Supporting Information for

Cannabis sativa Terpenes are Cannabimimetic and Selectively Enhance Cannabinoid Activity

Justin E. LaVigne¹, Ryan Hecksel¹, Attila Keresztes¹, and John M. Streicher^{1*}

¹Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85718

* Corresponding author Email: jstreicher@email.arizona.edu

This file includes: Figures S1 to S14

Figure S1: Terpenes Are Antinociceptive in the Tail Flick Assay. Mice were treated with varying doses of terpene (A-E) or WIN55,212-2 (F), *intraperitoneal* (*i.p.*), and assessed in the tail flick thermal latency test over a period of 2 hours. Data represents the mean \pm SEM of tail flick latency in seconds (n=10/group).

Figure S2: Terpenes Induce Hypothermia, Catalepsy, and Hypolocomotion. A) Mice were tested for temperature at baseline and 30 min after *i.p.* injection with 200 mg/kg terpene, 5.6 mg/kg WIN55,212-2, or matched vehicle. Data represents the mean \pm SEM of temperature (n=10-15/group). B) Each mouse was baselined in the ring test for 5 min, then again at 15 min after *i.p.* injection with 200 mg/kg terpene, 5.6 mg/kg WIN55,212-2, or matched vehicle. Data represents the mean \pm SEM of % catalepsy (n=10-15/group). C) and D) Mice were injected with 200 mg/kg terpene, 5.6 mg/kg WIN55,212-2, or matched vehicle and then tested in the open field test after 10 min, for 5min, and analyzed using ANYmaze software. Data represents the mean \pm SEM of mobile time in seconds (C) or distance traveled in meters (D) (N=10-13/group). Statistics analyzed via RM two-way ANOVA, Dunnett's *post hoc*; bracket = p<0.05 vs. each baseline measurement.

Figure S3: Terpenes Induce Measures of Hypolocomotion. Mice were baselined in the open field test for 5 min then injected with 200 mg/kg terpene, 5.6 mg/kg WIN55,212-2, or matched vehicle, *i.p.*. After 10 min mice were then placed back into the open field box for a 5 min test. Measures of **A**) distance traveled and **B**) mobile time were analyzed using ANYmaze software. Data represents the mean \pm SEM of distance traveled (**A**) and mobile time (**B**) (n=10-15/group). Statistics analyzed via one-way ANOVA, Sidak's *post hoc*; ** p<0.01, *** p<0.001, **** p<0.0001 vs. Vehicle group.

Figure S4: WIN55,212-2 Induced Tetrad Effects Are Mediated by the CB1 Receptor. Mice were treated with 5.6 mg/kg WIN55,212-2 or after pretreatment with 10 mg/kg rimonabant, *i.p.*. A) Mice were then assessed in the tail flick test over 2 hr. Data represents the mean \pm SEM of tail flick latency (n=10/group). Statistics analyzed via two-way ANOVA, Dunnet's post hoc; **** p<0.0001 compared to WIN55.212-2 alone. B) Mice were baselined in the ring test for 5min, injected as above, and after 15 min, mice were tested in the ring test again for 5 min. Data represents the mean ± SEM of % catalepsy (n=10-12/group). Statistics analyzed via two-way ANOVA, Tukey's post hoc; **** p<0.0001 compared to baseline, xx p<0.01, compared to WIN55,212-2 post-treatment. C) Mice were baselined for temperature, injected as above, and after 30 min, temperature was assessed again. Data represents the mean \pm SEM of temperature (n=10-12/group). Statistics analyzed via two-way ANOVA, Tukey's post hoc; **** p<0.0001 compared to baseline, x p<0.05 compared to WIN55,212-2 post-treatment. **D**) and **E**) Mice were baselined in the open field test for 5 min, injected as above, and after 10 min mice were then placed back into the open field box for a 5 min test. Data represents the mean ± SEM of distance traveled (**D**) and mobile time (**E**) (n=10-13/group). Statistics analyzed via unpaired 2-tailed t test; * p<0.05, ** p<0.01 compared to WIN55,212-2 alone. Dotted line denotes vehicle levels for reference.

Figure S5: Rimonabant Does Not Act as An Inverse Agonist in the Tail Flick Assay. A) Mice were treated with 5.6 mg/kg morphine or after pretreatment with 10 mg/kg rimonabant, *i.p.*. Mice were then assessed in the tail flick test over 2 hr. Data represents the mean \pm SEM of tail flick latency (n=10/group). No statistical differences observed via two-way ANOVA. B) Area under the curve analysis of A. No statistical differences observed via t-test. C) Mice were baselined at 47°C, then injected with 10 mg/kg rimonabant or matched vehicle. After 30 min mice were baselined again. Data represents the mean \pm SEM of tail flick latency (n=10/group). No statistical differences observed via ANOVA.

