Supplementary Information

Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery

Wang et al.

Supplementary Figures

Supplementary Fig. 1 XRD patterns for the as-synthesized Na_{0.67-x}K_xMnO₂ ($0 \le x \le 0.2$) using sodium acetate precursor.

Supplementary Fig. 2 XRD patterns for the as-synthesized Na_{0.67-x}K_xMnO₂ ($0 \le x \le 0.1$) using sodium carbonate precursor.

Supplementary Fig. 3 XRD Rietveld refinement pattern for the as-synthesized Na_{0.706}MnO₂.

Supplementary Fig. 4 Structure of Na_{0.706}MnO₂ in the $P6_3/mmc$ space group viewed along the y axis. It shows the typical Na_e (edge-sharing), Na_f (face-sharing) sites, *d*-spacing, $d_{(Na-O-Na)}$ and d_{MnO2} .

Supplementary Fig. 5 PDF pattern of Na_{0.706}MnO₂.

Supplementary Fig. 6 a, XANES spectra at the Mn K-edge for Na_{0.612}K_{0.056}MnO₂ and Na_{0.706}MnO₂. **b**, Fitting of Mn K-edge FT-EXAFS spectra of Na_{0.706}MnO₂. The magnified pre-edge region is shown in Supplementary figure 6a inset. In the pre-edge region, two peaks are observable, and these Mn pre-edge peaks look similar for both Na_{0.612}K_{0.056}MnO₂ and Na_{0.706}MnO₂, which implies that Mn has the approximately same average oxidation states.

Supplementary Fig. 7 HRTEM images for the as-synthesized Na_{0.612}K_{0.056}MnO₂ (a) and Na_{0.706}MnO₂ (b).

Supplementary Fig. 8 STEM-ABF image for the as-synthesized Na_{0.602}K_{0.056}MnO₂.

Supplementary Fig. 9 SEM images for the as-synthesized $Na_{0.612}K_{0.056}MnO_2$ (a) and $Na_{0.706}MnO_2$ (b).

................

Supplementary Fig. 10 STEM-HAADF image for the as-synthesized Na_{0.706}MnO₂.

Supplementary Fig. 11 a, STEM-HAADF image of the as-synthesized Na_{0.612}K_{0.056}MnO₂ (b) and EELS profile scanned along the pink line in (a).

Supplementary Fig. 12 Elemental secondary ion mass spectrometry (SIMS) mapping of the pristine Na_{0.612}K_{0.056}MnO₂.

Supplementary Fig. 13 Elemental secondary ion mass spectrometry (SIMS) mapping of the pristine Na_{0.706}MnO₂.

Supplementary Fig. 14 Sputter depth profiles of Na_{0.706}MnO₂.

Supplementary Fig. 15 a, XRD Rietveld refinement pattern for K_{0.67}MnO₂. b, Structure of layered K_{0.67}MnO₂ in the *ccmm* space group.

Supplementary Fig. 16 a, Electron paramagnetic resonance (EPR) spectra of discharged electrodes of P2-Na_{1.015}K_{0.056}MnO₂. b, Ultraviolet (UV) spectrum of electrolytes after 10th discharge of P2-Na_{0.612}K_{0.056}MnO₂ as well as 0.5 and 1.0 mM Mn(TFSI)₂. It was further confirmed that only Mn³⁺ exists in the full discharge state without Mn²⁺. The EPR signal observed at g=2.0001 in Na_{1.015}K_{0.056}MnO₂ is attributed to the oxygen vacancies in the material surface.

Supplementary Fig. 17 In situ XRD patterns collected during the first charge/discharge and the second charge of the Na_{0.706}MnO₂ electrodes. The (004) peak of OP4 phase appears at 17.5°, and the (002) peak of P'2 phase appears at 17.0°. It suggests that P2-Na_{0.706}MnO₂ involves the phase transition of P2 \rightarrow OP4 at high charge voltages during charge and P2 \rightarrow P'2 during discharge.

Supplementary Fig. 18 XRD Rietveld refinement pattern of Na_{0.114}K_{0.056}MnO₂.

