

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Air pollution, physical activity and ischemic heart disease -A prospective cohort study of interaction effects

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040912
Article Type:	Original research
Date Submitted by the Author:	25-May-2020
Complete List of Authors:	Raza, Wasif; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable Health Krachler, Benno; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable Health Forsberg, Bertil; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable health Sommar, Johan; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable health
Keywords:	Ischaemic heart disease < CARDIOLOGY, PUBLIC HEALTH, Coronary heart disease < CARDIOLOGY
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Air pollution, physical activity and ischemic heart disease - A prospective cohort study of interaction effects

Wasif Raza ^{1,*}, Benno Krachler ¹, Bertil Forsberg ¹ and Johan Nilsson Sommar ¹

¹Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Sweden; wasif.raza@umu.se (W.R.); <u>benno.krachler@umu.se</u> (B.K.); <u>bertil.forsberg@umu.se</u> (B.F.); <u>johan.sommar@umu.se</u> (J.N.S.)

to beet teries only

* Correspondence: <u>wasif.raza@umu.se</u> ; Tel.: +46-72-289-5144

		2
1		
2 3		
4		
5	30	
6		
7	31	Abstract
8		
9 10	32	Objective: To assess a possible interaction effect between physical activity and air pollution on first
11	33	incidence of ischemic heart disease (IHD).
12	34	Design: Prospective cohort study
13	54	Design. Prospective conort study
14	35	Setting: Umeå, Northern Sweden
15		
16 17	36	Participants: We studied 34,748 adult participants of Västerbotten Intervention Programme cohort
18	37	from 1990 to January 2014. Annual particulate matter concentrations (PM $_{2.5}$ and PM $_{10}$) at the
19	38	participants' residential addresses were modelled and a questionnaire on frequency of exercise and
20	39	active commuting was completed at baseline. Cox proportional hazards modelling was used to estimate
21	40	1) association with physical activity at different levels of air pollution, and 2) the association with
22 23	41	particulate matter at different levels of physical activity.
25 24		
25	42	Outcome: First incidence of IHD.
26		
27	43	Results: Over a mean follow-up of 12.4 years, there were 1,148 IHD cases. Overall, we observed an
28	44	increased risk of IHD among physically active individuals with higher concentrations of particles at their
29 30	45	home address. Exercise at least twice a week was associated with a lower risk of IHD among participants
31	46	with high residential PM _{2.5} (0.60; 95% CI: 0.44-0.82) and PM ₁₀ (0.55; 95% CI: 0.4-0.76). The same
32	47	beneficial effect was not observed with low residential $PM_{2.5}$ (0.94; 95% CI: 0.72-1.22) and PM_{10} (0.99;
33	48	95% CI: 0.76-1.29). An increased risk associated with higher long-term exposure to particles was only
34	49	observed among participants never exercising in training clothes and among those not performing any
35	50	active commuting. However, only the interaction effect on hazard ratios for exercise was statistically
36 37	51	significant.
38		
39	52	Conclusion: Exercise was associated with a lower risk of first incidence of IHD among individuals with
40	53	higher residential particle concentrations. An air pollution-associated risk was only observed among
41	54	those who exercised less. The findings support the promotion of physical activity and a mitigation of air
42 43	55	pollution.
43 44	56	
45	50	
46	57	Key Words: Air pollution, $PM_{2.5}$, PM_{10} , exercise, interaction, ischemic heart disease
47	58	
48		
49 50	59	
51	60	
52	00	
53	61	
54	C 2	
55 56	62	
50 57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3

2		
3	63	
4	~ ~	
5 6	64	
7		
8	65	Strengths and limitations of this study
9	66	
10		
11 12	67	• This study simultaneously evaluated the impact of physical activity and air pollution and their
12 13	68	interaction on first incident IHD cases in a population with relatively low level of air pollution
14	69	concentrations.
15	70	 For air pollution exposure, this study used individual time varying exposures of annual mean
16	71	concentrations during follow-up based on population address registries.
17	72	 Another strength is the prospective design and the availability of baseline data on several
18	73	important confounders.
19 20	74	• No exposure-response assessment could be performed since the statistical power only allowed
20	75	for the formation of two exposure categories.
22	76	Differences in air pollution exposure during active commuting might cause possible bias
23	77	estimates due to exposure misclassification.
24	78	
25	79	
26 27	80	
27 28		
20	81	
30	82	
31	83	
32	84	
33	85	
34 35	86	
36	87	
37	88	
38	89	
39	90	
40	91	
41 42	92	
42 43	93	
44	94	
45	95	
46	96	
47	97	
48	98	
49 50	99	
51	100	
52	100	
53	101	
54	102	
55	103 104	
56 57	104	
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

4

1		4
1 2		
2		
4	105	
5	106	
6		
7	107	1 Introduction
8	108	
9	100	
10	109	Cardiovascular disease (CVD) is the most important cause of morbidity and premature mortality
11	110	worldwide, accounting for 422.3 million cases and 17.92 million deaths in 2015 [1]. There is solid
12 13	111	evidence that inflammation is a key upstream pathogenic mechanism [2]. Ambient air pollution,
13	112	generally comprising ozone, sulphur dioxide, nitrogen dioxide and particulate matter (PM), is a leading
15	113	contributor to the global burden of disease and an important risk factor for morbidity and mortality.
16	114	Particulate matter is often measured as PM _{2.5} , to represent particles with a diameter of 2.5 micrometres
17	115	or less, and PM_{10} , to represent particles with a diameter of 10 micrometres or less. Ambient $PM_{2.5}$
18	116	exposure alone has been estimated to account for 4.2 million deaths in 2015, of which 1.5 million deaths
19	117	were caused by ischemic heart diseases (IHD) [3]. The underlying mechanisms mediating the pathogenic
20	118	impact of air pollution involve systemic oxidative stress and inflammation [4,5]. Physical activity is a
21	119	salutogenic factor in numerous non-communicable chronic diseases (NCDs), with physical inactivity
22 23	120	being responsible for 6% of the burden of disease from coronary heart disease [6,7]. The beneficial
23	121	effects of physical activity include protection against low-grade inflammation by releasing anti-
25	122	inflammatory substances, such as interleukin 6, from contracting muscles [8,9].
26	123	
27	124	Rapid urbanization and increased use of motorized transport contribute to modern day problems such
28	125	as traffic congestion, traffic related air pollution and lack of physical activity. Promotion of active
29	126	transportation by changing mode of transport from car to cycling and walking are among the different
30	127	strategies used to tackle these challenges [10–12]. As inflammation is a causative mechanism for
31	128	cardiovascular disease, it is conceivable that the anti-inflammatory effects of physical activity may
32 33	129	mitigate the harmful effects associated with exposure to air pollution. However, one major concern with
33 34	130	physical activity in a polluted environment is the increased inhalation of particles due to an increase in
35	131	respiratory volume that may counteract the beneficial effects of physical activity [13,14].
36	132	
37	133	The long-term effects of air pollution among individuals with different levels of leisure time physical
38	134	activity have been estimated within the Danish Diet, Cancer, and Health cohort. The incidence of
39	135	diabetes was assessed in relation to leisure time physical activity and nitrogen dioxide (NO ₂)
40	136	concentration at the home address. Residential NO_2 was found to be associated with increased
41 42	137	incidence of diabetes, but only among physically active individuals [15]. As far as we know, only one
42	138	study has examined the modifying effect of air pollution on the association between physical activity
44	139	and cardiovascular disease. In their recent study, Kubesch and colleagues conclude that physical activity
45	140	reduced the risk of first incidence of myocardial infarction (MI) and recurrent MI among individuals with
46	141	high NO ₂ concentration at the residential addresses [16]. As only one pollutant (NO ₂) and only one
47	142	cardiovascular outcome (MI) have been studied, the knowledge of a possible interaction between air
48	143	pollution and physical activity on CVD is inconclusive.
49 50	144	A Taiwanese study found an independent inverse association of habitual physical activity with
50 51	145	inflammation across different levels of PM _{2.5} exposure, although long term exposure was associated
52	146	with increased inflammation at all levels of physical activity [17].
53	147	We therefore aimed to examine interaction effects between physical activity and long-term exposure to
54	148	PM _{2.5} and PM ₁₀ at residential addresses on the incidence of ischemic heart disease (IHD). We wanted to
55		
56		
57		
58 50		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

assess: 1) whether air pollution modifies the beneficial effects of physical activity on IHD, and 2)whether physical activity modifies the harmful effects of air pollution on IHD.

154 2 Methods

To determine the interaction effect between air pollution and physical activity on IHD incidence, we
combined cohort data which comprised risk factors for IHD, national registry data on IHD incidence from
the Swedish National Board of Health and Welfare, and yearly annual mean air pollution particle
concentrations at the individuals' residential addresses using dispersion models from the Swedish Clean
Air and Climate Research Program (SCAC).

VIP (Västerbotten Intervention Programme) is a population based screening and prospective cohort
study, developed to reduce the risk of future CVD and diabetes by promoting a healthy lifestyle among
individuals living in the Västerbotten region. The SCAC developed methods to estimate exposure to
source-specific particulate matter such as PM_{2.5} and PM₁₀ and at residential addresses in Gothenborg,
Stockholm and Umeå.

2.1 Study population

VIP is an ongoing population-based health investigation survey of all individuals at ages 40, 50 or 60 years, depending upon risk factors, living in the Västerbotten region, who are invited to participate in systematic risk factor screening and individual counselling about healthy lifestyle habits. A detailed description of VIP has been presented elsewhere [18]. Between 1990 and 2014, a total of 42,488 of the VIP participants that lived in Umeå Municipality during the study period were included in the analysis. After exclusion of 7,740 participants with missing information on exercise, the study sample thus consisted of 34,748 individuals, 53% men and 47% women, 40-60 years of age at baseline examination, with no previous history of IHD at time of enrolment. After exclusion of individuals with missing information on included confounders the final number of included individuals were 31424 and 29218 for the analyses of exercise in training clothes and active commuting, respectively. All participants in the VIP gave their informed written consent, and the study was approved by the Regional Ethics Review Board at Umea University (DNR: 2014-136-32M and 2015/16-31Ö).