Figure S6: Istradefyllene Treatment Causes Hypothermia and Hyperlocomotion. A) Mice were baselined for temperature, then injected with 10 mg/kg istradefyllene, *i.p.* After 30 min, temperature was assessed again. Data represents the mean \pm SEM of temperature (n=10). Statistics analyzed via two tailed paired t-test. *** p<0.001 compared to baseline. B) and C) Mice were injected with 10 mg/kg istradefyllene or vehicle, *i.p.*. After 10min mice were then placed back into the open field box for a 5 min test. Measures of B) distance traveled and C) mobile time were analyzed using ANYmaze software. Data represents the mean \pm SEM of distance traveled (B) and mobile time (C) (n=10-12/group). Statistics analyzed via unpaired two tailed t-test. * p<0.05, **** p<0.0001, compared to vehicle.

Figure S7: Terpene Induced Hypolocomotion is Partially Mediated by A2a and is Additive with Cannabinoid. Mice were injected with 200 mg/kg terpene alone, combined with 5.6 mg/kg WIN55,212-2, or after pretreatment with 10 mg/kg rimonabant or 10 mg/kg istradefyllene, *i.p.*. After 10 min mice were then placed back into the open field box for a 5 min test. Measures of distance traveled were analyzed using ANYmaze software. A) α -Humulene, B) β -Pinene, C) Linalool and D) Geraniol. Data represents the mean ± SEM of distance traveled (n=10-20/group). Statistics analyzed via one-way ANOVA, Dunnett's *post hoc*; *** p<0.001 compared to terpene alone. The black dotted line denotes vehicle levels of distance traveled for reference, while the red dotted line represents the effect of 5.6 mg/kg WIN55,212-2 alone, both taken from Figure S3B.

Figure S8: Sex-Differences in Linalool Mechanism of Action. Mice were tested as described in **Figure 1, 3, 4 and S4** and separated where sex differences were qualitatively observed. **A)** Linalool modulation of tail flick is differentially modulated by WIN55,212-2 treatment. Data represents the mean \pm SEM of tail flick latency (n=7-15/group). Statistics analyzed via two-way ANOVA, Dunnett's *post hoc*; *p<0.05, ** p<0.01, *** p<0.001, **** p<0.001, compared to Linalool alone. The data representing the effects of 5.6 mg/kg WIN55,212-2 alone is included for reference ("WIN Alone"), taken from **Figure S1F. B) and C**) Hypolocomotive behavior, as described above, separated by sex. Data represents the mean \pm SEM of mobile time (**B**) and distance traveled (**C**) (n=5-17/group). Statistics analyzed via one-way ANOVA, Dunnett's *post hoc*; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.001, compared to Linalool alone. The black dotted line represents the effects of Vehicle treatment, while the red dotted line represents the effects of 5.6 mg/kg WIN55,212-2 treatment; both reference points are with the sexes combined and are taken from **Figure S3**.

Figure S9: Terpene Treatment Activates the CB1 *In Vitro*. CB1-CHO cells were serum starved for 1 hr then treated with varying concentrations of A) α -Humulene, B) β -Pinene, C) Linalool, D) Geraniol and E) β -Caryophyllene, along with 10 μ M WIN55,212-2 or matched vehicle controls, for 5 min. Representative blots shown for data found in Figure 6.

Figure S10. Terpenes Induce CB1-Dependent and Independent Signaling *In Vitro*. Representative blots shown for data in Figure 7. A and B) CB1-CHO cells were serum starved for 1 hr then pretreated with 10 μ M rimonabant or vehicle for 5 min. Cells were then treated with 500 μ M terpene, 10 μ M WIN55,212-2, or matched vehicle, for 5 min. C) WT CHO cells were serum starved for 1 hr then treated with 500 μ M terpene, 10 μ M WIN55,212-2, or matched vehicle, for 5 min. C) WT CHO cells were serum starved for 1 hr then treated with 500 μ M terpene, 10 μ M WIN55,212-2, or matched vehicle, for 5 min. D) and E) WT CHO cells were serum starved for 1 hr, pretreated with 10 μ M rimonabant or vehicle, then treated with 500 μ M terpene, 10 μ M WIN55,212-2, or matched vehicle, for 5 min. D) and E) WT CHO cells were serum starved for 1 hr, pretreated with 10 μ M rimonabant or vehicle, then treated with 500 μ M terpene, 10 μ M WIN55,212-2, or matched vehicle, for 5 min.