Supplementary Fig. 19 XRD Rietveld refinement pattern of Na_{1.015}K_{0.056}MnO₂.

Supplementary Fig. 20 XRD Rietveld refinement pattern of Na_{0.327}MnO₂.

Supplementary Fig. 21 XRD Rietveld refinement pattern of Na_{0.998}MnO₂.

Supplementary Fig. 22 *In situ* differential electrochemical mass spectrometry (DEMS) results of gas evolution rates of CO₂ and O₂ (unit: mmol min⁻¹ g⁻¹).

Supplementary Fig. 23 MSD of Mn, Na, and O as functions of time in Na_{0.555}MnO₂.

Supplementary Fig. 24 Diffusion path for Na⁺ (a) and K⁺ (b) and their migration energy barrier (c) in Na_{0.612}K_{0.056}MnO₂.

Supplementary Fig. 25 TEM elemental mappings and selected area electron diffraction (SAED) of the as-synthesized Na_{0.612}K_{0.056}MnO₂. SAED implies a pure P2 phase and the elemental mappings show uniform distribution of Na, K, Mn, and O in pristine Na_{0.612}K_{0.056}MnO₂.

Supplementary Fig. 26 TEM elemental mappings and SAED of Na_{0.612}K_{0.056}MnO₂ after the first charge. SAED implies that a pure P2 phase was maintained after charging. The elemental mappings show uniform distribution of Na, K, Mn, and O after charge.

Supplementary Fig. 27 Optimized structure of P2-Na $_{0.500}K_{0.055}MnO_2$ (a) and P2-Na $_{0.220}K_{0.055}MnO_2$ (b).

Supplementary Fig. 28 -COHP and corresponding integrated (-*I*_{COHP}) curves for K-O in Na_{0.500}K_{0.055}MnO₂ (a) and Na-O in Na_{0.555}MnO₂ (b).

Supplementary Fig. 29 tDOS of Na_{0.555}MnO₂ and pDOS of Na 3s, K 4s, O 2p and Mn 3d orbitals. The Fermi energy is set to 0 eV.

Supplementary Fig. 30 tDOS of Na_{0.500}K_{0.055}MnO₂ and pDOS of Na 3s, K 4s, O 2p and Mn 3d orbitals. The Fermi energy is set to 0 eV.

Supplementary Fig. 31 CV curves of $Na_{0.612}K_{0.056}MnO_2$ and $Na_{0.706}MnO_2$ at a scan rate of 0.1 mV s⁻¹.

Supplementary Fig. 32 Selected charge/discharge curves of Na_{0.612}K_{0.056}MnO₂ at 50 mA g⁻¹ during 100 cycles.

Supplementary Fig. 33 GITT curves of Na_{0.612}K_{0.056}MnO₂ (a) and Na_{0.706}MnO₂ (b) during the second cycle in the voltage range of 1.8-4.3 V.

Supplementary Fig. 34 Linear fitting of Na_{0.612}K_{0.056}MnO₂ electrode at 2.25 V in the second discharge process.

Supplementary Fig. 35 Current step diagrams of $Na_{0.612}K_{0.056}MnO_2$ electrode at 2.25 V in the second discharge process. The diffusion coefficient of Na⁺ can be determined by applying the Fick's second law of diffusion, and the Equation is as following:

$$D_{Na^{+}} = \frac{4}{\pi\tau} \left(\frac{m_{B}V_{m}}{M_{B}A}\right)^{2} \left(\frac{\Delta E_{s}}{\Delta E_{\tau}}\right)^{2}$$

Where $M_{\rm B}$, $V_{\rm M}$, and $m_{\rm B}$ are molecular weight, molar volume, and mass of electrode material, respectively, A is geometric area of electrode.. $\triangle E_{\rm s}$ and $\triangle E_{\tau}$ represent the change of quasi-equilibrium potential and battery voltage, respectively.

Supplementary Fig. 36 Linear fitting of Na_{0.706}MnO₂ electrode at 2.22 V in the second discharge process.

Supplementary Fig. 37 Current step diagrams of Na_{0.706}MnO₂ electrode at 2.22 V in the second discharge process.