- 183 2.2 Leisure time exercise and active commuting

The VIP questionnaire includes various self-reported information on physical activity including frequency of leisure time physical activity and active commuting (cycling or walking to and from work). The association with IHD was assessed in relation to frequency of exercise in training clothes and amounts of active commuting. Exercise during the previous three months was categorized as never, rarely, once per week, 2-3 times per week or more than 3 times per week. Based on this information, participants were categorized as "Twice per week or more" if they exercised with a frequency of 2-3 times per week and more, "At most once a week" if they exercised rarely or once per week, and "Never" if no activity was performed. For active commuting, participants were asked about their mode of transport to work each season. Participants were classified in three categories: "Non- active commuting" if commuting every

season by car or bus, "At most two seasons out of four" if cycling or walking at most half a year and
"More than two seasons out of four", if cycling and walking more than half a year.

199 2.3 Covariates

The VIP questionnaire also gathered information on participants' educational status, occupation, smoking, alcohol intake and economic status. Education was defined according to the International Standard Classification of Education (ISCED), United Nations Educational, Scientific and Cultural Organization (UNESCO) 1997. Participants were asked about the highest level education they had achieved with eight predefined categories ranging from "pre-school" to "university education." Alcohol intake was assessed by the reported frequency of consumption with answering options that ranged from "Never" to "2-4 times/week." Information on smoking was gathered by using the question, "How often do you smoke?" Information on occupational status was obtained with a question, "What kind of job do you have nowadays?" with the answering options of eight predefined categories. Finally, information on occupation status was asked with the question, "What is your current occupation?" with 8 categories ranging from permanently employed to retired.

25 212 26 213

2.4 Air pollution concentrations

28 214

Annual mean total concentrations of PM_{2.5} and PM₁₀ for the years 1990-2011 (and thereafter linearly extrapolated up until year 2014) were obtained from the SCAC research program, described in detail elsewhere [19]. Briefly, concentrations of $PM_{2.5}$ and PM_{10} were estimated within SCAC by applying dispersion models on local or regional emission inventories. These emission inventories contain detailed information on emissions from different source categories, such as road traffic exhaust, road traffic non-exhaust, domestic heating, shipping and industrial activities. For Umeå, inventories were validated through monitoring for consistency. Emissions from small-scale residential heating were assessed using registry data from chimney sweepers that included the type of wood stove or boiler. The addresses of these residences were geocoded using the geographical centre coordinate of the estate. Road traffic emission factors for PM exhaust for different vehicle types, speeds and driving conditions were calculated based on the Handbook Emission Factors for Road Transport (HBEFA) version 3.1 [20]. Estimates for non-exhaust contribution from brake and tire wear were based on Omstedt et al. [21]. The annual average emission from shipping was used in the modelling on a 1x1 km² grid resolution. The emissions from other sources such as industrial processes, off-road machinery and agriculture was collected from Swedish Meteorological and Hydrological Institute (SMHI). To obtain annual average emissions of PM_{2.5} and PM₁₀, Gaussian models included in the Airviro air quality management system (SMHI, 2010) were used for simulation based on hourly meteorological data for 1990, 2000 and 2011 [22]. The comparison between measured and modelled $PM_{2.5}$ and PM_{10} agreed well at most monitoring stations ($r^2=0.87$ and $r^2=0.65$, respectively).

235 2.5 Outcome

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

We linked the records in VIP and through the unique Swedish personal identification number with data on first IHD event cases from the National Patient Register and the Cause of Death Register, both at the National Board of Health and Welfare, using primary discharge diagnoses for IHD according to International Classification of Diseases, 10th revision (ICD-10): code I20-125.

2.6 Participants and public involvement

There was no participants and public involvement in conducting or reporting our research.

2.7 Statistical Analysis

We performed survival analyses using Cox regression with age as underlying time scale to estimate hazard ratios (HRs), and 95% confidence intervals (CIs), to estimate 1) the association between first incident IHD and air pollution exposure at different levels of physical activity and 2) the association between first incident IHD and physical activity at different levels of air pollution exposure. Follow-up started at date of recruitment to the cohort and ended with the earliest of the date of first IHD case, emigration, death, or 31 December 2013. Interaction between physical activity and air pollution and their impact on IHD was studied by introducing an interaction term into the model. Residential annual mean particle concentrations were categorized as below or above the median concentration for PM_{2.5} and PM10, respectively. Interaction with physical activity was assessed based on 1) the frequency of exercise in training clothes and 2) the number of seasons the individual walked or cycled to work. Active commuting by walking or cycling was categorized into three groups: non-active commuters, active commuters at most half of the year (up to two out of four seasons), active commuters more than half a year (more than two out of four seasons). Estimates were adjusted for: calendar year as a penalized cubic spline with 3 degrees of freedom, gender (male vs female), highest education level (compulsory, high school, university), alcohol intake (never, once/month or sometimes, 2-4 times/month, 2-3 times/week, ≥ 4 times/week), smoking (previous non-regular smoker, non-regular smoker, cigarette smoker, cigar or pipe smoker), occupation (gainfully employed, unemployed, not gainfully employed, retired), and registry data on area level mean income. In the basic model we adjusted only for gender and exposure year. All analyses were performed using R version 3.4.2, and the statistical inference was conducted with a 5% significance level.

3 Results

The mean age at recruitment to this cohort was 45.8 years. Among the 34,748 participants 1,148 cases of IHD were identified during a mean follow-up time of 12.4 years. Table 1 summarizes characteristics of participants according to different levels of leisure time physical activity. Participants not reporting any leisure time exercise were older and more likely to be male, non-commuters and to belong to a lower socioeconomic group. Subjects performing moderate to high-level physical activity, were more likely to be women, non-smokers, and active commuters. The 5-year mean of PM₁₀ and PM_{2.5} concentration were different between leisure time physical activity categories, with at most 7 and 6% difference respectively for PM₁₀ and PM_{2.5}.

Page 9 of 18

BMJ Open

Table 1: Characteristics of participants at different levels of exercise in training clothes at baseline

Characteristics	Never	At most once a week	Twice per week or more	р
Exercise in training clothes n (%)	13043 (37.5)	14994 (43.2)	6711 (19.3)	
PM ₁₀ , μg/m ³ (mean (SD))	10.93 (2.00)	11.06 (1.96)	10.39 (1.94)	<0.00
PM _{2.5,} μg/m ³ (mean (SD))	6.41 (1.12)	6.49 (1.12)	6.11 (1.11)	<0.0
Frequency of active commuting (%)				<0.00
Non-active commuting	6369 (48.8)	6409 (42.7)	2666 (39.7)	
At most two seasons of four	1806 (13.8)	2547 (17.0)	1037 (15.5)	
More than two seasons of four	3506 (26.9)	4976 (33.2)	2555 (38.1)	
Missing	1362 (10.4)	1062 (7.1)	453 (6.8)	
Alcohol intake (%)				<0.0
Never	135 (1.0)	120 (0.8)	79 (1.2)	
Once/month or sometimes	5337 (40.9)	5950 (39.7)	2790 (41.6)	
2-4 times/month	2000 (15.3)	2436 (16.2)	1061 (15.8)	
2-3 times/week	97 (0.7)	93 (0.6)	54 (0.8)	
≥ 4 times/week	5068 (38.9)	5861 (39.1)	2265 (33.8)	
Missing	406 (3.1)	534 (3.6)	462 (6.9)	
Smoking (%)				<0.0
Never smoker	5139 (39.4)	7240 (48.3)	3467 (51.7)	
Previous non-regular smoker	1072 (8.2)	1458 (9.7)	711 (10.6)	
Non-regular smoker	581 (4.5)	807 (5.4)	348 (5.2)	
Previous regular smoker	2729 (20.9)	2865 (19.1)	1201 (17.9)	
Cigarette smoker	2789 (21.4)	1805 (12.0)	426 (6.3)	
Cigar or pipe smoker	186 (1.4)	130 (0.9)	45 (0.7)	
Missing	547 (4.2)	689 (4.6)	513 (7.6)	
Highest education level (%)				<0.0
Compulsory	5534 (42.4)	4319 (28.8)	1369 (20.4)	
High	3573 (27.4)	4116 (27.5)	1951 (29.1)	
University	3449 (26.4)	5933 (39.6)	2911 (43.4)	
Missing	487 (3.7)	626 (4.2)	480 (7.2)	
Gender %, (men)	7072 (54.2)	8036 (53.6)	3274 (48.8)	<0.0
Age, y (mean (SD))	47.28 (9.09)	45.27 (9.02)	44.32 (8.61)	<0.0
Occupation (%)	<0.001			
Gainfully employed	10536 (80.8)	12690 (84.6)	5452 (81.2)	
Unemployed	478 (3.7)	382 (2.5)	174 (2.6)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Characteristics	Never	At most once a week	Twice per week or more	р
Not gainfully employed	318 (2.4)	352 (2.3)	160 (2.4)	
Retired	673 (5.2)	449 (3.0)	194 (2.9)	
Missing	1038 (8.0)	1121 (7.5)	731 (10.9)	
Mean income for the neighbourhood (SEK)	128285.70	130332.22	130221.55	<0.00
Mean income for the heighbourhood (SEK)	(23017.70)	(23875.04)	(24605.92)	<0.00
Compared with individuals who reported	no exercise, those	e participants that exe	rcised at least ty	vice per
week had a 24% lower risk of IHD (Table 2). The corresponding overall estimate associated with active				
commuting was a 13% reduced risk of IHD among individuals commuting more than two seasons per				
year.	-	-		•
Allowing for an interaction between the f	requency of exerc	ise in training clothes	and particle	
Allowing for an interaction between the f		-	•	ising at
Allowing for an interaction between the fit concentrations (PM_{10} and $PM_{2.5}$) at the ho	me address, the a	average 24% risk redu	ction from exerc	-
Allowing for an interaction between the f concentrations (PM_{10} and $PM_{2.5}$) at the ho least twice per week was found to be driv	me address, the a en by an interacti	average 24% risk reduced on between exercise a	ction from exerc and particle expo	-
Allowing for an interaction between the f concentrations (PM_{10} and $PM_{2.5}$) at the hole least twice per week was found to be driv with 45% and 40% risk reduction among i	me address, the a en by an interacti ndividuals with hi	average 24% risk reduces on between exercise a gh PM_{10} and $PM_{2.5}$ cor	ction from exerc and particle expo centrations,	osure
Allowing for an interaction between the f concentrations (PM_{10} and $PM_{2.5}$) at the ho least twice per week was found to be driv with 45% and 40% risk reduction among i respectively (table 2). The interaction coe	me address, the a en by an interacti ndividuals with hi fficients estimatir	average 24% risk reduces on between exercise a gh PM_{10} and $PM_{2.5}$ coring the additional bene	ction from exerc and particle expo centrations, fit of exercise ar	nong
Allowing for an interaction between the f concentrations (PM_{10} and $PM_{2.5}$) at the hole least twice per week was found to be driv with 45% and 40% risk reduction among i respectively (table 2). The interaction coel individuals with a high exposure to particle	me address, the a en by an interacti ndividuals with hi fficients estimatir es at their home a	average 24% risk reduction between exercise a gh PM_{10} and $PM_{2.5}$ coring the additional bene address were a 3% inc	ction from exerc and particle expo centrations, fit of exercise ar reased and a 44	nong %
Allowing for an interaction between the f concentrations (PM_{10} and $PM_{2.5}$) at the hole least twice per week was found to be driv with 45% and 40% risk reduction among is respectively (table 2). The interaction coef individuals with a high exposure to particle reduced risk among those with high PM_{10}	me address, the a en by an interacti ndividuals with hi fficients estimatir es at their home a	average 24% risk reduction between exercise a gh PM_{10} and $PM_{2.5}$ coring the additional bene address were a 3% inc	ction from exerc and particle expo centrations, fit of exercise ar reased and a 44	nong %
Allowing for an interaction between the f concentrations (PM_{10} and $PM_{2.5}$) at the hole least twice per week was found to be driv with 45% and 40% risk reduction among i respectively (table 2). The interaction coel individuals with a high exposure to particle	me address, the a en by an interacti ndividuals with hi fficients estimatir es at their home a	average 24% risk reduction between exercise a gh PM_{10} and $PM_{2.5}$ coring the additional bene address were a 3% inc	ction from exerc and particle expo centrations, fit of exercise ar reased and a 44	nong %