Figure S11: Rimonabant Does Not Block FBS-Stimulated ERK Phosphorylation in CB1-CHO Cells. CB1-CHO cells were serum starved for 1 hr, pretreated with varying concentrations of rimonabant or vehicle, and then treated with 10% FBS for 5 min. Lysates were then subjected to Western analysis and blotted for phospho-ERK and total-ERK (see Methods). **A)** Western quantitation of ERK phosphorylation. Data expressed as phospho-ERK/total-ERK (n=3 independent experiments). Statistics analyzed via one-way ANOVA showed no differences when compared to FBS only stimulation. **B)** Representative Western blot image from the data in **A**.

Figure S12: Terpenes Induce ERK Phosphorylation in CB2-CHO Cells. CB2-CHO cells were serum starved for 1 hr then treated with 500 μ M terpene, 10 μ M WIN55,212-2, or vehicle, for 5 min. Lysates were then subjected to Western analysis and blotted for phospho-ERK and total-ERK (see Methods). A) Western quantitation of ERK phosphorylation induced by terpenes in CB2-CHO cells. Data expressed as phospho-ERK/total-ERK (n=3 independent experiments). Statistics analyzed via one-way ANOVA, Dunnett's *post hoc*; * p<0.05, ** p<0.01, *** p<0.001, compared to vehicle stimulation. B) Representative Western blot image shown for the data in A.

Figure S13: Terpenes Do Not Activate the Mu Opioid Receptor (MOR). A) MOR-CHO cells were serum starved for 1 hr, then treated with Vehicle, 10 μ M morphine, or 500 μ M terpene for 5 min. ERK was quantitated and reported as above. Data expressed as the % of morphine stimulation (n=3 independent experiments). **, **** = p < 0.01, 0.0001 vs. Vehicle group by 1 Way ANOVA with Dunnett's *post hoc* test. B) MOR-CHO cells serum starved for 1 hr, then pre-treated with Vehicle or 10 μ M naloxone for 10 min, then treated with Vehicle, 10 μ M morphine, or 500 μ M terpene for 5 min. ERK quantitated, reported, and normalized as in A (n=3 independent experiments). *, **** = p < 0.05, 0.0001 vs. terpene-alone group for each set by 1 Way ANOVA with Sidak's *post hoc* test (set up as pairwise comparisons between terpene and terpene + naloxone for each set). For both, representative blots are shown below each graph.

Figure S14: Binding and Functional Analysis of Terpenes at the CB1. A) CB1-CHO cells were pretreated with 10 μ M rimonabant, then treated with varying concentrations of terpene or WIN55,212-2 for 30 min. The ability to inhibit forskolin-stimulated cAMP accumulation was then measured (see Methods). Data represents the mean ± SEM of % of forskolin-stimulated cAMP (n=4 independent experiments). The curves did not saturate, preventing curve potency analysis. B) Vehicle and forskolin data from A, depicting lack of inverse agonism by rimonabant. Data represents the mean ± SEM of the RLU (n=4 independent experiments). C) CB1-CHO-DX cells were pretreated with varying concentrations of Geraniol for 5 min, followed by varying concentrations of WIN55,212-2 for 1.5 hr (see Methods). Data represents the mean ± SEM of max WIN55,212-2 recruitment (n=3 independent experiments). EC₅₀ values reported as the mean with 95% confidence intervals. WIN Alone (0) = 348 nM (195 – 612); -3.00 = 4,600 nM (296 - ∞); -3.60 = 1,360 nM (794 – 2,310); -4.20 = 538 nM (285 – 994); -4.80 = 451 nM (237 – 840); -5.41 = 375 nM (167 – 820); -6.01 = 313 nM (151 – 624); -6.61 = 440 nM (239 – 792).

Full Western Blot Images for All Experiments – All Replicates

Figure 6: *a*-Humulene / Supplement 9

Figure 6: β-Pinene / Supplement 9

Replicate 2

Replicate 3

Replicate 3

tERK

Figure 7: CB1-CHOw/ Rimonabant / Supplement 10

Figure 7: CB1-CHOw/ Rimonabant – Beta-Caryophyllene / Supplement 10

Figure 7: WT CHO- w/ Rimonabant / Supplement 10

tERK

Vehicle, Win, Pinene, Humulene

Vehicle, Win, Geraniol, Linalool Missing Humulene+10uM sample

Replicate 2

Replicate 3

Humulene, Humulene +10uM

Figure 7: WT CHOBeta-Caryophyllene + Rimonabant / Supplement 10

Replicate 1

Replicate 3

pERK

Supplement 11

Figure S13: Terpenes at MOR, No Antagonism

Figure S13: Terpenes at MOR, with attempted antagonism

