influence of the clonal loss parameter (the error on clonal breakpoints) we stratify the di↵erence in
AICs. Horizontal red bar corresponds to the di↵erence in AIC reported in the text.
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7 CNA rate inference

To estimate the focal CNA rate (focal as we only consider intra-arm breakpoints) we adopt the statistical
model described in Eq. (4) assuming gradual accumulation of breakpoints; however, we neglect the erroneous
detection of clonal breakpoints at subclonal frequencies and the random noise term previously modeled by
a truncated negative binomial distribution. To justify using this reduced model we restrict ourselves to
breakpoints at frequencies  0.5 so that truly clonal breakpoints do not influence the estimates. Note that
the cell expansions are grown to ⇡ 107 cells, hence we are in the large N regime and can use the analytical
expressions.

We estimate the focal CNA rate in the two cell expansions, MDA-MB-EX1 and MDA-MB-EX2. Suppose
n

i

cells are sequenced in sample i (i = 1, 2) and let X

i

be the number of breakpoints observed in the ith
sample in the frequency range [2/n

i

, 0.5]. For the cell lines we can assume � = 0. Then our assumed model
is

X

i

⇠ Pois

2

42µ
i

bn
i

/2cX

y=2

✓
n

i

y

� n

i

y + 1

◆
(1� �e

��y)

3

5 = Pois [2µ
i

A] ,

where we introduce A for notational convenience. Then given the number of observed breakpoints in the
ith colony, x

i

, our point estimate for µ

i

is x

i

2A . Using the exact method within the survival package [17],
we obtain z

1

, z

2

as lower and upper bonds for a 95% CI for 2µ
i

A and hence the relevant lower and upper
bounds for the 95% CI of µ

i

is z1
2A ,

z2
2A .

Applying this to the samples MDA-MB-EX1 and MDA-MB-EX2 with � = 0.57, � = 7.5⇥ 10�4 (for the
reasons given in Section 4.2) we obtain the estimates 0.235 (0.189, 0.288); 0.249 (0.204, 0.3). In the absence
of dropout errors (� = 0) these estimates instead are 0.102 (0.082, 0.130); 0.108 (0.088, 0.13).

8 Discussion

Recent work has suggested the existence of punctuated evolution at the level of structural variants, both en
route to tumor initiation and during cancer evolution [4, 18, 19]. Most relevant to our current study is ref.
[19] who, using SNVs as a molecular clock, provided evidence that arm level changes occur early in colorectal
carcinoma. A clock like approach was unavailable due to the sequencing depth in this study ( 0.01X), and
so instead we sought to identify an enrichment of breakpoints at high frequency. This approach has some
caveats which we now discuss.

8.1 Alternative models

We have adopted a branching process model of breakpoint accumulation. Such models have been widely
used in cancer modeling, particularly to describe stochastically acquired heritable mutations [20, 21, 4, 16,
14, 22, 23]. This model is simplistic in that is assumes independence between cells, exponential growth, and a
common mutation CNA rate for all cells. However, we believe that such a model is able to provide suggestive
evidence for the specific question of detecting elevated instability. Broadly, early elevated genomic turbulence
- here termed transient instability - will give rise to a relative enrichment of high frequency breakpoints. In
the patient data, due to the existence of these high frequency breakpoints, a period of transient instability
was deemed plausible when compared to a model of gradual accumulation. However, alternative explanations
for an abundance of high frequency breakpoints also exist, which we now discuss.

Selection Within the same modeling framework, it has been recently demonstrated that mutations
hitchhiking in a selectively advantageous subclone can be present at high frequencies [21, 24]. While we
cannot rule out such a scenario, it is expected that these subclones will result in ‘peaks’ in the density of
the frequency spectrum, resulting from the mutations present in the founding cell of the subclone (here
the subclone is defined by all cells possessing the advantageous mutation). Such peaks are not seen in our
patient data. While our analytical model was derived with mutations being either lethal, or not altering the
fitness of cells, we showed in Section 5 that our results are robust under a model with a double-exponential

30



fitness distribution. One instead might consider a mutation arising which significantly increases the selective
advantage (for example a driver mutation), so much so that the resulting subclone sweeps to near fixation.
In order for this to occur this mutation must occur early or have an extremely strong selective advantage [21].
Considering the former case, if the mutation arises ⌧

s

time units after the tumor initiated, and we assume
deterministic growth of the tumor - so has size e(b�d)t at time t - then a period of transient instability might
still be detected so long as the instability persists after ⌧

s

. In the language of our model this amounts to the
threshold size being su�ciently large so that log(N

c

)/(b� d) > ⌧

s

. In such a scenario, the above arguments
would still be expected to hold but with the critical size N

c

decreased. If a selective sweep occurs outside
this regime we would not expect to detect elevated instability. We note also that ref. [25] has recently given
a convincing heuristic argument that, within a finite sites version of our gradual accumulation model, if only
a small number of sites provide a selective advantage then this will be unlikely to impact high frequency
clones.

