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4DNvestigator Overview and Setup

The 4DNvestigator toolbox can be downloaded and installed from the 4DNvestigator GitHub page. Instal-
lation instructions are included in the 4DNvestigator README along with all data used in this manuscript.
We provide a script, ExampleScript.m, which shows how to load data into MATLAB and runs each of the
four major functionalities of the 4DNvestigator: 4DN feature analyzer, network entropy, tensor entropy,
and the Larntz-Perlman procedure. We also provide a Getting Started document which provides a concise
description of each of the example functions’ parameters and outputs.

Data Preparation

To convert input data to a MATLAB compatible format, the 4DNvestigator requires a metadata table,
referred to as an “Index File”, to describe the data. Rows correspond to sequencing data samples (RNA-seq
or Hi-C), and the columns correspond to data descriptors. The Index File must have 5 columns with the
following headers:

• “path” defines the computer path to the sequencing data

• “dataType” defines the type of sequencing data, either “hic” or “rnaseq”

• “sample” defines the sample, (e.g. “treatment” or “control”)

• “timePoint” defines the time point of sample, (e.g. 0 or 24)

• “refGenome” defines the reference genome for the sample (e.g. hg19)

Index Files can be .csv, .tsv, or .xls. An example of an Index File is available here. The 4DNvestigator
can automatically convert common file types for RNA-seq (.results and .rpkm) and Hi-C (.hic) data to
be compatible with MATLAB. Users can also manually import gene expression vectors, Hi-C contacts, or
other genomic data directly provided that similar data structures and naming conventions are used. For
Hi-C, users can import a comma-separated file containing binned Hi-C contacts and use the 4DNvestigator’s
generic Hi-C data loading function to create the appropriate data structure.
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MATLAB Dependencies

The 4DNvestigator requires the following MATLAB Toolboxes:

• Statistics and Machine Learning Toolbox

• Computer Vision Toolbox

• Bioinformatics Toolbox

• Image Processing Toolbox

System Requirements

The 4DNvestigator was written and tested on a Windows 10 machine with an Intel Core i7-8700 CPU and
32 Gb RAM using MATLAB R2019b. During testing, we timed each of the core functionalities’ example
functions using default settings, including figure generation and saving (Supplementary Table S1). We also
measured peak RAM usage over function calls and data loading which was approximately 9.5 Gb (higher
RAM usage is caused by higher resolution Hi-C matrices). Therefore, we suggest that users run a recent
version of MATLAB (2019 or later) on a Windows 10 machine with at least 12 Gb of RAM for optimal
performance. Each of the example functions in Supplementary Table S1 can be run with default parameters
using ExampleScript.m, and a step-by-step guide of this script can be found in the Getting Started document.

ExampleScript.m Section Description Runtime

Load RNA-seq and Hi-C Data
Loads RNA-seq and Hi-C data using results from
RSEM and Juicer, respectively

∼240 sec

featureAnalyzerExample.m
Example function for the 4DN feature analyzer,
called using default settings

∼30 sec

entropyExample.m
Example function for entropy calculation on
two cell types, called using default settings

∼6 sec

entropyExampleExpanded.m
Example function for entropy calculation on
six cell types, called using default settings

∼45 sec

tensorEntropyExample.m
Example function for tensor entropy calculation on
reprogramming data, called using default settings

∼6 sec

lpExample.m
Example function for the Larntz-Perman procedure
on three samples, called using default settings

∼20 sec

Table S1: Mapping of core 4DNvestigator functionalities and their example functions within the toolbox.
Each of these functions are called within ExampleScript.m. Here we list their respective approximate run-
times.