Supplementary Fig. 38 Variation of D_{Na^+} as functions of x in Na_xMnO_2 determined by GITT, where the gray area represents the two-phase region.

Supplementary Fig. 39 CV curves of Na_{0.612}K_{0.056}MnO₂ (**a**) and Na_{0.706}MnO₂ (**b**) at different scan rates of 0.1, 0.2, 0.5 and 1.0 mV s⁻¹. Liner relationship of the peak current (i_P) and the square root of scan rate ($v^{1/2}$) for peaks of O1, O2, O3, A1 and A2 in **Supplementary Fig. 39a** (**c**) and **Supplementary Fig. 39b** (**d**).

Supplementary Fig. 40 a, Rate performance of Na_{0.612}K_{0.056}MnO₂ and Na_{0.706}MnO₂.
b, Typical discharge/charge curves of Na_{0.612}K_{0.056}MnO₂ at different current densities.

Supplementary Fig. 41 Electrochemical performance of HC electrode and $HC//Na_{0.612}K_{0.056}MnO_2$ full battery. a, Selected charge/discharge curves of HC at 50 mA g⁻¹ during 50 cycles. b, Cycle performance of HC//Na_{0.612}K_{0.056}MnO_2 full battery at 50 mA g⁻¹ in the voltage range of 1.0 V - 4.3 V. c, Typical discharge/charge curves of HC//Na_{0.612}K_{0.056}MnO_2 full battery at different current densities. d, Rate performance of HC//Na_{0.612}K_{0.056}MnO_2 full battery.

Supplementary Tables

Supplementary Table 1. ICP-OES of the synthesized P2-Na_{0.612}K_{0.056}MnO₂ and charged and discharged electrodes.

Elements	Atomic ratio				
	Pristine	Charged	Discharged		
Na	0.612	0.116	1.010		
K	0.056	0.055	0.055		
Mn	1.00	1.00	1.00		

	1	2	3
V (Na ₂ S ₂ O ₃ , mL)	12.60	12.65	12.65
Valence of Mn	3.298	3.303	3.303
δ	0.017	0.015	0.015

Supplementary Table 2. Results of iodometric titration on discharged K-doped cathode.

Atom	Site	g	x	У	Ζ
Na1	2 <i>c</i>	0.320(1)	1/3	2/3	1/4
Na2	2 <i>b</i>	0.294(2)	0	0	1/4
K1	2 <i>b</i>	0.056(2)	1/3	2/3	1/4
Mn	2 <i>a</i>	1.0	0.0	0.0	1/2
01	4 <i>f</i>	1.0	2/3	1/3	0.085(1)

Supplementary Table 3. Structure parameters of Na_{0.612}K_{0.056}MnO₂ determined from the XRD Rietveld refinement.

Space group: $P6_3/m \ m \ c$ (194), a = b = 2.868(3), c = 11.134(10) Å, $a = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, Vol = 79.310 Å³ (Z = 2), $R_p = 2.93\%$, $R_{wp} = 3.96\%$, $\chi^2 = 2.987$. g: occupancy. x, y, and z: atomic coordinate.

Atom	Site	g	x	у	Ζ
Na1	2c	0.323(11)	1/3	2/3	1/4
Na2	2b	0.388(11)	0	0	1/4
Mn	2a	1.0	0.0	0.0	1/2
01	4 <i>f</i>	1.0	2/3	1/3	0.088(1)

Supplementary Table 4. Structure parameters of Na_{0.706}MnO₂ determined from the XRD Rietveld refinement.

Space group: $P6_3/m \ m \ c$ (194), a = b = 2.870(2), c = 11.158(9) Å, $a = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, Vol = 79.321 Å³ (Z = 2), $R_p = 4.64\%$, $R_{wp} = 6.56\%$, $\chi^2 = 6.104$. g: occupancy. x, y, and z: atomic coordinate.

Atom	Site	g	x	у	Ζ
Na1	2 <i>d</i>	0.298	1/3	2/3	1/4
Na2	2 <i>b</i>	0.314	0	0	1/4
K1	2 <i>d</i>	0.056	1/3	2/3	1/4
Mn	2 <i>a</i>	1.0	0.0	0.0	1/2
01	4 <i>f</i>	1.0	2/3	1/3	0.0849(6)

Supplementary Table 5. Synchrotron pair distribution function (PDF) refined structural parameters of Na_{0.612}K_{0.056}MnO₂.