Finite sites e↵ects The infinite sites assumption was used for computational tractability. Our con-
clusions are based on an enrichment of high frequency clones (group of cells sharing a breakpoint), and it
could be the case that this is due to breakpoints occurring in the same genomic regions in di↵erent lineages
- inflating the clone sizes. To account for this we could use a finite sites model, where sites here would
denote the number of possible locations that breakpoints could occur in - if copy number profiles have S+1
bins then we have S sites. In this finite sites version of the model, our f(x) would be an analogue of the
generalized Luria-Delbrück distribution, which is di�cult to evaluate numerically (relevant for numerical
maximization of likelihoods). Adopting a finite sites approach with gradual accumulation, the issue of the
inflation of clone sizes due to the same breakpoints occurring in di↵erent lineages corresponds to the mode of
the size normalized Luria-Delbrück distribution (i.e. the distribution of the number of cells with an altered
site divided by N) becoming present in the frequency range we consider ⇡ [x

min

, 1] (the right tail of the
Luria-Delbrück distribution, past the mode, agrees with the infinite sites case [25]). We now give a crude
heuristic argument that if this were true we would observe more breakpoints.

An approximate mapping between the models is that when a CNA occurs during a division, two of the S
sites are chosen uniformly at random to contain breakpoints. If we let µ⇤ be the per site breakpoint rate, then
µ⇤ is related to per cell division CNA rate by µ⇤ = µ2/S (as µ  1 we henceforth assume µ⇤  S/2). When

Nµ⇤ � 1, the Luria-Delbrück distribution is conjectured to have a mode at Nµ⇤(logNµ⇤�0.23)

1��

, see [26] Section
5 (the conjectured mode given in ref. [26] is when death is neglected, i.e. � = 0, but the alteration required
to the mode when death is included is clear from the scaling presented in Section 5.2 in ref. [27]). Hence the

size-normalized distribution has mode at µ⇤(logNµ⇤�0.23)

1��

. For our application, S ⇡ 13000, while N ⇡ 3⇥109.

For the mode to be greater than x

min

, we then require µ⇤(log(µ⇤)+21.59)

1��

> x

min

(†). Assume finite sites e↵ects
are visible and so the inequality (†) holds, and let B

N,µ⇤ follow the Luria-Delbrück distribution with final
population size N and per division mutation rate µ⇤. The expected number of observed breakpoints would
be

SPr(B
N,µ⇤/N 2 (x

min

, 1)) ' Sµ⇤
1� �

(x�1

min

� 1) >
S

(log(µ⇤) + 21.59)
(1� x

min

). (5)

In (5), the expression immediately following ' is an approximation of the size-normalized Luria-Delbrück
distribution which holds when N is large and µ⇤ / 1/N (see Theorem 4.4 in [25]). Our interest is in the
parameter regime µ⇤ � 1/N , in which case we expect more sites containing breakpoints at large frequencies,
hence the approximate lower bound. The second inequality in (5) uses inequality (†). With S = 2/µ⇤ =
13000, x

min

= 1/500 the right-most expression of (5) is approximately 1013. So if we assume finite sites
e↵ects are visible then we expect at least 1013 non-unique breakpoints. However, the number of non-unique
breakpoints observed in the patients are in the range 280-631 and hence we do not expect the assumption
of infinite sites to bias our conclusions.

Hotspots of instability A further alternative explanation for the enrichment of high frequency break-
points is that certain genomic regions have a greatly increased chance of acquiring structural variants per
cell division. Within the finite-sites framework, using similar heuristic arguments as above, one can argue
that the frequency spectrum can attain a form similar to that given in f(x). To examine this alternative
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Figure 20: Locations of high frequency subclonal breakpoints For each patient we extract the genomic
locations of those breakpoints present at frequencies in (0.05, 0.9] and plot the cumulative distribution of these
locations. A k-sample Anderson-Darling test rejects the null hypothesis that these locations are sampled
from a common distribution. This provides evidence against global (shared amongst patients) ‘hotspots’ of
genomic instability.

explanation, for each patient we looked at the genomic location of breakpoints present at frequencies be-
tween 0.05 and 0.9 - high frequency but subclonal. The cumulative distribution of the genomic location of
the high frequency subclonal breakpoints is shown in Fig 20. Patient to patient di↵erences exist, and the
null hypothesis that there is a common distribution specifying the locations of the high frequency subclonal
breakpoints is rejected by a k-sample Anderson-Darling test (the package [28] with “Version 1” of the test
and the “asymptotic” method was used ). This provides evidence against a common set of ‘hotspot’ genomic
locations. However, we cannot rule out the possibility that each patient has a unique set of sites with an
elevated rate of acquiring breakpoints.