For active commuters with low particle exposure at their home address, the risk of incident IHD was 17% and 18% higher among those commuting one or two seasons per year and 7% and 3% lower among those commuting at least two seasons per year, for PM₁₀ and PM_{2.5} respectively. The benefit of active commuting was larger among individuals with a high particle concentration at their home address: risk reductions for active commuting during one or two seasons were 12% and 13% and for more than two seasons 18% and 21% respectively, compared with non-active commuters. No statistically significant interaction was found between active commuting and particle concentrations at the home address.

with
rd ratio
muting
barticle
nd active
nd active
nd active
nd active
nd active
r

⁵⁵ 54 360 These increased risks were, however, not statistically significant.

- 55 56 57
- 58

When including an interaction between particle concentrations and exercise, risk estimates showed a

positive association between air pollution and IHD among individuals performing no exercise and those exercising no more than once a week, whereas a negative association was found among those exercising more than twice a week (Table 3). For PM₁₀ concentrations, an increased risk of 21% and 25% was observed among those who did not exercise or exercised at most once a week, respectively, whereas a decreased risk of 32% was estimated among those that exercised at least twice a week. Similarly, for PM_{25} , the risk of IHD increased by 16% among both those who did not exercise and those who exercised at most once a week, and decreased by 26% among those who exercised at least twice a week. The air pollution-associated risk was lower among those who exercised at least twice a week. For active commuting, the highest air pollution-associated risk was found among those who did not perform any such activity, among whom the risks increased by a statistically significantly 26% and 24%, respectively (table 3). The risks were, however, not statistically significantly different from air pollution-associated risks among the active commuters (as presented in table 2). Compared with individuals with low residential particle concentration, a high concentration of PM₁₀ was associated with 21% and 25% increased risk for IHD for those who never exercised in training clothes and those who exercised at most once a week, respectively, and showed a 32% decreased risk for those exercising at least twice a week; only the association for those exercising at most once a week was statistically significant. The corresponding estimates associated with PM2.5 are increased risk of IHD of 16% for those never exercising and those who exercised at most once a week, and a decreased risk of 26% among those exercising at least twice a week (Table 3); none of these associations was statistically significant.

- IHD risk associated with high residential PM₁₀ and PM_{2.5} compared with low residential particle concentration was found to be 26% and 24% higher, respectively, among those never actively commuting; both these results were statistically significant. Among those actively commuting one or two seasons per year, IHD risk was 5% and 9% lower, respectively, while among those actively commuting more than two seasons out of four, the risk was 10% and 1% higher, respectively; none of these associations was significant. Overall, no statistically significant modifying effect of exercise and active commuting on the association between high particle concentration at home addresses and IHD was observed (Table3).
- Table 3: Hazard ratios (95% CI) for IHD associated with high air pollution levels (vs low) at home address among persons with different exercise/commuting habits.

	Overall model with No interaction effects	Adjusted ^a H	Rs in different exercise	categories
		Ex	ercise in training clothe	es
		Never	≤ once/week	≥ twice/week
Low PM ₁₀ ^b	1	1	1	1
High PM ₁₀ ^b	1.14 (0.9-1.45)	1.21 (0.97-1.49)	1.25 (1.01-1.54)	0.68 (0.46-0.998)
Low PM _{2.5} ^c	1	1	1	1
High PM _{2.5} ^c	1.01 (0.8-1.28)	1.16 (0.94-1.44)	1.16 (0.95-1.43)	0.74 (0.51-1.09)
			Active commuting	
		Non-active commuting	≤ two season of four	> two seasons of four
Low PM_{10}^{c}		1	1	1
High PM ₁₀ ^c		1.26 (1.03-1.54)	0.95 (0.7-1.29)	1.10 (0.86-1.41)
Low PM _{2.5} ^d		1	1	1
High PM ₂₅ ^d		1.24 (1.02-1.51)	0.91 (0.67-1.24)	1.01 (0.79-1.29)

^aAdjusted for sex, exposure year, education, smoking, alcohol intake, occupation, mean income, leisure time physical activity, active commuting ^bLow PM₁₀: ≤9.6 μg/m³; High PM₁₀: >9.6 μg/m³

12

		12
1 2		
3 4 5 6 7 8 9 10 11 12 13	394 395 396 397 398 399 400 401 402 403 404 405 406	^c Low PM _{2.5} ≤5.7 μg/m ³ ; High PM _{2.5} : >5.7 μg/m ³
14 15		
16	407	4 Discussion
17	408	Overall, we found increased risk of first incident IHD associated with air pollution at the home address
18	409	but a protective effect of physical activity. A statistically significant beneficial effect of exercise was
19 20	410	found among individuals with both high PM_{10} and $PM_{2.5}$, but not among individuals with low levels. Also,
20	411	for active commuting the benefits were greater among individuals with high residential particle
22	412	concentrations, but these differences were not statistically significant. Air pollution concentration-
23	413	associated risks were found among individuals who exercise at most once a week but not among
24 25	414	individuals exercising at least twice a week. Statistically significantly increased risks were also found
26	415 416	among non-active commuters. These risks were, however, not statistically significantly different from air
27	416	pollution-associated risks among the active commuters.
28 29	417	Our findings are in accordance with a longitudinal cohort study on MI within the Danish Diet, Cancer,
29 30	418	and Health cohort which found an increased benefit of participation in sports among individuals with
31	419	high NO $_2$ concentration at the home addresses [16]. The reported risk reduction was 9, 15, and 24%
32	420	respectively among individuals with low (<14.3 μ g/m3), medium (14.3-21 μ g/ m3) and high (>21 μ g/ m3)
33	421	residential NO ₂ concentration. For walking and cycling they also estimated greater risk reductions for
34 35	422	first incident MI among individuals with higher air pollution concentrations. In the same Danish cohort,
36	423	the long term benefits of physical activity on CVD mortality were also found to be greater among
37	424	individuals with high residential NO_2 [23]. The risk reduction associated with participation in cycling and
38	425	gardening among individuals exposed to high residential NO ₂ (\geq 19 µg/m3) was greater than those
39 40	426	exposed to moderate/low NO ₂ concentration (<19 μ g/m3). Among participants exposed to high NO ₂ , the
41	427	risk reduction for cycling and gardening was 30% and 23%, respectively, whereas among participants
42	428	exposed to low NO_2 , risk reduction was 17% and 15%, respectively. However, the interaction effects in
43 44	429	these two studies were not statistically significant.
44 45	430	Opposite findings were observed for the modifying effect of physical activity on the association between
46	431	air pollution and the incidence of diabetes [15]. Among the participants in the Danish cohort, the risk of
47	432	developing diabetes increased by 10% per interquartile range of 4.9 mg/m ³ residential NO ₂ among
48 49	433	physically active individuals, but there was no difference among less physically active individuals. The
49 50	434 435	authors considered that this may be due to an additive rather multiplicative interaction, thus resulting in an increased risk estimate only among physical active individuals with a low risk of developing diabetes.
51	435 436	an increased risk estimate only among physical active individuals with a low risk of developing diabetes.
52	437	
53 54	438	As inflammation is a causative mechanism for cardiovascular disease, we hypothesized that the anti-
54 55	439	inflammatory effects of physical activity may reduce air pollution-associated risks since inflammation is
56	440	one among several different pathways for the harmful health effects of air pollution. The findings of
57		
58 50		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