Space group: $P6_3/m \ m \ c$ (194), a = b = 2.8696 Å, c = 11.1243 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, Vol = 79.331 Å³, $\chi^2 = 2.3524$. g: occupancy. x, y, and z: atomic coordinate.

Atom	Site	g	x	у	Ζ
Na1	2 <i>d</i>	0.350	1/3	2/3	1/4
Na2	2 <i>b</i>	0.356	0	0	1/4
Mn	2 <i>a</i>	1.0	0.0	0.0	1/2
01	4 <i>f</i>	1.0	2/3	1/3	0.0862(6)

Supplementary Table 6. Synchrotron pair distribution function (PDF) refined structural parameters of Na_{0.706}MnO₂.

Space group: $P6_3/m \ m \ c \ (194)$, a = b = 2.8703 Å, c = 11.1533 Å, $a = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, Vol = 79.577 Å³, $\chi^2 = 1.7982$. g: occupancy. x, y, and z: atomic coordinate.

Supplementary Table 7. Extracted parameters from EXAFS spectra fitting of Na_{0.612}K_{0.056}MnO₂.

Scattering path	CN	R (Å)	σ^2 (Å ²)
Mn-O	6	1.889	0.00671
Mn-Mn	6	2.889	0.01057

R-value: 0.00998, S_0^2 : 0.80, E_0 : -5.5 eV.

Supplementary Table 8. Extracted parameters from EXAFS spectra fitting of Na_{0.076}MnO₂.

Scattering path	CN	R (Å)	σ^2 (Å ²)
Mn-O	6	1.895	0.00516
Mn-Mn	6	2.897	0.00892

R-value: 0.00705, S_0^2 : 0.80, E_0 : -4.1 eV.

Atom	Site	g	x	у	Ζ
K1	8 <i>g</i>	0.184(5)	-0.196(8)	0.193(9)	1/4
K2	8g	0.353(3)	0.261(3)	0.495(2)	1/4
Mn	4 <i>a</i>	1.0	0.0	0.0	0.0
01	16 <i>h</i>	1.0	0.369(1)	0.157(1)	0.007(8)

Supplementary Table 9. Structure parameters of K_{0.67}MnO₂ determined from the XRD Rietveld refinement.

Space group: *ccmm* (63), a = 5.165(6), b = 2.845(3), c = 12.755(6) Å, $\alpha = \beta = \gamma = 90^{\circ}$, Vol = 187.525 Å³ (Z = 4), $R_p = 5.51\%$, $R_{wp} = 3.94\%$, $\chi^2 = 1.35$. g: occupancy. x, y, and z: atomic coordinate.

Atom	Site	g	x	У	Ζ
Na1	2d	0.090(3)	1/3	2/3	1/4
Na2	2 <i>b</i>	0.024(5)	0	0	1/4
K1	2 <i>d</i>	0.056(4)	1/3	2/3	1/4
Mn	2a	1.0	0.0	0.0	1/2
01	4 <i>f</i>	1.0	2/3	1/3	0.069(2)

Supplementary Table 10. Structure parameters of Na_{0.114}K_{0.056}MnO₂ determined from the XRD Rietveld refinement.

Space group: $P6_3/m \ m \ c$ (194), a = b = 2.8465(9), c = 11.1987(2) Å, $a = \beta = 90^\circ$, $\gamma = 120^\circ$, Vol = 78.587 Å³, $R_p = 2.35\%$, $R_{wp} = 3.14\%$, $\chi^2 = 1.265$. g: occupancy. x, y, and z: atomic coordinate.

