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Supplementary Note 1. Sample fabrication 

Details of the sample fabrication is shown in the method section. The cavity mode is controlled by spin 

coating different thicknesses of PMMA. Supplementary Fig. 1 shows two bare cavity reflection examples 

with different PMMA thicknesses. Both cavities have the same cavity structure (Top 40 nm Silver\ PMMA 

\ 12 periods bottom DBR). The cavity mode red shifts when the PMMA thickness is thicker.   

 

The relevant area is that of the 2D material heterostructure, which in the present experiment was ~ 30 

µm2 for the 1s and 2s measurements. This is larger than the laser spot size of less than 1µm2. Sample 

inhomogeneities are predominantly caused by the transfer process due to air bubbles being trapped, as 

shown in the Supplementary Fig. 2. However, the ~ 20 µm2 area shown by the white circle was devoid of 

any such inhomogeneity and so using a 1µm2 laser spot we can probe multiple locations on the sample 

where inhomogeneities are not an issue. Likewise, local strain induced inhomogeneities due to the 

stacked heterostructures are inherently present in these experiments but do not affect the overall 

conclusions of the measurements on the scale of the laser spot size. 

 

Supplementary Note 2. Theoretical description of the nonlinearity 
The cavity equation of motion of a coherent field ℰ in a cavity is given by its coupling to an excitonic 

resonance, denoted by 𝑋̂, with coupling constant 𝑔, its detuning with respect to the cavity resonance 

Δcav = 𝜔in − 𝜔cav, decay from the cavity at a rate 𝜅 as well as a driving term 𝐸in with coupling constant 

𝜂 [1] 

𝜕𝑡ℰ(𝐫) = −𝑖𝑔𝑋̂(𝐫) −
Γcav

2
ℰ(𝐫) + 𝜂𝐸in. (1) 

Here, we summarized detuning and decay into Γcav = 𝜅 − 2𝑖Δcav. Note that the detuning contains the 

dispersion of the optical cavity field and can therefore be tuned by changing the incident angle of the 

external driving field in our experiment. The excitonic dynamics, in turn, are given by 

𝜕𝑡𝑋̂(𝐫) = −𝑖𝑔ℰ(𝐫) −
Γ

2
𝑋̂(𝐫) − 𝑖 ∫ 𝑑𝐫′𝑉(|𝐫 − 𝐫′|)𝑋̂†(𝐫′)𝑋̂(𝐫′)𝑋̂(𝐫). (2) 

for a general exciton-exciton interaction potential V( 𝐫 − 𝐫′ ) and with excitonic loss channel 𝛾  and 

detuning with respect to the exciton Δ = 𝜔in − 𝜔𝑋 , summarized in Γ = 𝛾 − 2𝑖Δ . Reflection is 

proportional to the cavity steady-state field intensity |ℰ|2. It is important to note that Eq. (2) cannot be 

solved perturbatively in the interaction 𝑉  which typically is very strong at short distances. Instead, a 

solution is sought for small driving fields, corresponding to a cluster expansion in the exciton correlations, 

as outlined in [2, 3]. Since the leading order nonlinearity is determined by terms up to pair correlations, 

the hierarchy can be truncated at this order. The required set of equations of motion reads 
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𝜕

𝜕𝑡
𝑋̂†(𝐫′)𝑋̂(𝐫) = −𝑖𝑔ℰ(𝐫)𝑋̂†(𝐫′) + 𝑖𝑔ℰ∗(𝐫′)𝑋̂(𝐫) − (

Γ

2
+

Γ∗

2
) 𝑋̂†(𝐫′)𝑋̂(𝐫). (3) 

𝜕

𝜕𝑡
𝑋̂(𝐫)𝑋̂(𝐫′) = −𝑖𝑔ℰ(𝐫)𝑋̂(𝐫′) − 𝑖𝑔ℰ(𝐫′)𝑋̂(𝐫) − Γ𝑋̂(𝐫)𝑋̂(𝐫′) − 𝑖𝑉(|𝐫 − 𝐫′|)𝑋̂(𝐫)𝑋̂(𝐫′). 

(4) 

𝜕

𝜕𝑡
𝑋̂†(𝐫)𝑋̂(𝐫) = −𝑖𝑔ℰ(𝐫)𝑋̂†(𝐫) + 𝑖𝑔ℰ∗(𝐫)𝑋̂(𝐫) − (

Γ∗

2
+

Γ

2
) 𝑋̂†(𝐫)𝑋̂(𝐫). 