greater benefits of physical activity among individuals with higher air pollution exposure for incident IHD risk in our study and incident MI and CVD mortality in the Danish cohort, support such a hypothesis. However, a study on physical activity and white blood cell counts conducted in a large cohort of Taiwanese adults suggested no effect modification by residential air pollution measured as PM_{25} [17]. Both physical activity and residential air pollution were, however, found to be associated with an inflammatory response assessed by white blood cell counts. However, the association between physical activity and white blood cell count is variable because exercise also causes a transient increase in white blood cell count which usually normalises within 24 hours [24]. The results of our study cannot be directly compared with the above mentioned studies due to the difference in pollutants [15,16,23] and health outcomes [15,16,23]. This study contributes with air pollution effect estimates on IHD incidence in a population with a relatively low level of air pollution concentrations. Compared with the previous cohort studies on interaction effects between air pollution and physical activity, the annual mean PM₂₅ concentration was 3-4 times lower. The annual mean in the Taiwanese cohort was 27 µg/m3 and a recent study within the same population as the DHC-cohort studies reported 18 µg/m3. Even at these lower levels of air pollution an increased risk associated with air pollution exposure was found, however not among those who exercised at least twice a week. A major strength of our study is the air pollution particle concentration exposure data since particles are considered to be the causal component of air pollution [25]. The study used individual time varying exposures of annual mean concentrations during follow-up based on population address registries. The dispersion model used for modelling of particle concentrations has previously been validated [19]. Within the DHC studies NO₂ was used as a proxy for traffic generated air pollution and was assessed only at residential addresses at the year of recruitment or as an annual mean during follow-up. A limitation of our exposure data is that the statistical power only allowed for two exposure categories and therefore no exposure-response assessment was performed. Another strength of our study is the prospective design, the long follow-up period, the large cohort size and the availability of baseline data on several important confounders. A limitation is the lack of information on the intensity and duration of physical activity and therefore only frequency of exercise could be considered. The study also lacked information on changes in physical activity and other life-style factors during follow-up. There is a risk of reverse causation if individuals at their baseline examination had a low physical activity level due to poorer health. Furthermore, we lacked information on whether exercise is taking place outdoors or indoors. For active commuters we also lack air pollution exposure calculations during the commute. This would cause exposure misclassification among active commuters with a higher in-traffic air pollution exposure dose compared with non-active commuters, causing a possible bias to the null. This would also occur if individuals chose not to exercise outside during times with high air pollution exposure. Conclusion The study estimated that exercise reduced the risk of first incident IHD, but only among individuals with higher residential particle concentrations (above median). Similarly, the harmful air pollution effect on IHD was only found among those who exercised less. Our results reinforce the public health message that physical activity is beneficial for cardiovascular health and thus support the adoption of strategies to improve health through promotion of physical activity and mitigation of air pollution. Further studies

Page 15 of 18

59

60

BMJ Open

		14
1		
2		
3	484	are needed to build on the evidence of physical activity and air pollution interactions on the incidence
4	485	cardiovascular disease. Air pollution exposures during commuting should also be considered in these
5		
6	486	studies.
7	487	
8	407	
9	488	
10		
11	489	
12		
13	490	Author's contributions: All the authors contributed to the study conception and design. W.R. and J.N.S.
14	491	analysed the data. W.R wrote the first draft of the manuscript. All authors critically revised the
15	492	manuscript for important intellectual content and read and approved the final version of the
16 17	493	manuscript.
17 10	455	manuscript.
18 19	494	Funding: The study was funded by FORTE (Forskingsrådet för hälsa, arbetsliv och välfärd) [grant number
20	495	2012-1296], a Swedish state agency that finances scientific research in health, welfare, and working life,
20 21	496	and also by grants from the Swedish state under the agreement between the Swedish government and
21	490 497	
22		the county councils (ALF) awarded B F.
23	498	Competing interests: None.
25	499	Participants consent: Obtained.
26	4JJ	rancipants consent. Obtained.
27	500	Ethics approval: The study was approved by the Regional Ethics Review Board at Umea University (DNR:
28	501	2014-136-32M and 2015/16-31Ö).
29	502	
30	502	
31	503	
32		
33	504	
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49 50		
50 51		
52		
52 53		
55 54		
54 55		
55 56		
50 57		
58		
50		

6 References Lelieveld J, Klingmüller K, Pozzer A, et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J Published Online First: 2019. doi:10.1093/eurheartj/ehz135 Shrivastava AK, Singh HV, Raizada A, et al. C-reactive protein, inflammation and coronary heart disease. Egypt. Hear. J. 2015. doi:10.1016/j.ehj.2014.11.005 Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet Published Online First: 2017. doi:10.1016/S0140-6736(17)30505-6 Münzel T, Gori T, Al-Kindi S, et al. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur. Heart J. 2018. doi:10.1093/eurheartj/ehy481 Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation Published Online First: 2010. doi:10.1161/CIR.0b013e3181dbece1 Stevens G. Global Health Risks: Mortality and burden of disease attributable to selected major risks. World Heal. Organ. 2009;87:646–646. doi:10.2471/BLT.09.070565 Lee I, Shiroma EJ, Lobelo F, et al. Impact of Physical Inactivity on the World's Major Non-Communicable Diseases. Lancet Published Online First: 2012. doi:10.1016/S0140-6736(12)61031-Nimmo MA, Leggate M, Viana JL, et al. The effect of physical activity on mediators of inflammation. Diabetes, Obes. Metab. 2013. doi:10.1111/dom.12156 Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol Published Online First: 2005. doi:10.1152/japplphysiol.00164.2004 Rajé F, Tight M, Pope FD. Traffic pollution: A search for solutions for a city like Nairobi. Cities Published Online First: 2018. doi:10.1016/j.cities.2018.05.008 Rojas-Rueda D, De Nazelle A, Teixidó O, et al. Health impact assessment of increasing public transport and cycling use in Barcelona: a morbidity and burden of disease approach. Prev Med (Baltim) 2013;**57**:573–9. Maizlish N, Woodcock J, Co S, et al. Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay area. Am J Public Health 2013;103-703-9.

- Tainio M, de Nazelle AJ, Götschi T, et al. Can air pollution negate the health benefits of cycling and walking? Prev Med (Baltim) Published Online First: 2015. doi:10.1016/j.ypmed.2016.02.002
- Giles L V., Koehle MS. The health effects of exercising in air pollution. Sport. Med. 2014. doi:10.1007/s40279-013-0108-z

1			16
2 3 4 5	542 543	15	Andersen ZJ, Raaschou-Nielsen O, Ketzel M, <i>et al.</i> Diabetes incidence and long-term exposure to air pollution: A cohort study. <i>Diabetes Care</i> Published Online First: 2012. doi:10.2337/dc11-1155
6 7 8 9 10	544 545 546 547	16	Kubesch NJ, Jørgensen JT, Hoffmann B, <i>et al</i> . Effects of leisure-time and transport-related physical activities on the risk of incident and recurrent myocardial infarction and interaction with traffic-related air pollution: A cohort study. <i>J Am Heart Assoc</i> Published Online First: 2018. doi:10.1161/JAHA.118.009554
11 12 13 14	548 549 550	17	Zhang Z, Hoek G, Chang L yun, <i>et al.</i> Particulate matter air pollution, physical activity and systemic inflammation in Taiwanese adults. <i>Int J Hyg Environ Health</i> Published Online First: 2018. doi:10.1016/j.ijheh.2017.10.001
15 16 17 18	551 552 553	18	Norberg M, Wall S, Boman K, <i>et al.</i> The Västerbotten Intervention Programme: background, design and implications. <i>Glob Health Action</i> Published Online First: 2010. doi:10.3402/gha.v3i0.4643
19 20 21 22	554 555 556	19	Segersson D, Eneroth K, Gidhagen L, <i>et al.</i> Health impact of PM10, PM2.5 and black carbon exposure due to different source sectors in Stockholm, Gothenburg and Umea, Sweden. <i>Int J Environ Res Public Health</i> Published Online First: 2017. doi:10.3390/ijerph14070742
23 24 25	557 558	20	Hausberger S, Rexeis M, Zallinger M, <i>et al</i> . Emission Factors from the Model PHEM for the HBEFA Version 3. 2009.
26 27 28 29	559 560 561	21	Omstedt G, Bringfelt B, Johansson C. A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. <i>Atmos Environ</i> Published Online First: 2005. doi:10.1016/j.atmosenv.2005.06.037
30 31 32	562 563	22	SMHI. Airviro technical specification, appendix E. 2010. http://www.smhi.se/airviro/2.867/specification/
33 34 35 36	564 565 566	23	Andersen ZJ, de Nazelle A, Mendez MA, <i>et al.</i> A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: The Danish Diet, Cancer, and Health Cohort. <i>Environ Health Perspect</i> 2015.
37 38	567	24	Abramson N, Melton B. Leukocytosis: Basics of clinical assessment. Am. Fam. Physician. 2000.
39	568	25	World Health Organization. Review of evidence on health aspects of air pollution – REVIHAAP
40 41 42	569		Project: Technical Report. 2013. doi:10.1007/BF00379640
43	570		
44 45	571		
46 47			
48			
49 50			
51			
52 53			
54			
55 56			
57			
58 59			
60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-6
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	5-6
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	5
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	
Results			

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cohort studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	5
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	7
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8-11
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9, 11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	14
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Air pollution, physical activity and ischemic heart disease -A prospective cohort study of interaction effects

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040912.R1
Article Type:	Original research
Date Submitted by the Author:	04-Jan-2021
Complete List of Authors:	Raza, Wasif; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable Health Krachler, Benno; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable Health Forsberg, Bertil; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable health Sommar, Johan; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	Ischaemic heart disease < CARDIOLOGY, PUBLIC HEALTH, Coronary heart disease < CARDIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Air pollution, physical activity and ischemic heart disease - A prospective cohort study of interaction effects

