1

2

3 Figure S1. Generation of constitutive *RAB11FIP5* knockout (*RAB11FIP5^{-/-}*) mice.

5 RAB11FIP5^{-/-} mice were generated by breeding RAB11FIP5 floxed mice (RAB11FIP5^{fl/fl}) with CMV-Cre mice. In 6 the RAB11FIP5^{fl/fl} conditional mutant mouse, exon 2 of the RAB11FIP5 gene is flanked by loxP sites. Mice 7 homozygous for this allele are viable, fertile and produce normal levels of Rab11Fip5 protein. When crossed with a 8 Cre-expressing strain, the floxed exon 2 is excised and therefore the expression of functional RAB11FIP5 mRNA is 9 abolished. In our study, as the CMV-Cre transgene is X-chromosome linked, F1 female RAB11FIP5^{fl/fl} mice were crossed with male CMV-Cre mice. F2 female littermates were kept and bred with RAB11FIP5^{fl/fl} mice. In F3 10 approximately half of the female littermates still had the RAB11FIP5 gene due to X-chromosome inactivation in the 11 12 CMV-Cre positive allele, while males and the remaining females had *RAB11FIP5* deletion. By inbreeding F3 13 RAB11FIP5^{-/-} male and females, we eventually generated constitutive RAB11FIP5^{-/-} mice independent of Cre. All 14 experiments in this study were conducted with mice after F5.

15

17 Figure S2. No major perturbations in lymphocyte subsets in *RAB11FIP5^{-/-}* mice.

(A) Pictures of spleens of representative $RAB11FIP5^{-/-}$ and control $RAB11FIP5^{fl/fl}$ mice.

(B) Body and spleen weights of *RAB11FIP5^{-/-}* (n=11) and control *RAB11FIP5*^{fl/fl} mice (n=10).

20 (C-D) Phenotypic analysis of B cells in $RAB11FIP5^{-1}$ (n=3) and control $RAB11FIP5^{f1/f1}$ (n=3) mice. (C) Gating

21 strategy for B cell subsets. (D) Cells from lymph nodes, spleen, and bone marrow were analyzed and the bar graphs

show the absolute number of total cells, IgM⁺ plasma cells (PC; CD138⁺), IgM⁻ PC, total B cells (CD19⁺B220⁺), pro

23 B cells (CD⁺B220⁺), pre-B cells (IgM⁻IgD⁻), immature (Imm) B cells (B220⁺CD93⁺IgM⁺IgD⁻), transitional (Trans) B

24 cells (B220⁺CD93⁺IgM⁺IgD⁺/low), germinal center (GC) B cells (B220⁺CD93⁻GL7⁺CD95⁺CD38^{low}), marginal zone

25 (MZ) B cells (B220⁺CD93⁻GL7⁻CD95⁻IgG⁻CD21^{high}CD23^{low/-}), follicular (Fo) B cells (B220⁺CD93⁻GL7⁻CD95⁻IgG⁻

26 CD21^{int}CD23^{high}), myeloid cells (IgM⁻CD19⁻B220⁻CD11b⁺CD5⁻), and T cells (IgM⁻CD19⁻B220⁻CD11b⁻CD5⁺).

- 27 (E-F) Phenotypic analysis of T cells and NK cells in *RAB11FIP5*^{-/-} and fl/fl mice. (E) Gating strategy for T cell and
- NK cell subsets. (F) Cells from lymph node, spleen and bone marrow were analyzed and the bar graphs show the absolute number of total cells, erythroid cells (TER119⁺B220⁻), B cells (TER119⁻B220⁺), total NK cells (CD3⁻
- 30 NK1.1⁺), Thy1.2⁻CD62L⁺ NK cells, Thy1.2⁺CD62L⁺ NK cells, Thy1.2⁺CD62L⁻ NK cells, Thy1.2⁻CD62L⁻ NK cells, Thy1.2⁺CD62L⁻ NK cells, Thy
- total T cells (CD3⁺), CD8⁺ T cells, naive CD8⁺ T cells (CD8⁺CD44⁻CD62L⁺), central memory (CM) CD8⁺ T cells
- $CD8^+CD44^+CD62L^+$), effector $CD8^+T$ cells ($CD8^+CD44^+CD62L^-$), effector memory (EM) $CD8^+T$ cells
- (CD8⁺CD4⁺CD62L⁻), CD4⁺ T cells, non-Treg (CD4⁺CD127^{high}CD25^{low}), Tfh (CD4⁺CD127^{high}CD25^{low}CXCR5⁺PD-
- 1^+), Thy 1.2⁻ Tfh, Thy 1.2⁺ Tfh, Treg (CD4⁺CD127^{low}CD25^{high}), Tfr (CD4⁺CD127^{low}CD25^{high}CXCR5⁺PD-1⁺), naive
- $CD4^+ T cells (CD4^+CD62L^+), central memory (CM) CD4^+ T cells (CD4^+CD62L^+), effector CD4^+ T cells (CD4^+CD64L^+), effector CD4^+ CD4^+ CD64L^+), effector CD4^+ CD4^+ CD64L^+), effector CD4^+ CD4^+ CD64L^+),$
- 36 cells (CD4⁺CD62L⁻), and effector memory (EM) CD4⁺ T cells (CD4⁺CD62L⁻).
- 37 38

39

40 Figure S3. *RAB11FIP5* deficiency has no effect on expression of other RAB11 family genes and RAB11 family

41 interacting protein (Fip) genes. FPKMs of *RAB11A*, *RAB11B*, and *RAB11FIPs* genes in B cells, Tfh cells, Tfr

42 cells, CD8+ T cells and NK cells are shown as dots; each dot indicates data from one animal. While the deletion of

43 exon 2 in *RAB11FIP5* alleles results in the absence of a complete and functional *RAB11FIP5* mRNA,

- 44 incomplete/partial *RAB11FIP5* transcripts may still exist at various levels in different cell types as indicated by
- decreased FPKM in the *RAB11FIP5^{-/-}* mice.

48 Figure S4. Analysis of antigen-specific B cell responses in immunized mice.

49 (A) Gating strategy to identify HIV-Env binding cells (double-positive for binding to CH505 gp120 tetramers 50 labeled with two different fluorochromes) in germinal center (GC) B cells, CD38low IgG⁺ GC B cells, and IgG⁺

51 memory B cells.

47

(B-E) HIV-1 CH505 TF SOSIP-specific GC B cells, CD38^{low} IgG⁺ GC B cells, and memory B cells were compared between *RAB11FIP5^{-/-}* mice (n=21) and control *RAB11FIP5^{fl/fl}* mice (n=20) in different tissues. Cells from bone 52

- 53
- 54 marrow (B), spleen (C), lymph node (D), and Peyer's patch (E) were analyzed and absolute numbers of SOSIP-
- 55 binding cells are shown in each tissue. Bars represent mean \pm SD and each dot indicates one animal. Combined data
- 56 from three independent immunization studies are shown. The statistical significance of differences between groups
- 57 was determined by Mann-Whitney U test, and no significant differences were found.