Atom	Site	g	x	У	Ζ
Na1	4 <i>c</i>	0.381(6)	0	-0.0866(3)	1/4
Na2	4 <i>c</i>	0.633(4)	0	0.6253(4)	1/4
K1	4 <i>c</i>	0.056(1)	0	0.6253(4)	1/4
Mn	4 <i>a</i>	1.0	0.0	0.0	0.0
01	8 <i>f</i>	1.0	0	0.6438(5)	0.9032(4)

Supplementary Table 11. Structure parameters of Na_{1.015}K_{0.056}MnO₂ determined from the XRD Rietveld refinement.

Space group: *cmcm* (63), a = 2.8841(2), b = 5.4855(5), c = 10.8045(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$, Vol = 170.938 Å³ (Z = 4), $R_{wp} = 4.44\%$, $\chi^2 = 3.58$. g: occupancy. x, y and z: atomic coordinate.

Supplementary Table 12. Mixed P2 and OP4 phases of Na_{0.327}MnO₂ determined from the XRD Rietveld refinement.

Atom	Site	g	x	у	Ζ
Na1	2c	0.268(6)	1/3	2/3	1/4
Na2	2 <i>b</i>	0.088(8)	0	0	1/4
Mn	2 <i>a</i>	1.0	0.0	0.0	1/2
01	4 <i>f</i>	1.0	2/3	1/3	0.068(1)

P2- Na_{0.327}MnO₂:

Space group: $P6_3/m \ m \ c \ (194)$, a = b = 2.8421(5), c = 11.1947(9) Å, $a = \beta = 90^\circ$, $\gamma = 120^\circ$, Vol = 78.266 Å³. g: occupancy. x, y, and z: atomic coordinate.

Atom	Site	g	x	У	Ζ
Na1	2d	0.160(5)	2/3	1/3	1/4
Na2	2c	0.060(4)	1/3	2/3	1/4
Na3	2a	0.111(2)	0	0	1/2
Mn	4 <i>f</i>	1.0	2/3	1/3	0.384(4)
01	4 <i>f</i>	1.0	1/3	2/3	0.434(6)
02	8e	1.0	0	0	0.341(2)

OP4- Na_{0.327}MnO₂:

Space group: $P6_{3}mc$ (186), a = b = 2.817(11), c = 17.812(14) Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, Vol = 122.402 Å³. g: occupancy. x, y and z: atomic coordinate.

Ratio of P2 and OP4: 87.0% : 13.0%, $R_p = 2.60\%$, $R_{wp} = 3.38\%$, $\chi^2 = 3.796$.

Atom	Site	g	x	У	Ζ
Na1	4 <i>c</i>	0.363(4)	0	-0.084(8)	1/4
Na2	4 <i>c</i>	0.640(5)	0	0.641(5)	1/4
Mn	4 <i>a</i>	1.0	0.0	0.0	0.0
O1	8 <i>f</i>	1.0	0	0.632(2)	0.900(1)

Supplementary Table 13. Structure parameters of Na_{0.998}MnO₂ determined from the XRD Rietveld refinement.

Space group: *cmcm* (63), a = 2.915(2), b = 5.544(4), c = 10.915(9) Å, $\alpha = \beta = \gamma = 90^{\circ}$, Vol = 176.434 Å³ (Z = 4), $R_p = 2.31\%$, $R_{wp} = 3.69\%$, $\chi^2 = 9.454$. g: occupancy. x, y and z: atomic coordinate.

Atoms in	-COHP	Atoms in	-COHP	
$Na_{0.555}MnO_2$	(eF)	$Na_{0.500}K_{0.055}MnO_2$	(eF)	
Na1-O9	0.273	K1-O9	0.180	
Na1-O1	0.239	K1-O1	0.179	
Na1-O33	0.304	K1-O33	0.178	
Na1-O36	0.255	K1-O36	0.177	
Na1-O12	0.218	K1-O12	0.191	
Na1-O4	0.317	K1-O4	0.193	
average	0.267	average	0.183	
Mn8-O9	1.535	Mn8-O9	1.549	
Mn10-O1	1.176	Mn10-O1	1.234	
Mn2-O33	1.387	Mn2-O33	1.467	
Mn3-O36	1.411	Mn3-O36	1.507	
Mn7-O12	1.361	Mn7-O12	1.450	
Mn1-O4	0.649	Mn1-O4	1.217	
average	1.253	average	1.404	

Supplementary Table 14. Crystal orbital Hamilton populations (COHP) of Na_{0.555}MnO₂ and Na_{0.500}K_{0.055}MnO₂.