Wasif Raza ^{1,*}, Benno Krachler ¹, Bertil Forsberg ¹ and Johan Nilsson Sommar ¹

¹Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Sweden; wasif.raza@umu.se (W.R.); <u>benno.krachler@umu.se</u> (B.K.); <u>bertil.forsberg@umu.se</u> (B.F.); <u>johan.sommar@umu.se</u> (J.N.S.)

to beet teries only

* Correspondence: <u>wasif.raza@umu.se</u> ; Tel.: +46-72-289-5144

1		2
2		
3		
4 5	30	
6		
7		A betweet
8	31	Abstract
9	32	Objective: To assess a possible interaction effect between physical activity and air pollution on first
10	33	incidence of ischemic heart disease (IHD).
11 12		
13	34	Design: Prospective cohort study
14		
15	35	Setting: Umeå, Northern Sweden
16	26	Darticipants: We studied 24 749 adult participants of Västarbettan Intervention Programme schort
17	36	Participants: We studied 34,748 adult participants of Västerbotten Intervention Programme cohort
18 19	37	from 1990 to January 2014. Annual particulate matter concentrations (PM _{2.5} and PM ₁₀) at the
20	38	participants' residential addresses were modelled and a questionnaire on frequency of exercise and
21	39	active commuting was completed at baseline. Cox proportional hazards modelling was used to estimate
22	40	1) association with physical activity at different levels of air pollution, and 2) the association with
23	41	particulate matter at different levels of physical activity.
24	40	Outcome: First insidence of ULD
25 26	42	Outcome: First incidence of IHD.
20 27	43	Results: Over a mean follow-up of 12.4 years, there were 1,148 IHD cases. Overall, we observed an
28	44	increased risk of IHD among individuals with higher concentrations of particles at their home address.
29	45	Exercise at least twice a week was associated with a lower risk of IHD among participants with high
30	43 46	
31		residential PM _{2.5} (0.60; 95% CI: 0.44-0.82) and PM ₁₀ (0.55; 95% CI: 0.4-0.76). The same beneficial effect
32	47	was not observed with low residential $PM_{2.5}$ (0.94; 95% CI: 0.72-1.22) and PM_{10} (0.99; 95% CI: 0.76-1.29).
33 34	48	An increased risk associated with higher long-term exposure to particles was only observed among
35	49	participants never exercising in training clothes and among those not performing any active commuting.
36	50	However, only the interaction effect on hazard ratios for exercise was statistically significant.
37	51	Conclusion: Exercise was associated with a lower risk of first incidence of IHD among individuals with
38	52	higher residential particle concentrations. An air pollution-associated risk was only observed among
39 40	53	those who exercised less. The findings support the promotion of physical activity and a mitigation of air
40 41	55 54	
42	54	pollution.
43	55	
44		
45	56	Key Words: Air pollution, PM _{2.5} , PM ₁₀ , exercise, interaction, ischemic heart disease
46 47	57	
48	58	
49	50	
50	59	
51		
52	60	
53 54	61	
55	01	
56	62	
57		
58		
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		To peer review only intep//binjopen.only.inter/about/guidelines.xittin

Strengths and limitations of this study This study simultaneously evaluated the impact of physical activity and air pollution and their • interaction on first incident IHD cases in a population with relatively low level of air pollution concentrations. For air pollution exposure, this study used individual time varying exposures of annual mean concentrations during follow-up based on population address registries. Another strength is the prospective design and the availability of baseline data on several • important confounders. No exposure-response assessment could be performed since the statistical power only allowed for the formation of two exposure categories. Differences in air pollution exposure during active commuting might cause biased estimates due to exposure misclassification. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

104 1 Introduction

Cardiovascular disease (CVD) is the most important cause of morbidity and premature mortality worldwide, accounting for 422.3 million cases and 17.92 million deaths in 2015 [1]. There is solid evidence that inflammation is a key upstream pathogenic mechanism [2]. Ambient air pollution, generally comprising ozone, sulphur dioxide, nitrogen dioxide and particulate matter (PM), is a leading contributor to the global burden of disease and an important risk factor for morbidity and mortality. Particulate matter is often measured as PM_{2.5}, to represent particles with a diameter of 2.5 micrometres or less, and PM_{10} , to represent particles with a diameter of 10 micrometres or less. Ambient PM_{25} exposure alone has been estimated to account for 4.2 million deaths in 2015, of which 1.5 million deaths were caused by ischemic heart diseases (IHD) [3]. The underlying mechanisms mediating the pathogenic impact of air pollution involve systemic oxidative stress and inflammation [4,5]. Physical activity is a salutogenic factor in numerous non-communicable chronic diseases (NCDs), with physical inactivity being responsible for 6% of the burden of disease from coronary heart disease [6,7]. The beneficial effects of physical activity include protection against low-grade inflammation by releasing anti-inflammatory substances, such as interleukin 6, from contracting muscles [8,9]. Rapid urbanization and increased use of motorized transport contribute to modern day problems such as traffic congestion, traffic related air pollution and lack of physical activity. Promotion of active transportation by changing mode of transport from car to cycling and walking are among the different strategies used to tackle these challenges [10–12]. As inflammation is a causative mechanism for cardiovascular disease, it is conceivable that the anti-inflammatory effects of physical activity may mitigate the harmful effects associated with exposure to air pollution. However, one major concern with physical activity in a polluted environment is the increased inhalation of particles due to an increase in respiratory volume that may counteract the beneficial effects of physical activity [13,14]. The long-term effects of air pollution among individuals with different levels of leisure time physical activity have been estimated within the Danish Diet, Cancer, and Health cohort. The incidence of diabetes was assessed in relation to leisure time physical activity and nitrogen dioxide (NO_2) concentration at the home address. Residential NO₂ was found to be associated with increased incidence of diabetes, but only among physically active individuals [15]. As far as we know, only one study has examined the modifying effect of air pollution on the association between physical activity and cardiovascular disease. In their recent study, Kubesch and colleagues conclude that physical activity reduced the risk of first incidence of myocardial infarction (MI) and recurrent MI among individuals with high NO_2 concentration at the residential addresses [16]. As only one pollutant (NO_2) and only one cardiovascular outcome (MI) have been studied, the knowledge of a possible interaction between air pollution and physical activity on CVD is inconclusive. A Taiwanese study found an independent inverse association of habitual physical activity with inflammation across different levels of PM_{2.5} exposure, although long term exposure was associated with increased inflammation at all levels of physical activity [17]. We therefore aimed to examine interaction effects between physical activity and long-term exposure to $PM_{2.5}$ and PM_{10} at residential addresses on the incidence of ischemic heart disease (IHD). We wanted to assess: 1) whether air pollution modifies the beneficial effects of physical activity on IHD, and 2) whether physical activity modifies the harmful effects of air pollution on IHD.

2 Methods

To determine the interaction effect between air pollution and physical activity on IHD incidence, we combined cohort data which comprised risk factors for IHD, national registry data on IHD incidence from the Swedish National Board of Health and Welfare, and yearly annual mean air pollution particle concentrations at the individuals' residential addresses using dispersion models from the Swedish Clean Air and Climate Research Program (SCAC).

VIP (Västerbotten Intervention Programme) is a population based screening and prospective cohort study, developed to reduce the risk of future CVD and diabetes by promoting a healthy lifestyle among individuals living in the Västerbotten region. The SCAC developed methods to estimate exposure to source-specific particulate matter such as PM_{2.5} and PM₁₀ and at residential addresses in Gothenborg, Stockholm and Umeå.

2.1 Study population

VIP is an ongoing population-based health investigation survey of all individuals at ages 40, 50 or 60 years, depending upon risk factors, living in the Västerbotten region, who are invited to participate in systematic risk factor screening and individual counselling about healthy lifestyle habits. A detailed description of VIP has been presented elsewhere [18]. Between 1990 and 2014, a total of 42,488 of the VIP participants that lived in Umeå Municipality during the study period were included in the analysis. After exclusion of 7,740 participants with missing information on exercise, the study sample thus consisted of 34,748 individuals, 53% men and 47% women, 40-60 years of age at baseline examination, with no previous history of IHD at time of enrolment. After exclusion of individuals with missing information on included confounders the final number of included individuals were 31424 and 29218 for the analyses of exercise in training clothes and active commuting, respectively. All participants in the VIP gave their informed written consent, and the study was approved by the Regional Ethics Review Board at Umea University (DNR: 2014-136-32M and 2015/16-31Ö).

2.2 Leisure time exercise and active commuting

The VIP questionnaire includes various self-reported information on physical activity including frequency of leisure time physical activity and active commuting (cycling or walking to and from work). The association with IHD was assessed in relation to frequency of exercise in training clothes and amounts of active commuting. Exercise during the previous three months was categorized as never, rarely, once per week, 2-3 times per week or more than 3 times per week. Based on this information, participants were categorized as "Twice per week or more" if they exercised with a frequency of 2-3 times per week and more, "At most once a week" if they exercised rarely or once per week, and "Never" if no activity was performed. For active commuting, participants were asked about their mode of transport to work each season. Participants were classified in three categories: "Non- active commuting" if commuting every season by car or bus, "At most two seasons out of four" if cycling or walking at most half a year and "More than two seasons out of four", if cycling and walking more than half a year.

2.3 Covariates

The VIP questionnaire also gathered information on participants' educational status, occupation, smoking, alcohol intake and economic status. Education was defined according to the International Standard Classification of Education (ISCED), United Nations Educational, Scientific and Cultural Organization (UNESCO) 1997. Participants were asked about the highest level education they had achieved with eight predefined categories ranging from "pre-school" to "university education." Alcohol intake was assessed by the reported frequency of consumption with answering options that ranged from "Never" to "2-4 times/week." Information on smoking was gathered by using the question, "How often do you smoke?" Information on occupational status was obtained with a question, "What kind of job do you have nowadays?" with the answering options of eight predefined categories. Finally, information on occupation status was asked with the question, "What is your current occupation?" with 8 categories ranging from permanently employed to retired.