(5) 

𝜕

𝜕𝑡
𝑋̂†(𝐫)𝑋̂(𝐫)𝑋̂(𝐫′) = −𝑖𝑔ℰ(𝐫)𝑋̂†(𝐫)𝑋̂(𝐫′) + 𝑖𝑔ℰ∗(𝐫)𝑋̂(𝐫)𝑋̂(𝐫′) − 𝑖𝑔ℰ(𝐫′)𝑋̂†(𝐫)𝑋̂(𝐫) 

− (
Γ∗

2
+ Γ + 𝑖𝑉(|𝐫 − 𝐫′|)) 𝑋̂†(𝐫)𝑋̂(𝐫)𝑋̂(𝐫′). 

(6) 

Considering steady-state expectation values, a closed algebraic system of equations is obtained that can 

be solved in an expansion in ℰ. Upon insertion of the solution 〈𝑋̂(𝐫)〉 into Eq. (1), a third-order nonlinear 

cavity field equation emerges 

𝜕𝑡ℰ(𝐫) = 𝜒(1)ℰ(𝐫) + ∫ 𝑑𝐫′𝜒(3)(𝐫 − 𝐫′)|ℰ(𝐫′)|2ℰ(𝐫) −
Γcav

2
ℰ(𝐫) + 𝜂𝐸in. (7) 

with the linear (nonlinear) susceptibility 𝜒(1) (𝜒(3)) 

𝜒(1) = −
2𝑔2

Γ
. (8) 

𝜒(3)(𝐫) =
16𝑔4

|Γ|2Γ

𝑖𝑈(𝐫)

Γ + 𝑖𝑈(𝐫)
,. 

(9) 

 

as given in Eq. (1) in the main text. The nonlocal character of the nonlinear susceptibility reflects the finite 

exciton-exciton interaction range and the ensuing blockade effect at short exciton separations. Assuming 

a spatially flat cavity field, we define 𝜒̅(3) = ∫ 𝑑𝐫𝜒(3)(𝐫) to get a local third-order equation 

𝜒(1)ℰ + 𝜒̅(3)|ℰ|2ℰ −
Γcav

2
ℰ + 𝜂𝐸in = 0. (10) 

To obtain the first-order shift of the cavity resonance, it is illuminating to solve Eq. (10) perturbatively in 

the nonlinearity 

ℰ(0) = −
𝜂𝐸in

𝜒(1) −
Γcav

2

 (11) 

ℰ(1) = −
𝜂𝐸in

𝜒(1) + 𝜒̅(3)|ℰ(0)|2 −
Γcav

2

. 
(12) 

Eq. (11) is the linear limit, where exciton interaction are negligible. We evaluate the nonlinear part 

explicitly for a model potential 𝑈(𝑟) = 𝑈0Θ(𝑟 − 𝑅bl), and take the limit 𝑈0 → ∞ (hard-core bosons), 

yielding 
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𝜒̅(3) =
16𝑔4(𝛾 + 2𝑖Δ)

(𝛾2 + 4Δ2)2
𝜋𝑅𝑐

2. (13) 

Within this simple model capturing the short-ranged exciton repulsion, the imaginary part of the photonic 

nonlinearity changes sign with the detuning Δ. The maxima of the field |ℰ(1)|2 as a function of Δ are then 

given by the minima of the denominator of Eq. (12) and can, for |Δ| ≈ 𝑔 ≫ 𝛾 , approximately be 

determined from the root equation 

𝑥2 − 𝑥 + 2𝜋𝑅bl
2 |ℰ(0)|2 = 0 (14) 

with 𝑥 = (Δ/𝑔)2, which are at Δ ≈ ±𝑔(1 − 𝜋𝑅bl
2 |ℰ(0)|2). Defining the cavity Rabi splitting at zero field as 

Ω0 = 2𝑔, the low-intensity cavity splitting Ω𝑛 as a function of the polariton density is 

Ω𝑛 = Ω0 (1 −
𝜋

2
𝑅bl

2 𝑛), (15) 

as given in the main text. 