Spatial growth The branching process model used neglects spatial considerations; however, it is tech-
nically possible that mutations are observed at high frequencies due to spatial e↵ects. Several recent studies
[29, 30, 31] have considered this issue. While it has been argued that spatial growth leads to a depletion of
high frequency mutations (see the supplementary material of ref.[21] Eq. (55)), it has also been observed
that boundary driven growth can induce a form of ‘gene surfing’ [31] leading to high frequency mutations
being enriched. Such an e↵ect could in principle be detected by combining genotypic information of single
cells with their spatial location. As spatial data was not collected as part of the experimental protocol of
our study, and due to the challenges of parameterizing a spatially explicit mathematical model, we did not
consider such models in detail

Non-uniform sampling When comparing against simulations, we sampled cells uniformly at random
from the full simulated tumor. However if cells are sampled in a non-uniform manner, then mutations may
appear to be at higher frequencies in the sample than they actually are in the tumor (in an extreme case a
mutation could appear in all cells sampled, but not be present in any other cell in the tumor). While due
to the experimental design under which the cells were sampled in this study, assuming uniform at random
sampling seems valid, we cannot rule out elevated frequencies due to sampling errors (see Fig. 4 in ref. [32]
for further discussion).

32



9 Derivations

9.1 Frequency spectrum for tumor

Here ‘mutation’ refers to any heritable alteration to the genome - our primary example being CNAs. The
number of mutations present in the founder cell k

0

will always be at frequency 1, hence we ignore this term
in the derivation.

Our interest is in

f

N

(x) = E[F
N

(x)] = E[K
N

]Pr(randomly selected mutation is at a frequency � x ) (6)

Random here refers to uniform at random sampling assuming K

N

> 0, and our decomposition of f
N

(x)
follows from Wald’s equation. We turn to approximating f

N

(x), and use similar approximations to those
outlined in [33, 10]. In ref. [34], in the setting of µ

1

= µ

2

, it was shown that the mutation accumulation
process may be approximated as a Poisson process on [1, N ] with rate µ. The derivation in the SI of [34]
needs no alteration with a change in the mutation rate and so henceforth we assume that mutations arrive
as a Poisson process with rate µ on [1, N ]. Under the Poisson approximation, E[K

N

] = µ

1

N

c

+ µ

2

(N �N

c

).
We now turn to the second term in the right-hand side of (6).

Let us uniformly at random select one of our K
N

mutations (assuming K

N

> 0). Suppose this mutation
arrived on a division event taking the population size from X to X + 1 cells. The lineage of the cell which
originally received our mutation of interest must survive. Of the remaining X cells, let the number whose
lineage survives be Y . Finally let the frequency of our chosen mutation at the observation size be �

N

. To
complete our approximation of f

N

(x), we desire Pr(�
N

� x). We collect some useful facts. First, given Y

lim
N!1

Pr(�
N

� x|Y ) = (1� x)Y

(for a derivation see the proof of Theorem 1 in [15]). Second for fixed X, as N ! 1 the distribution of
Y |X converges to that of Binomial(X, 1 � �). Under the Poisson approximation, the arrival size X will be
a continuous random variable on [1, N ]. However the statement Y |X ⇠ Binomial(X, 1 � �) is true only for
discrete X, hence we discretize X in the following way; X is equal in distribution to BU

1

+ (1�B)U
2

, with
B Bernoulli with success parameter p = µ1Nc

µ1Nc

+µ2(N�N

c

)

, U
1

discrete Uniform on {1, . . . , N
c

} and U

2

discrete

Uniform on {N
c

+ 1, . . . , N}. The choice of discrete versus continuous X makes only a small di↵erence,
however we’ve found the discrete X to be more accurate relative to simulations. Thus our interest is in,

Pr(�
N

� x) = pE[Pr(�
N

� x|1  X  N

c

)] + (1� p)E[Pr(�
N

� x|N
c

< X  N)]

Returning to f

N

(x) we have

f

N

(x) = (µ
1

N

c

+ µ

2

(N �N

c

)) (pE[Pr(�
N

� x|1  X  N

c

)] + (1� p)E[Pr(�
N

� x|N
c

< X  N)])

= µ

1

N

c

E[Pr(�
N

� x|U
1

)] + µ

2

(N �N

c

)E[Pr(�
N

� x|U
2

)].