Dimension Reduction

The 4DN feature analyzer provides multiple methods for reducing the dimension of structure-function data.
The first is Principal Component Analysis (PCA), a linear dimension reduction technique. PCA is per-
formed by computing the eigendecomposition of the centered covariance matrix. PCA uses the eigenvectors
associated with the largest eigenvalues as coordinates for the low dimensional space. Unlike PCA, the other
dimension reduction techniques included in the 4DN feature analyzer are non-linear. Non-linear methods
are based on the idea that high dimensional data often lie on a curved manifold in lower dimension. In the
4DN feature analyzer, we provide the choice between Laplacian Eigenmaps (LE), t-distributed Stochastic
Neighbor Embedding (t-SNE), and Uniform Manifold Approximate Projection (UMAP). LE constructs a
graph, defined as the similarities between genomic loci in terms of their structural and functional features.
It then computes the eigendecomposition of the Laplacian matrix, and uses the eigenvectors associated with
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the smallest non-zero eigenvalues as the low dimensional coordinates [1]. The Laplacian matrix is calculated
by subtracting the graph’s adjacency matrix from its degree matrix. The goal of both t-SNE and UMAP
is to reduce the dimension of high dimensional data, while preserving the relationships between data. In
other words, t-SNE and UMAP optimize the low dimensional mapping of data to ensure that data which are
similar to one another in high dimensional space are also close in low dimensional space [2, 3]. UMAP is con-
ceptually similar to t-SNE, but it is better at preserving global structure of data and more computationally
efficient [3].

Network Entropy

Entropy measures the order within a system, where higher entropy corresponds to more disorder [4]. Here, we
apply this measure to Hi-C data to quantify the order in chromatin structure. Biologically, genomic regions
with high entropy likely correlate with high proportions of euchromatin, as euchromatin is more structurally
permissive than heterochromatin [5, 6]. Furthermore, entropy can be used to quantify stemness, since cells
with high pluripotency are less defined in their chromatin structure [7]. Since Hi-C is a multivariate analysis
measurement (each contact coincidence involves two variables, the two loci), we use multivariate entropy.
The algorithm to compute entropy is given in Algorithm 1. We provide two variants of the algorithm to
calculate entropy. The first uses the correlation matrix of log2 transformed Hi-C data, while the second uses
the Laplacian matrix from Hi-C data. We find that the first variant performs better at discriminating the
stemness of cell types, so we use this variant as the default for the entropy calculation. For both variants of
network entropy, we use the convention 0 ln 0 = 0.

Algorithm 1: Entropy Computation

Input: Hi-C matrix A ∈ Rn×n, Entropy variant
Output: Entropy

1 if variant == ‘corr’ then
2 Compute the correlation matrix C = corr(log2(A))
3 Compute the eigenvalues λi of C using eigendecomposition

4 else if variant == ‘laplacian’ then
5 Compute the Laplacian matrix L = D−A where D is the degree matrix of A
6 Compute the eigenvalues λi of L using eigendecomposition

7 Normalize the eigenvalues: λ̄j =
λj∑n
i=1 λi

8 Compute Entropy: Entropy = −
∑
j λ̄j ln λ̄j

Return: Entropy

An application of entropy is shown in Figure S1. We use entropy to to quantify stemness on the following
samples: human Embryonic Stem Cells (hESC), Human Umbilical Vein Endothelial Cells (HUVEC), human
lung fibroblasts (IMR90), Human Foreskin Fibroblast cells (HFFc6), human B-lymphocyte cells (GM12878).
These data were obtained from the 4DN Portal and other publicly available datasets [8, 9, 10]. A simple
comparison between two cell types can be performed using entropyExample and an example of multiple cell
types (Figure S1) can be performed using entropyExampleExpanded. Both examples are called by the script
ExampleScript.m.

Tensor Entropy

Uniform hypergraphs can be naturally represented by tensors, which are multidimensional arrays generalized
from vectors and matrices. Tensor entropy is a spectral measure which can decipher topological attributes of
uniform hypergraphs [11]. Here, we try to partially recover the 3D configuration of the genome using uniform
hypergraphs via multi-correlation, a generalization of Pearson correlation which can measure the strength
of multivariate correlation (defined in Algorithm 2 Step 3) [12]. The reconstruction is able to provide more
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Figure S1: Entropy comparison between cell types. Hi-C matrices are shown in order of decreasing entropy
(left to right). The more pluripotent cell lines (hESC, HUVEC) have a much higher entropy than the more
differentiated cell lines (IMR90, HFFc6, GM12878). Intra-chromosome log2 Hi-C correlation matrices are
shown at 100 kb resolution for Chromosome 14. The y-axis labels and color scale bar apply to all matrices
in this figure.

information about genome structure and patterns, compared to the pairwise Hi-C contacts. Note that the
optimal uniformity parameter k depends on the internal data structure, and we leave the choice of k to
the users according to their data. Moreover, the constructions of adjacency tensor and degree tensor of a
uniform hypergraph can be found in Chen et al. [11].