2.4 Air pollution concentrations

Annual mean total concentrations of PM_{2.5} and PM₁₀ for the years 1990-2011 (and thereafter linearly extrapolated up until year 2014) were obtained from the SCAC research program, described in detail elsewhere [19]. Briefly, concentrations of $PM_{2.5}$ and PM_{10} were estimated within SCAC by applying dispersion models on local or regional emission inventories. These emission inventories contain detailed information on emissions from different source categories, such as road traffic exhaust, road traffic non-exhaust, domestic heating, shipping and industrial activities. For Umeå, inventories were validated through monitoring for consistency. Emissions from small-scale residential heating were assessed using registry data from chimney sweepers that included the type of wood stove or boiler. The addresses of these residences were geocoded using the geographical centre coordinate of the estate. Road traffic emission factors for PM exhaust for different vehicle types, speeds and driving conditions were calculated based on the Handbook Emission Factors for Road Transport (HBEFA) version 3.1 [20]. Estimates for non-exhaust contribution from brake and tire wear were based on Omstedt et al. [21]. The annual average emission from shipping was used in the modelling on a 1x1 km² grid resolution. The emissions from other sources such as industrial processes, off-road machinery and agriculture was collected from Swedish Meteorological and Hydrological Institute (SMHI). To obtain annual average emissions of PM_{2.5} and PM₁₀, Gaussian models included in the Airviro air quality management system (SMHI, 2010) were used for simulation based on hourly meteorological data for 1990, 2000 and 2011 [22]. The comparison between measured and modelled $PM_{2.5}$ and PM_{10} agreed well at most monitoring stations (r²=0.87 and r²=0.65, respectively).

2.5 Outcome

We linked the records in VIP and through the unique Swedish personal identification number with data on first IHD event cases from the National Patient Register and the Cause of Death Register, both at the National Board of Health and Welfare, using primary discharge diagnoses for IHD according to International Classification of Diseases, 10th revision (ICD-10): code I20-125.

235 2.6 Patient and public involvement

236 No patients were involved in this study.

2.7 Statistical Analysis

11 240

We performed survival analyses using Cox regression proportion hazard model to estimate hazard ratios (HRs), and 95% confidence intervals (Cls), to estimate 1) the association between first incident IHD and air pollution exposure at different levels of physical activity and 2) the association between first incident IHD and physical activity at different levels of air pollution exposure. Age was used as the underlying timescale since it is a stronger confounder than calendar time. Follow-up started at date of recruitment to the cohort and ended with the earliest of the date of first IHD case, emigration, death, or 31 December 2013. Interaction between physical activity and air pollution and their impact on IHD was studied by introducing an interaction term into the model. Residential annual mean particle concentrations were used to calculate moving averages over the recent five years which were thereafter categorized as below or above the median concentration for PM_{2.5} and PM10, respectively. Interaction with physical activity was assessed based on 1) the frequency of exercise in training clothes and 2) the number of seasons the individual walked or cycled to work. Active commuting by walking or cycling was categorized into three groups: non-active commuters, active commuters at most half of the year (up to two out of four seasons), active commuters more than half a year (more than two out of four seasons). Estimates were adjusted for: calendar year as a penalized cubic spline with 3 degrees of freedom, gender (male vs female), highest education level (compulsory, high school, university), alcohol intake (never, once/month or sometimes, 2-4 times/month, 2-3 times/week, ≥4 times/week), smoking (previous non-regular smoker, non-regular smoker, cigarette smoker, cigar or pipe smoker), occupation (gainfully employed, unemployed, not gainfully employed, retired), and registry data on area level mean income. In the basic model we adjusted only for gender and exposure year. All analyses were performed using R version 3.4.2, and the statistical inference was conducted with a 5% significance level. T-tests, global analysis of variance tests (ANOVA) and chi-square tests were used to test for differences in means and proportions of covariates between categories of exercise in training clothes (Table 1). The Schoenfeld residuals test was used to assess the assumption of proportional hazards. A sensitivity analysis was conducted by excluding participants with short follow-up time.

267 3 Results

45 268

The mean age at recruitment to this cohort was 45.8 years. Among the 34,748 participants 1,148 cases of IHD were identified during a mean follow-up time of 12.4 years. Of those cases, 500 never exercised, 529 exercised at most once a week and 119 exercised at least twice a week. Table 1 summarizes characteristics of participants according to different levels of leisure time physical activity. Participants not reporting any leisure time exercise were older and more likely to be male, non-commuters and to belong to a lower socioeconomic group. Subjects performing moderate to high-level physical activity, were more likely to be women, non-smokers, and active commuters. The 5-year mean of PM₁₀ and PM_{2.5} concentration were different between leisure time physical activity categories, with at most 7 and 6% difference respectively for PM₁₀ and PM_{2.5}.

BMJ Open

Table 1: Characteristics of participants at different levels of exercise in training clothes at baseline

Characteristics	Never	At most once a week	Twice per week or more	p
Exercise in training clothes n (%)	13043 (37.5)	14994 (43.2)	6711 (19.3)	
PM ₁₀ , μg/m ³ (mean (SD))	10.93 (2.00)	11.06 (1.96)	10.39 (1.94)	<0.001
PM _{2.5} , μg/m ³ (mean (SD))	6.41 (1.12)	6.49 (1.12)	6.11 (1.11)	<0.001
Frequency of active commuting (%)				<0.001
Non-active commuting	6369 (48.8)	6409 (42.7)	2666 (39.7)	
At most two seasons of four	1806 (13.8)	2547 (17.0)	1037 (15.5)	
More than two seasons of four	3506 (26.9)	4976 (33.2)	2555 (38.1)	
Missing	1362 (10.4)	1062 (7.1)	453 (6.8)	
Alcohol intake (%)				<0.001
Never	135 (1.0)	120 (0.8)	79 (1.2)	
Once/month or sometimes	5337 (40.9)	5950 (39.7)	2790 (41.6)	
2-4 times/month	2000 (15.3)	2436 (16.2)	1061 (15.8)	
2-3 times/week	97 (0.7)	93 (0.6)	54 (0.8)	
≥ 4 times/week	5068 (38.9)	5861 (39.1)	2265 (33.8)	
Missing	406 (3.1)	534 (3.6)	462 (6.9)	
Smoking (%)				<0.001
Never smoker	5139 (39.4)	7240 (48.3)	3467 (51.7)	
Previous non-regular smoker	1072 (8.2)	1458 (9.7)	711 (10.6)	
Non-regular smoker	581 (4.5)	807 (5.4)	348 (5.2)	
Previous regular smoker	2729 (20.9)	2865 (19.1)	1201 (17.9)	
Cigarette smoker	2789 (21.4)	1805 (12.0)	426 (6.3)	
Cigar or pipe smoker	186 (1.4)	130 (0.9)	45 (0.7)	
Missing	547 (4.2)	689 (4.6)	513 (7.6)	
Highest education level (%)				<0.001
Compulsory	5534 (42.4)	4319 (28.8)	1369 (20.4)	
High	3573 (27.4)	4116 (27.5)	1951 (29.1)	
University	3449 (26.4)	5933 (39.6)	2911 (43.4)	
Missing	487 (3.7)	626 (4.2)	480 (7.2)	
Gender %, (men)	7072 (54.2)	8036 (53.6)	3274 (48.8)	<0.001
Age, y (mean (SD))	47.28 (9.09)	45.27 (9.02)	44.32 (8.61)	<0.001
Occupation (%)	<0.001		•	
Gainfully employed	10536 (80.8)	12690 (84.6)	5452 (81.2)	
Unemployed	478 (3.7)	382 (2.5)	174 (2.6)	
Not gainfully employed	318 (2.4)	352 (2.3)	160 (2.4)	
Retired	673 (5.2)	449 (3.0)	194 (2.9)	
Missing	1038 (8.0)	1121 (7.5)	731 (10.9)	

	Characteristics			Neve	!r	At most once	a week	Twice per weel or more	p
	Mean income fo	or the neighbourhoo	d (SEK)	128285 (23017		130332 (23875.0		130221.55 (24605.92)	<0.001
288 289 290 291 292 293 294	week had a 24%	individuals who re lower risk of IHD (a 13% reduced risl	Table 2)	no exercise). The corre	, those	participants t	hat exer imate a	rcised at least t	active
295 296 297 298 299 300 301 302 303	concentrations (least twice per w particle exposure concentrations, exercise among risk among those among those wh	nteraction betwee PM_{10} and $PM_{2.5}$) at veek was found to e with 45% and 40 respectively (table individuals with a l e who exercised at to exercised at leas tions were a risk re	the hor be drive % risk re 2). The high PM most or st twice	me address en by statis eduction ar interactior 10 concentr nce a week a week. Th	s, the a tically s nong ir coeffi ration a where e corre	verage 24% ris significant intendividuals with cients estimat at their home a eas a decrease esponding esti	sk reduc eractior h high P ing the addresse ed risk o	ction from exert between exert M_{10} and $PM_{2.5}$ additional bence es were a 3% in f 44% was estir	cise and fit of creased nated
304 305 306 307 308 309 310	and 18% higher a those commutin commuting was reductions for ac seasons 18% and	nuters with low par among those comr g at least two seas larger among indiv ctive commuting d d 21% respectively found between act	muting c sons per viduals w uring on , compa	one or two year, for P vith a high ne or two so red with no	season M ₁₀ an particle easons on-activ	s per year and d PM _{2.5} respec e concentratic were 12% and ve commuters	d 7% and ctively. on at the d 13% and s. No sta	d 3% lower amo The benefit of a eir home addres nd for more tha itistically signifi	ong ctive ss: risk n two cant
311 312 313 314 315 316 317		ios (95% Cl) for IHD as: on exposure at home ac Overall model Pr	ddresses.			e and commuting	1	nong persons with	
	training clothes	with no or interaction na effects ha rd p ^o	rtio expo al aza I	osure				interaction hazard ratio	
			L	Low PM ₁₀ ^b	Prop ortio nal haza rd p- value d	High PM ₁₀ ^b	Prop ortio nal haza rd p- value d	Benefits of exercise/commuti ng comparing high and low particle exposure	Prop ortio nal haza rd p- value d
	Never ≤ once/week	1 1.03 (0.90-1.16) 0	.35 1.01	1 1 (0.84-1.21)	0.67	1 1.04 (0.88-1.23)	0.35	1.03 (0.81-1.32) 0.56 (0.37-0.84)	0.75 0.65