In turn let’s consider each of the above summands:

µ

1

N

c

E[Pr(�
N

� x|U
1

)]
N!1����!µ

1

N

c

E
"

U1X

y=0

✓
U

1

y

◆
(1� x)y(1� �)y�U1�y

#

=µ

1

N

c

E[(1� x(1� �))U1 ]

Note that for U discrete uniform on {a, . . . , b}, its moment generating function is E[esU ] = e

sa�e

s(b+1)

(b�a+1)(1�e

s

)

,

implying E[sU ] = E[eU log(s)] = s

a�s

b+1

(b�a+1)(1�s)

. Hence

lim
N!1

µ

1

N

c

E[Pr(�
N

� x|U
1

)] =µ

1

(1� x(1� �))� (1� x(1� �))Nc
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x(1� �)
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Similarly, formally substituting in the asymptotic form of Pr(�
N

� x|U
2

)

µ

2

(N �N

c

)E[Pr(�
N

� x|U
2

)] ⇡ µ

2

(N �N

c

)E[(1� x(1� �))U2 ]

= µ

2

(1� x(1� �))Nc

+1 � (1� x(1� �))N+1

x(1� �)

N!1����! µ

2

(1� x(1� �))Nc

+1

x(1� �)

where the last limit is due to 1� x+ �x < 1 for � < 1 and x > 0.
Collecting our results we have (formally), with r(x) = 1� x(1� �)

f(x) = lim
N!1

f

N

(x) = µ

1

r(x)� r(x)Nc

+1

x(1� �)
+ µ

2

r(x)Nc

+1

x(1� �)
.

Immediately the number of clonal mutations is apparent as r(1) = � leading to f(1) = µ1�+�

N

c

+1
(µ2�µ1)

1��

.
Note as N

c

! 1 or for µ
1

= µ

2

we have f(1) = µ

1

�/(1� �) which matches Eq. 6 in [10].
We now look at di↵ering regimes to understand the behaviour of the limiting expected site frequency

spectrum. It is convenient to rewrite f(x) as

f(x) = r(x)

✓
µ

1

1� r(x)Nc

x(1� �)
+ µ

2

r(x)Nc
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◆
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c

1� e

�x(1��)N

c

x(1� �)N
c

+ µ

2

e

�x(1��)N

c
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where terms of order x(1 � �)N
c

have been dropped. As x moves from 0 to 1, this function has broadly 3
regimes, dictated by which of the two summands above dominate. For x(1 � �)N

c

⌧ 1 the first summand
is constant at µ

1

N

c

, and so the decay is controlled completely by the second summand. The first summand
starts to dominate when x ⇡ x

1

= µ2

µ1(1��)N

c

. This corresponds to the tumor having exceeded N

c

, but
still being too small to pick up any mutations with the lower mutation rate µ

2

. Once x exceeds x

1

, as
1�e

�x(1��)N
c

x(1��)N

c

⇡ 1 for small x(1 � �)N
c

we see f(x) remains constant at µ

1

N

c

until x ⇡ x

2

= 1

(1��)N

c

. In
summary, as a very crude approximation, we broadly see

f(x) ⇡ f

crude

(x) =

8
><
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c
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� µ
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,
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x

1
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,
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x(1��)
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2
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The agreement between the crude approximation and f(x) is shown in Fig. 5. The di↵ering behaviour from
the scenario with no change in mutation is the constant, middle regime in f

crude

(x). We see this will exist
for x 2 [x

1

, x

2

). With a logarithmic base 10 x-axis the window for this di↵erent behaviour will be of size
log

10

(x
2

/x

1

) = log
10

(µ
1

/µ

2

). For the parameters of Fig. 5, log
10

(µ
1

/µ

2

) ⇡ 2.08, which is why the window
enclosed by the red vertical lines spans 2 orders of magnitude.

9.2 Multiple mutation rate changes

Suppose the mutation rate alters at l thresholds (N (i)

c

)l
i=1

(positive integer valued and strictly increasing).

For notational convenience we let N

(0)

c

= 0, N (l+1)

c

= N . Once the population size surpasses N

(i)

c

for the
first time, the mutation rate is set to µ

i

, with i = 1, . . . , l+1. In such a scenario, with an identical arguments
to that of Section 9.1 (and under identical caveats), we obtain

f(x) =
lX
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µ

i

r(x)N
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c

+1 � r(x)N
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c
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.
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