We borrow an example of tensor entropy in the case of cellular reprogramming from Chen et al. [11]. The
dataset contains normalized Hi-C matrices from fibroblast proliferation and MYOD1-mediated fibroblast re-
programming (MYOD1 is the transcription factor used for control) for Chromosome 14 at 1 Mb resolution
with a total of 89 genomic loci. We assume k = 3 and ε = 0.95 in constructing the uniform hypergraphs
since third-order contacts have been shown to occur more often than pairwise contacts in the genome [13].
We can successfully detect a bifurcation in the fibroblast proliferation and reprogramming data, and accu-
rately identify the critical transition point between cell identities during reprogramming using tensor entropy
(Figure S2A). To the contrary, the network entropy cannot offer valuable insights on the bifurcation, if one
analyzes the Hi-C data as adjacency matrices directly (Figure S2B). This analysis can be performed using
the function tensorEntropyExample which is called by the script ExampleScript.m.

Figure S2: Cellular reprogramming features. (A) Tensor entropies of the uniform hypergraphs recovered from
Hi-C measurements with multi-correlation cutoff threshold 0.95. (B) Network entropies of the binarized Hi-C
matrices with weight cutoff threshold 0.95.
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Algorithm 2: Tensor Entropy Computation

Input: Hi-C matrix A ∈ Rn×n, uniformity parameter k, edge threshold ε
Output: Tensor Entropy

1 Compute the correlation matrix C = corr(log2(A))

2 Extract all
(
n
k

)
submatrices R ∈ Rk×k where R is the correlation matrix of every k genomic loci

3 Compute the multi-correlation for every k genomic loci: ρ = (1− det(R))
1
2

4 Build a k-uniform hypergraph based on the multi-correlations, i.e. an edge is created if ρ ≥ ε

5 Compute the Laplacian tensor L = D− A where D ∈ Rn×n×
k···×n is the degree tensor, and A is the

adjacency tensor of the k-uniform hypergraph

6 Reshape L by stacking the first k − 1 dimensions, i.e. L ∈ Rnk−1×n

7 Compute the singular values λi of L using economy-size singular value decomposition (λi are also
called the generalized singular values of L)

8 Normalize the generalized singular values: λ̄j =
λj∑n
i=1 λi

9 Compute Tensor Entropy: Tensor Entropy = −
∑
j λ̄j ln λ̄j

Return: Tensor Entropy

LP Procedure for Comparing Hi-C Matrices

A number of methods have been developed in the Hi-C research community to compare Hi-C matrices.
These methods can be broadly grouped into 2 categories: Hi-C reproducibility methods (e.g. HiCRep,
HiC-spector), and Differential Chromatin Interactions (DCI) methods (e.g. SELFISH, HiCCompare, FIND,
diffHic) [14, 15, 16, 17, 18, 19]. Hi-C reproducibility methods are useful for assessing the equality of Hi-
C matrices genome-wide, and detecting technical bias between samples. DCI methods determine which
loci have a significantly different number of Hi-C contacts between samples. All methods listed above are
comparisons between only two matrices.

We pose a new method for comparing Hi-C matrices, the Larntz-Perlman procedure (LP procedure).
Elements within Hi-C matrices have been shown to be normally distributed when the log2 transformation
is applied to A(m) (See Supplementary Figure S3B) [20]. For data of this form, a method for testing the
equality of correlation matrices was proposed by Larntz and Perlman in 1985 [21]. We recommend that
the LP procedure is performed at Hi-C resolutions ≤ 100 kb and that regions do not extend >5 Mb, as
signal (counts) often become sparse as the genomic distance between loci increases (See Figure S3A). The
full algorithm is given in Algorithm 3. The LP procedure outputs a p-value for the equality of the Hi-C
matrices and a matrix S where the largest values in S correspond to genomic regions that are most different
between all samples. This analysis can be performed using the function lpExample which is called by the
script ExampleScript.m.