60

2										
3		≥ twice/week	0.76 (0.62-0.93)	0.08	0.99 (0.76-1.29)	0.47	0.55 (0.40-0.76)	0.24		
4			0.70 (0.02 0.00)	0.00	Low PM _{2.5} ^c	0.17	High PM _{2.5} ^c	0.21		
5		Never			1		1		1.00 (0.78-1.28)	0.61
6		≤ once/week			1.03 (0.86-1.23)	0.78	1.03 (0.87-1.22)	0.30	0.64 (0.43-0.96)	0.30
7		≥ twice/week			0.94 (0.72-1.22)	0.69	0.60 (0.44-0.82)	0.09		
8		Active commuting per			Low PM ₁₀ ^b		High PM ₁₀ ^b			
9		season					1			
10		Non-active commuting	1		1		1			
11 12		≤ two seasons of four	1.01 (0.86-1.19)	0.50	1.17 (0.93-1.47)	0.35	0.88 (0.70-1.11)	0.70	0.76 (0.55-1.04)	0.34
13 14		> two seasons of four	0.87 (0.76-0.998)	0.85	0.93 (0.76-1.14)	0.48	0.82 (0.68-0.98)	0.89	0.88 (0.67-1.15)	0.53
15		- Of IOUI			Low PM _{2.5} ^c		High PM _{2.5} ^c			
16		Non-active			1		1			
17		commuting								
18		≤ two seasons of four			1.18 (0.94-1.49)	0.43	0.87 (0.69-1.10)	0.76	0.73 (0.53-1.01)	0.43
19 20		> two seasons of four			0.97 (0.80-1.19)	0.37	0.79 (0.65-0.95)	0.89	0.81 (0.62-1.06)	0.44
21	318									
22	319	^a Adjusted for sex, cale	ndar year, education,	smoking	, alcohol intake, occu	upation,	neighbourhood mea	in income	e, leisure time physica	al activity,
23	320 321	and active commuting								
24	322	^b Low PM ₁₀ : ≤9.6 μg/m	1 ³ : High PM10: >9.6	ug/m ³						
25	323	^c Low PM _{2.5} ≤5.7 μg/m								
26	324	^d p-value of the Schoer	, 0	1 0.	onal hazards					
27	325									
28	326									
29	327									
30	328									
31	329 330									
32	331									
33	332									
34	333									
35	334									
36	335	Individuals expo	sed to high con	centra	tions of PM ₁₀ a	nd PM	12.5 at their hom	ne add	ress had a 14% a	and 1%
37	336	increased risk of	incident IHD re	specti	velv. compared	to inc	lividuals with lo	ow cor	centrations (Ta	ble 3).
38	337	These increased		•						
39 40	338	When including	an interaction h	etwee	en particle conc	entrat	ions and exerc	ise. ris	k estimates sho	wed a
41	339	positive associat			•					
42				-		-	-			
43	340	exercising no mo			whereas a neg	auvea	association was	Tound	among those e	exercising
44 45	341	more than twice	a week (Table	3).						
45 46	342	Compared with i	individuals with	low re	esidential partio	cle con	centration, a h	igh co	ncentration of P	PM ₁₀ was
47	343	associated with	21% and 25% in	crease	ed risk for IHD f	or tho	se who never e	exercis	ed in training clo	othes
48	344	and those who e							-	
49						-				
50	345	exercising at leas		•			•			
51	346	statistically signi	ficant. The corr	espon	ding estimates	associ	ated with $PM_{2.2}$	₅ are ir	creased risk of	IHD of
52	347	16% for those ne	ever exercising a	and th	ose who exercis	sed at	most once a w	eek, a	nd a decreased	risk of
53	348	26% among thos	-							
55 54		-					, none or mest			
55	349	significant.								
56										
50 57										
58										
59										
59			For peer review	only -	http://bmiopen.	bmi.co	m/site/about/g	uidelin	es.xhtml	

IHD risk associated with high residential PM₁₀ and PM_{2.5} compared with low residential particle concentration was found to be 26% and 24% higher, respectively, among those never actively commuting; both these results were statistically significant. Among those actively commuting one or two seasons per year, IHD risk was 5% and 9% lower, respectively, while among those actively commuting more than two seasons out of four, the risk was 10% and 1% higher, respectively; none of these risks were, however, statistically significantly different from the air pollution-associated risks among the active commuters (Table 2). Overall, no statistically significant modifying effect of exercise and active commuting on the association between high particle concentration at home addresses and IHD was observed (Table3).

Excluding participants with short follow-up time did not affect the main conclusions of our study, however estimates tended to be lower for overall effect of air pollution on IHD (Supplementary file A: Table 2).

Table 3: Hazard ratios (95% CI) for IHD associated with high air pollution levels (vs low) at home address among persons with different exercise/commuting habits.

	Overall model with no interaction effects	Proportional hazard p- value ^d	Adjusted ^a HRs i	n categories of h	nigh and low par	ticle exposure		
			Never	Proportional hazard p- value ^d	≤ once/week	Proportional hazard p- value ^d	≥ twice/week	Proportional hazard p- value ^d
Low PM ₁₀ ^b	1		1		1		1	
High PM ₁₀ ^b	1.14 (0.9- 1.45)	0.55	1.21 (0.97- 1.49)	0.71	1.25 (1.01- 1.54)	0.45	0.68 (0.46- 0.998)	0.50
Low PM _{2.5} ^c	1		1		1		1	
High PM _{2.5} ¢	1.01 (0.8- 1.28)	1.10	1.16 (0.94- 1.44)	0.38	1.16 (0.95- 1.43)	0.13	0.74 (0.51- 1.09)	0.11
					Active co	ommuting		
			Non-active commuting		≤ two seasons of four	P-value	> two seasons of four	
Low PM ₁₀ ^b			1		1		1	
High PM ₁₀ ^b			1.26 (1.03- 1.54)	0.39	0.95 (0.7- 1.29)	0.66	1.10 (0.86- 1.41)	0.17
Low PM _{2.5} ^c			1		1		1	
High PM _{2.5} c			1.24 (1.02- 1.51)	0.11	0.91 (0.67- 1.24)	0.84	1.01 (0.79- 1.29)	0.04

^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, active commuting

^bLow PM₁₀: ≤9.6 μg/m³; High PM₁₀: >9.6 μg/m³

^cLow PM_{2.5} ≤5.7 μ g/m³; High PM_{2.5}: >5.7 μ g/m³

^d p-value of the Schoenfeld residual test of proportional hazards

Page 13 of 21

BMJ Open

385 4 Discussion

Overall, we found increased risk of first incident IHD associated with air pollution at the home address but a protective effect of physical activity. A statistically significant beneficial effect of exercise was found among individuals with high PM10/PM2.5, but not among individuals with low levels. Also, for active commuting the benefits were greater among individuals with high residential particle concentrations, but these differences were not statistically significant. Air pollution concentration-associated risks were found among individuals who exercise at most once a week but not among individuals exercising at least twice a week. Statistically significantly increased risks were also found among non-active commuters. These risks were, however, not statistically significantly different from air pollution-associated risks among the active commuters.

Our findings are in accordance with a longitudinal cohort study on MI within the Danish Diet, Cancer, and Health cohort which found an increased benefit of participation in sports among individuals with high NO₂ concentration at the home addresses [16]. The reported risk reduction was 9, 15, and 24% respectively among individuals with low (<14.3 μ g/m3), medium (14.3-21 μ g/m3) and high (>21 μ g/m3) residential NO₂ concentration. For walking and cycling they also estimated greater risk reductions for first incident MI among individuals with higher air pollution concentrations. In the same Danish cohort, the long term benefits of physical activity on CVD mortality were also found to be greater among individuals with high residential NO_2 [23]. The risk reduction associated with participation in cycling and gardening among individuals exposed to high residential NO₂ (\geq 19 µg/m3) was greater than those exposed to moderate/low NO₂ concentration (<19 μ g/m3). Among participants exposed to high NO₂, the risk reduction for cycling and gardening was 30% and 23%, respectively, whereas among participants exposed to low NO₂, risk reduction was 17% and 15%, respectively. However, the interaction effects in these two studies were not statistically significant.

Opposite findings were observed for the modifying effect of physical activity on the association between air pollution and the incidence of diabetes [15]. Among the participants in the Danish cohort, the risk of developing diabetes increased by 10% per interquartile range of 4.9 mg/m³ residential NO₂ among physically active individuals, but there was no difference among less physically active individuals. The authors considered that this may be due to an additive rather multiplicative interaction, thus resulting in an increased risk estimate only among physical active individuals with a low risk of developing diabetes.