 

Supplementary Note 3. Polariton density calculation 

Polariton density |𝜓𝑃(𝛼, 𝑡)|2 at any given wavevector 𝛼 in the momentum space, is calculated by the 

Gross-Pitaevskii equation of the form 

𝑖ℏ
𝜕𝜓𝐿𝑃(𝛼, 𝑡)

𝜕𝑡
=  [𝜖𝐿𝑃(𝛼) −

𝑖ℏ𝛾𝐿𝑃

2
] 𝜓𝐿𝑃(𝛼, 𝑡) + ℏ𝐹𝑃(𝛼, 𝑡) (16) 

The 𝜖𝐿𝑃(𝛼) =  ℏ𝜔𝐿𝑃(𝛼) is the polariton dispersion of the lower branch and 𝛾𝐿𝑃 is the polariton loss rate. 

In our experiment, 𝛾𝐿𝑃 is 10.8 × 1012/𝑠. 𝐹𝑃(𝛼, 𝑡) is the pumping term. The pumping pulse width is 20 ps, 

which is much larger than the polariton lifetime (94 fs), so the pumping term can be treated as a CW 

source that is in resonant with the polariton branch, with a harmonic form like ℏ𝐹𝑃(𝛼)𝑒−𝑖𝜔𝑃𝑡. We can 

define 𝜓𝐿𝑃(𝛼, 𝑡) = 𝜓̃𝐿𝑃(𝛼)𝑒−𝑖𝜔𝑃𝑡, then the above equation can be rewritten as 

[ℏ𝜔𝑃 − 𝜖𝐿𝑃(𝛼) +
𝑖ℏ𝛾𝐿𝑃

2
] 𝜓̃𝐿𝑃(𝛼) = ℏ𝐹𝑃(𝛼) (17) 

The 𝐹𝑃(𝛼) term is governed by the input-output relation1 

𝐹𝑃(𝛼) = 𝐶(𝛼)√
𝜅 ∙ 𝑃𝑖𝑛𝑡(𝛼)

ℏ𝜔𝑃

 (18) 

𝜅 was estimated accounting for the DBR penetration depth and phase change from the silver 
mirror. 

𝜅 =  
|𝑡𝑡𝑜𝑝_𝑚𝑖𝑟𝑟𝑜𝑟|

2

𝜏𝑡𝑟𝑖𝑝

 

(19) 

Here 𝐶(𝛼) is the polariton branch photon Hopfield coefficient. 𝑃𝑖𝑛𝑡(𝛼) is the incident power on the top 

surface and 𝜅 is the coupling coefficient, 𝑡𝑡𝑜𝑝_𝑚𝑖𝑟𝑟𝑜𝑟  is the transmission of top mirror, and  𝜏𝑡𝑟𝑖𝑝 is the 

photon trip time in the cavity. This gives 𝜅 = 4.3 × 1012 𝑟𝑎𝑑/𝑠. Combining equation above, we have 
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𝜓̃𝐿𝑃(𝛼) =
ℏ𝐹𝑃(𝛼)

ℏ𝜔𝑃 − 𝜖𝐿𝑃(𝛼) +
𝑖ℏ𝛾𝐿𝑃

2

 (20) 

|𝜓𝐿𝑃(𝛼, 𝑡)|2 = |𝜓̃𝐿𝑃(𝛼)|
2

=
|𝐶|2 𝜅 ∙ 𝑃𝑖𝑛𝑡(𝛼)

ℏ𝜔𝑃

(𝜔𝑃 − 𝜔𝐿𝑃(𝛼))2 + (
𝛾𝐿𝑃

2
)

2 (21) 

The total density can be evaluated as an integral over the resonance region: 

|𝜓𝐿𝑃(𝛼, 𝑡)|2 = ∫
|𝐶|2 𝜅 ∙ ξ(𝛼)

ℏ𝜔𝑃

(𝜔𝑃 − 𝜔𝐿𝑃(𝛼))2 + (
𝛾𝐿𝑃

2
)

2 𝑑𝜔𝑃  (22) 

where ξ(𝛼) is the power density in the small resonance region, which is considered to be flat. So 

equation (22) can be estimated as an integral of a Lorentzian, it gives: 

|𝜓𝐿𝑃(𝛼, 𝑡)|2 =
2𝜋|𝐶|2𝜅 ∙ ξ

ℏ𝜔𝐿𝑃𝛾𝐿𝑃

 (23) 

 

We use the following to determine polariton loss: 

𝛾𝐿𝑃(𝛼) = |𝐶𝐿𝑃(α)|2ζ + |𝑋𝐿𝑃(α)|2𝛾. (24) 