Hi-C Matrix Comparison

In order to assess the LP procedure’s ability to detect differences in Hi-C matrices between samples, we
have compared the LP procedure against alternate Hi-C comparison methods: HiCRep, HiC-spector, and
SELFISH [14, 15, 16]. HiCRep, HiC-spector are Hi-C reproducibility metrics, while SELFISH is a DCI
method that was recently shown to outperform all prior methods for DCI detection [16]. We note that there
are no methods that are a direct comparison with our method. All of the alternate methods we are using here
were designed to address related, but fundamentally different, questions: Hi-C reproducibility metrics for
genome-wide comparisons, and DCI for loci interaction differences (not overall structural differences within
a region).

There are many ways in which Hi-C matrices can be different between samples. Chromatin loops and
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Figure S3: Hi-C normalization for the LP procedure. (A) Percentage of total Hi-C contacts by genomic
distance. Inset figure shows a typical Hi-C intra-chromosome adjacency matrix at 1 Mb resolution. The
blue line denotes where the genomic distance exceeds 5 Mb. (B) A 5 Mb Hi-C matrix (100 kb resolution,
top left) and a histogram of the counts within the matrix (top right). When the log2(O/E) transformation
is computed on the Hi-C matrix (bottom left), elements within the matrix are normally distributed (bottom
right). Here, O/E is the observed Hi-C matrix divided by the expected counts based on genomic distance.

compartments are two features that can be detected through Hi-C, and are often different between cell states
[9, 22]. To assess how the LP procedure performs when these features are different between samples, we have
created simulated Hi-C data sets with incremental changes in these features (See details in Supplementary
Materials “Simulated Hi-C data”). We then determined the point at which the LP procedure, as well as
alternate methods, detect differences between the matrices (See Table S1). The LP procedure was tested for
its ability to detect changes in loop structure and chromatin domains, but this method is generalizable to
any scale provided that the input matrices are the same size and there are sufficient data. For example, the
LP procedure could be used to detect differences across multiple samples within Topologically Associated
Domains (TADs) that were identified through established TAD calling methods [9, 23].

For Hi-C matrices with changes in loop structure as the only differences between samples, the LP pro-
cedure does not detect that the matrices are different until the loop interaction contained six times the
mean number of contacts for loci at the given genomic distance. Simulated matrices for this analysis are
displayed in Figure S4A. In this situation, SELFISH does the best job of detecting differences between sam-
ples. HiC-spector shows a consistent decrease in its reproducibility score, while HiCRep performs similar to
the LP procedure. We note that the LP procedure, as well as HiCRep, relies on changes in the correlation
between samples, and thus changes to a small number of elements within the Hi-C matrices do not affect
the measurement significantly.

For Hi-C matrices with changes in the compartment structure of a single bin (genomic region) as the
only differences between samples, the LP procedure performs very well. Simulated matrices for this analysis
are displayed in Figure S4B. SELFISH detects differences between all samples, but also detects differences
when only a small amount of noise is added to the original matrix. The LP procedure is robust to noise and
shows a trend consistent with the amount of change created. The HiC-spector reproducibility measurement
shows no clear trend as the matrices diverge, and the LP procedure detects more subtle changes relative to
HiCRep. Compartment changes are often observed in time series Hi-C matrices as cells transition between
cell states, either through reprogramming or differentiation [24].
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Algorithm 3: LP procedure

Input: Hi-C matrices A(m) ∈ Rn×n, m = 1, . . . , T
Output: p-value p, and test statistic S

1 Compute the correlation matrix C(m) = corr(log2(A(m))). Define the corresponding population

correlation matrices as P(m)