Supplementary Table 15. Crystal orbital Hamilton populations (COHP) of $Na_{0.555}MnO_2$ and $Na_{0.500}K_{0.055}MnO_2$. It shows the influence of K on the adjacent Mn-O bonds (Mn2) and distant Mn-O bonds (Mn15, Mn10), as well as Mn atoms at different valence states (the valences for Mn10 and Mn15 are 4+ and 3+, respectively.).

Atoms in	-COHP	Atoms in	-COHP
Na _{0.555} MnO ₂	(eF)	$Na_{0.500}K_{0.055}MnO_2$	(eF)
Mn10-O19	0.709	Mn10-O19	1.399
Mn10-O21	1.282	Mn10-O21	1.494
Mn10-O25	1.340	Mn10-O25	1.491
Mn10-O31	1.442	Mn10-O31	1.283
Mn10-O35	1.490	Mn10-O35	1.456
Mn10-O37	0.790	Mn10-O37	1.545
average	1.176	average	1.445
Mn15-O26 (z ligand)	1.335	Mn15-O26	1.348
Mn15-O28 (xy-plane)	0.848	Mn15-O28	1.372
Mn15-O30 (xy-plane)	1.232	Mn15-O30	1.600
Mn15-O48 (xy-plane)	1.312	Mn15-O48	1.350
Mn15-O50 (xy-plane)	0.649	Mn15-O50	1.429
Mn15-O52 (z ligand)	1.589	Mn15-O52	1.553
average	1.161	average	1.442
Mn2-O22 (z ligand)	1.197	Mn2-O22	1.501
Mn2-O24 (xy-plane)	0.743	Mn2-O24	1.455
Mn2-O33 (xy-plane)	1.387	Mn2-O33	1.467
Mn2-O34 (xy-plane)	1.171	Mn2-O34	1.426
Mn2-O36 (xy-plane)	0.799	Mn2-O36	1.480
Mn2-O38 (z ligand)	1.579	Mn2-O38	1.579
average	1.146	average	1.485

				_
Atoms in	-COHP	Atoms in	-COHP	
Na _{0.222} MnO ₂	(eF)	$Na_{0.167}K_{0.055}MnO_2$	(eF)	
Na1-O26	0.356	K1-O19	0.210	
Na1-O28	0.330	K1-O22	0.210	
Na1-O42	0.329	K1-O23	0.203	
Na1-O52	0.356	K1-O26	0.203	
Na1-O66	0.340	K1-O35	0.204	
Na1-O68	0.339	K1-O38	0.205	
average	0.342	average	0.206	
Mn6-O26	1.511	Mn4-O19	1.618	
Mn4-O28	1.639	Mn3-O22	1.619	
Mn22-O42	1.554	Mn4-O23	1.504	
Mn4-O52	1.558	Mn5-O26	1.547	
Mn14-O66	1.575	Mn12-O35	1.373	
Mn20-O68	1.513	Mn17-O38	1.548	
average	1.558	average	1.535	

Supplementary Table 16. Crystal orbital Hamilton populations (COHP) of Na_{0.555}MnO₂ and Na_{0.500}K_{0.055}MnO₂ at their fully charged state.

Atoms in	-COHP	Atoms in	-COHP
NaMnO ₂	(eF)	NaK _{0.055} MnO ₂	(eF)
Na1-O35	0.275	K1-O34	0.159
Na1-O39	0.275	K1-O35	0.163
Na1-O43	0.274	K1-O38	0.160
Na1-O47	0.274	K1-O39	0.163
Na1-O52	0.275	K1-O43	0.167
Na1-O56	0.275	K1-O47	0.166
average	0.275	average	0.163
Mn20-O35	1.369	Mn23-O34	1.341
Mn17-O39	0.583	Mn22-O35	1.481
Mn20-O43	1.370	Mn25-O38	1.337
Mn22-O47	1.368	Mn24-O39	1.479
Mn28-O52	0.582	Mn22-O43	1.434
Mn21-O56	1.368	Mn24-O47	1.434
average	1.107	average	1.418

Supplementary Table 17. Crystal orbital Hamilton populations (COHP) of Na_{0.555}MnO₂ and Na_{0.500}K_{0.055}MnO₂ at their fully discharged state.