Here 𝐶𝐿𝑃(α) and 𝑋𝐿𝑃(α) denotes the photonic and excitonic Hopfield coefficient for the lower polariton, 

respectively. The constants ζ and 𝛾 are the decay rates of the cavity and the exciton, respectively. Both of 

our fabricated cavities for the 1s and 2s exciton reach a photon lifetime of  ζ−1= 94 fs. The excitons have 

a lifetime of approximately 𝛾−1 = 2𝑝𝑠 for both the 1s exciton in WS2 and the 2s exciton in WSe2[5].  An 

analogous expression is evaluated for the upper polariton branch to obtain the upper polariton density 

𝜌𝑈𝑃(𝛼). From the two densities, 𝜌𝐿𝑃(𝛼) and 𝜌𝑈𝑃(𝛼), we obtain the exciton density at given angle 

𝜌𝑋(𝛼) = |𝑋𝐿𝑃(𝛼)|2𝜌𝐿𝑃(𝛼) + |𝑋𝑈𝑃(𝛼)|2𝜌𝑈𝑃(𝛼), (25) 

using the excitonic Hopfield coefficients 𝑋𝐿𝑃(𝛼) and 𝑋𝑈𝑃(𝛼). Finally, we calculate the total exciton density 

by summing over all measured angles, 𝑛𝑋 = ∑ 𝜌𝑋(𝛼)𝛼 . Around the avoided crossing, the total polariton 

density is approximately twice the exciton density and can therefore be estimated as 𝑛 = 2𝑛𝑋. This value 

is used to obtain the density scale in Fig. 4b,c of the main text and to determine the blockade radius from 

the depicted data and Eq. (2) of the main text. 

The above analysis requires a reliable determination of the different Hopfield coefficients, i.e. the 

eigenstate coefficients of the matrix 

(
Δcav(𝛼) − 𝑖

ζ

2
𝑔

𝑔 Δ − 𝑖
𝛾

2

) 

that yields coupled photon-exciton dynamics as described by Eq. (1) and (2) in the linear regime (𝑉 = 0), 

as discussed in the previous section. The free parameters are readily obtained by fitting the linear 
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transmission spectrum obtained from Eq. (1) and (2) to our low-intensity measurements for a given 

incident angle α. This approach yields a straightforward and accurate determination of the 𝛼 -dependent 

(defining the in-plane momentum) Hopfield coefficients, and intrinsically accounts for any temperature 

dependencies and other experimental effects on the Hopfield coefficients.  

 

Supplementary Figures 

 

 
Supplementary Figure 1 | Bare cavity. Angle resolved reflection spectra of two bare cavities with different 

PMMA thickness at room temperature. 
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Supplementary Figure 2 | Optical image of stack. Optical image shows the stack on DBR surface. The 

green lines represent three WSe2 monolayers’ edges. White arrows show air bubbles originates from the 

stacking process. 

 
 

Supplementary Figure 3 | Field distribution of WSe2 cavity.  a, Transfer matrix simulation (blue curve) of 

the field distribution at 670nm for structure shown in Fig. 1a. Position ‘0’ is related to the top silver surface. 

The sharp peak in the refractive index plot (orange curve) shows the relative position of WSe2 in the cavity. 

b, Thickness of each layer for the WSe2 cavity structure in Fig. 1a.  
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Supplementary Figure 4 | Field distribution of WS2 cavity. a, Transfer matrix simulation (blue curve) of 

the field distribution at 600nm for the WS2 cavity. Position ‘0’ is related to the top silver surface. The 

sharp peak in the refractive index plot (orange curve) shows the relative position of WS2 in the cavity. b, 

Thickness of each layer for the WS2 cavity structure 

 

 
Supplementary Figure 5 | Temperature dependent 2s exciton energy. a, Normalized differential 

reflection spectra of monolayer WSe2 at temperature of 77K (black) and 300K (red). Clear 2s peak was 

observed even at room temperature. The relative height of the 2s peak is 5-10 times lower than the main 

exciton peak (1s), indicating much smaller oscillator strength for the 2s state. b, 2s energy as a function of 

temperature. The blue shift from 300K to 15K is about 70 meV. 
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Supplementary Figure 6 | 1s exciton polariton intensity dependent Rabi splitting at 77K. a-c, White light 

reflection at the single pulse power of 13 mW/μm2 (a), 0.24 W/μm2 (b), 1.3 W/μm2 (c). As power is 

increasing, the Rabi splitting becomes smaller. d, Normalized Rabi splitting as a function of intensity. The 

errors bars represent one standard deviation from fitting the reflectivity at each input power. 
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