2 Define the null hypothesis
H0 : P(1) = · · · = P(T )

3 Compute the Fisher z-transformation Z(m). Elements in Z(m) and C(m) are denoted as z
(m)
ij and

c
(m)
ij , respectively, and

z
(m)
ij =

1

2
ln

[
1 + c

(m)
ij

1− c(m)
ij

]
4 Form S, where elements in S are denoted as sij and

sij = (n− 3)

T∑
m=1

(z
(m)
ij − z̄ij)

2, z̄ij = T−1
T∑

m=1

z
(m)
ij

5 Calculate the test statistic T = max
1≤i<j≤n

sij

6 Reject H0 at level α if T > χ2
T−1,ε(α), where χ2

T−1,ε(α) is the chi-squared distribution with T − 1

degrees of freedom and ε(α) = (1− α)2/n(n−1) is the Šidák correction
7 Calculate p, the level α at which T > χ2

T−1,ε(α)

Return: p and S

Simulated Hi-C Data

Simulated Hi-C data was created to compare the LP procedure against alternative Hi-C comparison meth-
ods. Two distinct simulated data sets were created to have: (1) changes in chromatin loop structure and
(2) changes in chromatin compartment structure. Chromatin loops and chromatin compartments are two
features that have been used to characterize Hi-C structure. Both simulated data sets are created by per-
turbing data from real Hi-C matrices: a 400 kb region (10 kb resolution) is used for the chromatin loop data
set and a 2 Mb region (50 kb resolution) is used for the chromatin compartment data set.

One additional simulated matrix was also created by adding a small amount of random noise to the 400
kb region (10 kb resolution) Hi-C matrix. A random number sampled from a normal distribution, N (0, 0.05),
is added to each element in log2(A). This matrix is used to determine how robust Hi-C matrix comparison
methods are to small amounts of noise.

For each simulated data set, 10 matrices were created that are incrementally more divergent from the orig-
inal Hi-C matrix. For changes in loop structure, counts were added to a specific off-diagonal region, following
a 2D Gaussian distribution (σ = 1), to model a chromatin loop structure. For changes in compartment struc-
ture, counts aligned to a specific genomic region (bin) were changed to decrease the correlation coefficient
between the specified bin in the simulated log2 Hi-C matrix and the specified bin in the original log2 Hi-C
matrix. These changes reflect what would be observed if the specified bin was changing its compartment
structure. Methods to recreate the simulated Hi-C matrices are provided within the 4DNvestigator.
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Figure S4: Simulated Hi-C data. (A) Simulated Hi-C matrices for loop changes (See Supplementary Table
S2). The original Hi-C matrix is shown on the left, with matrices that are increasingly more divergent
from left to right. Green circles indicate where the matrix has been perturbed to change the chromatin
loop structure. (B) Simulated Hi-C matrices for compartment changes (See Supplementary Table S2). The
original Hi-C matrix is shown on the left, with matrices that are increasingly more divergent from left to
right. Green arrows indicate where the matrix has been perturbed to change the chromatin compartment
structure.

Counts added Correlation

Method 53 160 266 372 479
1

(noise) 0.87 0.57 0.2 -0.26 -0.65

LP
(p-value)

1.0 1.0 0.99 0.41 0.045 1.0 1.0 2.1E-03 2.5E-07 1.7E-13 0.0

SELFISH
(p-value)

0.0 0.0 0.0 0.0 0.0 0.02 2.9E-05 1.4E-08 1.3E-10 3.5E-13 2.1E-07

HiCRep
(SCC)

1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.98 0.97 0.96

HiC-spector
(Q)

0.99 0.98 0.96 0.94 0.92 0.39 0.43 0.33 0.48 0.44 0.50

Table S2: Hi-C matrix comparison methods. “Counts added” refers to the number of counts added to the
simulated Hi-C matrix at the specified location. “Correlation” refers to the correlation between the selected
column in the original Hi-C matrix, and the same column in the simulated Hi-C matrix. We note here that
each method outputs a different unit, as specified within the table. The lowest p-value output from SELFISH
is given here.
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