Atoms in	Vacancy formation	Atoms in	Vacancy formation	
Na _{0.555} MnO ₂	energy (eV)	$Na_{0.500}K_{0.055}MnO_2$	energy (eV)	
Na1 (Nae)	2.712	Na1 (Nae)	-1.841	
Na2 (Na _f)	2.787	Na2 (Na _f)	-3.111	
Na3 (Nae)	3.775	Na3 (Nae)	-2.971	
Na4 (Na _f)	2.294	Na4 (Na _f)	-2.911	
Na5 (Nae)	2.674	Na5 (Na _e)	-3.152	
Na6 (Nae)	2.618	Na6 (Nae)	-1.419	
Na7 (Nae)	2.934	Na7 (Na _e)	-1.982	
Na8 (Na _f)	2.738	Na8 (Na _f)	-3.388	
Na9 (Na _f)	2.162	Na9 (Na _f)	-3.024	
Na10 (Nae)	2.755			
average Na _e	2.911	average Na _e	-2.273	
average Na _f	2.495	average Na _f	-3.109	

Supplementary Table 18. Vacancy formation energy in Na_{0.555}MnO₂ and Na_{0.500}K_{0.055}MnO₂.

	D ₀₁ (×10 ⁻¹¹	<i>D</i> _{O2} (×10 ⁻¹¹	<i>D</i> _{O3} (×10 ⁻¹¹	$D_{\rm A1}(\times 10^{-11}$	<i>D</i> _{A2} (×10 ⁻¹¹
	cm^2s^{-1})	cm ² s ⁻¹)	cm^2s^{-1})	cm^2s^{-1})	cm^2s^{-1})
Na _{0.612} K _{0.056} MnO ₂	1.952	1.411	1.465	1.561	1.538
Na _{0.706} MnO ₂	1.296	0.830	0.801	0.969	0.977

Supplementary Table 19. Diffusion coefficient (D_{Na^+}) from Supplementary Fig. 39.

Supplementary Methods

Electron paramagnetic resonance (EPR) spectra were obtained using a Bruker electron paramagnetic resonance spectrometer. MnCl₂ and MnO₂ after dilution with NaCl were used as standards of Mn²⁺ and Mn⁴⁺. The solubility of Mn²⁺ in the electrolytes was analyzed by ultraviolet (UV) spectrum (SPECORD 2010 plus, analytikjena). For UV measurement, the residual electrolyte on the electrodes was washed with dimethyl carbonate (DMC) in an argon-filled glove box. 0.5 and 1.0 mM manganese(II) bis(trifluoromethanesulfonyl)imide (Mn(TFSI)₂) in DMC were used to give the standard Mn²⁺ peak. *In situ* differential electrochemical mass spectrometry (DEMS) measurements were carried out using a homemade cell connected to the equipment from Perkin-Elmer (Clarus 680 and SQ 8S).

Iodometric titration:

1. Preparation of standard sodium thiosulfate (Na₂S₂O₃) aqueous solution

0.1 M of $Na_2S_2O_3$ aqueous solution is prepared by dissolving 6.25 g of $Na_2S_2O_3 \cdot 5H_2O$ and 5 g of sodium carbonate (Na_2CO_3) in 250 mL of distilled water. The real concentration of $Na_2S_2O_3$ aqueous solution was determined by internal standard method with $K_2Cr_2O_7$ solution.

2. Titration of oxygen in the as-synthesized material

Firstly, 0.1 g of powder sample was dissolved in HCl diluted solution before the iodometric titration under the protection of nitrogen atmosphere. Then, starch solutions and buffered solution were added and the solution changed to dark blue. $Na_2S_2O_3$ aqueous solution was slowly titrated into the solution till the color disappeared. The oxygen non-stoichiometry was then calculated based on the amount of $Na_2S_2O_3$ aqueous solution.