415
 416 As inflammation is a causative mechanism for cardiovascular disease, we hypothesized that the anti 417 inflammatory effects of physical activity may reduce air pollution-associated risks since inflammation is
 418 one among several different pathways for the harmful health effects of air pollution. The findings of
 419 greater benefits of physical activity among individuals with higher air pollution exposure for incident IHD

risk in our study and incident MI and CVD mortality in the Danish cohort, support such a hypothesis. However, a study on physical activity and white blood cell counts conducted in a large cohort of Taiwanese adults suggested no effect modification by residential air pollution measured as $PM_{2.5}$ [17]. Both physical activity and residential air pollution were, however, found to be associated with an inflammatory response assessed by white blood cell counts. However, the association between physical activity and white blood cell count is variable because exercise also causes a transient increase in white blood cell count which usually normalises within 24 hours [24]. The results of our study cannot be directly compared with the above mentioned studies due to the difference in pollutants [15,16,23] and health outcomes [15,16,23]. This study contributes with air pollution effect estimates on IHD incidence in a population with a relatively low level of air pollution concentrations. Compared with the previous cohort studies on interaction effects between air pollution and physical activity, the annual mean PM₂₅ concentration was 3-4 times lower. The annual mean in the Taiwanese cohort was 27 µg/m3 and a recent study within the same population as the DHC-cohort studies reported 18 µg/m3. Even at these lower levels of air pollution an increased risk associated with air pollution exposure was found, however not among those who exercised at least twice a week. Even though active commuting may result in higher air pollution exposure compared with for instance driving a car to work, the risk of an IHD event was still reduced since the benefit of the physical activity was greater than the IHD risk imposed by the air pollution exposure. A major strength of our study is the air pollution particle concentration exposure data since particles are considered to be the causal component of air pollution [25]. The study used individual time varying exposures of annual mean concentrations during follow-up based on population address registries. The dispersion model used for modelling of particle concentrations has previously been validated [19]. Within the DHC studies NO_2 was used as a proxy for traffic generated air pollution and was assessed only at residential addresses at the year of recruitment or as an annual mean during follow-up. A limitation of our exposure data is that the statistical power only allowed for two exposure categories and therefore no exposure-response assessment was performed. Another strength of our study is the prospective design, the long follow-up period, the large cohort size and the availability of baseline data on several important confounders. A limitation is the lack of information on the intensity and duration of physical activity and therefore only frequency of exercise could be considered. The study also lacked information on changes in physical activity and other life-style factors during follow-up as the information was only retrieved at baseline. There is a risk of reverse causation if individuals at their baseline examination had a low physical activity level due to poorer health. Individuals could for instance have diseases that affect their risk to later in life have an IHD event (such as diabetes) prior to baseline examination. If this prior disease also affected the frequency the individual exercised in training clothes, or mode of commuting, then a reverse causation between physical activity and IHD risk may occur. Individuals with a prior IHD event at baseline were however excluded. Furthermore, we lacked information on whether exercise is taking place outdoors or indoors. For active commuters we also lack air pollution exposure calculations during the commute. This would cause exposure misclassification among active commuters with a higher in-traffic air pollution exposure dose compared with non-active commuters, causing a possible bias to the null. This would also occur if individuals chose not to exercise outside during times with high air pollution exposure.

5 Conclusion

The study estimated that exercise reduced the risk of first incident IHD, but only among individuals with higher residential particle concentrations (above median). Similarly, the harmful air pollution effect on IHD was only found among those who exercised less. Our results reinforce the public health message that physical activity is beneficial for cardiovascular health and thus support the adoption of strategies to improve health through promotion of physical activity and mitigation of air pollution. Further studies are needed to build on the evidence of physical activity and air pollution interactions on the incidence cardiovascular disease. Air pollution exposures during commuting should also be considered in these studies.

Author's contributions: All the authors contributed to the study conception and design. W.R. and J.N.S. analysed the data. W.R wrote the first draft of the manuscript. B.F., B.K. and J.N.S. critically revised the manuscript for important intellectual content. All authors read and approved the final version of the manuscript.

Funding: The study was funded by FORTE (Forskingsrådet för hälsa, arbetsliv och välfärd) [grant number 2012-1296], a Swedish state agency that finances scientific research in health, welfare, and working life, and by grants from Folksam research foundation and the Swedish state under the agreement between the Swedish government and the county councils (ALF) awarded B F [grant number: VLL-645781].

- Competing interests: None.
- Participants consent: Obtained.

Ethics approval: The study was approved by the Regional Ethics Review Board at Umea University (DNR: 2014-136-32M and 2015/16-310).

Data availability: No additional data is available

491 6 References

4 5	491	U	hereitenees
6			
7	492		
8	493	1	Lelieveld J, Klingmüller K, Pozzer A, et al. Cardiovascular disease burden from ambient air
9	494		pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J Published Online
10	495		First: 2019. doi:10.1093/eurheartj/ehz135
11	100	2	
12 13	496	2	Shrivastava AK, Singh HV, Raizada A, <i>et al.</i> C-reactive protein, inflammation and coronary heart
14	497		disease. Egypt. Hear. J. 2015. doi:10.1016/j.ehj.2014.11.005
15	498	3	Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of
16	499		disease attributable to ambient air pollution: an analysis of data from the Global Burden of
17	500		Diseases Study 2015. Lancet Published Online First: 2017. doi:10.1016/S0140-6736(17)30505-6
18 19	501	4	Münzel T, Gori T, Al-Kindi S, et al. Effects of gaseous and solid constituents of air pollution on
20	501	4	endothelial function. Eur. Heart J. 2018. doi:10.1093/eurheartj/ehy481
21	502		
22	503	5	Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular
23	504		disease: An update to the scientific statement from the American Heart Association. Circulation
24 25	505		Published Online First: 2010. doi:10.1161/CIR.0b013e3181dbece1
25 26	506	6	Stevens G. Global Health Risks: Mortality and burden of disease attributable to selected major
27	507	Ŭ	risks. World Heal. Organ. 2009; 87 :646–646. doi:10.2471/BLT.09.070565
28			
29	508	7	Lee I, Shiroma EJ, Lobelo F, et al. Impact of Physical Inactivity on the World's Major Non-
30	509		Communicable Diseases. Lancet Published Online First: 2012. doi:10.1016/S0140-6736(12)61031-
31 32	510		9
33	511	8	Nimmo MA, Leggate M, Viana JL, et al. The effect of physical activity on mediators of
34	512		inflammation. Diabetes, Obes. Metab. 2013. doi:10.1111/dom.12156
35	540	0	
36	513	9	Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. <i>J Appl Physiol</i> Published
37 38	514		Online First: 2005. doi:10.1152/japplphysiol.00164.2004
30 39	515	10	Rajé F, Tight M, Pope FD. Traffic pollution: A search for solutions for a city like Nairobi. Cities
40	516		Published Online First: 2018. doi:10.1016/j.cities.2018.05.008
41	E17	11	Boias Buoda D. Do Nazollo A. Toividó O. et al. Health impact assessment of increasing public
42	517 518	11	Rojas-Rueda D, De Nazelle A, Teixidó O, <i>et al</i> . Health impact assessment of increasing public transport and cycling use in Barcelona: a morbidity and burden of disease approach. <i>Prev Med</i>
43 44	519		(Baltim) 2013; 57 :573–9.
44 45	515		(Bullin) 2013; 3 7:373-3.
46	520	12	Maizlish N, Woodcock J, Co S, et al. Health cobenefits and transportation-related reductions in
47	521		greenhouse gas emissions in the San Francisco Bay area. Am J Public Health 2013; 103 :703–9.
48	522	13	Tainio M, de Nazelle AJ, Götschi T, <i>et al.</i> Can air pollution negate the health benefits of cycling
49	523	10	and walking? <i>Prev Med (Baltim)</i> Published Online First: 2015. doi:10.1016/j.ypmed.2016.02.002
50 51	525		
52	524	14	Giles L V., Koehle MS. The health effects of exercising in air pollution. Sport. Med. 2014.
53	525		doi:10.1007/s40279-013-0108-z
54	526	15	Andersen ZJ, Raaschou-Nielsen O, Ketzel M, et al. Diabetes incidence and long-term exposure to
55	527		air pollution: A cohort study. <i>Diabetes Care</i> Published Online First: 2012. doi:10.2337/dc11-1155
56 57			· · · · · · · · · · · · · · · · · · ·
57 58			
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 21

60

BMJ Open

		10
528 529 530 531	16	Kubesch NJ, Jørgensen JT, Hoffmann B, <i>et al.</i> Effects of leisure-time and transport-related physical activities on the risk of incident and recurrent myocardial infarction and interaction with traffic-related air pollution: A cohort study. <i>J Am Heart Assoc</i> Published Online First: 2018. doi:10.1161/JAHA.118.009554
532 533 534	17	Zhang Z, Hoek G, Chang L yun, <i>et al.</i> Particulate matter air pollution, physical activity and systemic inflammation in Taiwanese adults. <i>Int J Hyg Environ Health</i> Published Online First: 2018. doi:10.1016/j.ijheh.2017.10.001
535 536 537	18	Norberg M, Wall S, Boman K, <i>et al</i> . The Västerbotten Intervention Programme: background, design and implications. <i>Glob Health Action</i> Published Online First: 2010. doi:10.3402/gha.v3i0.4643
538 539 540	19	Segersson D, Eneroth K, Gidhagen L, <i>et al.</i> Health impact of PM10, PM2.5 and black carbon exposure due to different source sectors in Stockholm, Gothenburg and Umea, Sweden. <i>Int J Environ Res Public Health</i> Published Online First: 2017. doi:10.3390/ijerph14070742
541 542	20	Hausberger S, Rexeis M, Zallinger M, <i>et al.</i> Emission Factors from the Model PHEM for the HBEFA Version 3. 2009.
543 544 545	21	Omstedt G, Bringfelt B, Johansson C. A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. <i>Atmos Environ</i> Published Online First: 2005. doi:10.1016/j.atmosenv.2005.06.037
546 547	22	SMHI. Airviro technical specification, appendix E. 2010. http://www.smhi.se/airviro/2.867/specification/
548 549 550	23	Andersen ZJ, de Nazelle A, Mendez MA, <i>et al</i> . A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: The Danish Diet, Cancer, and Health Cohort. <i>Environ Health Perspect</i> 2015.
551	24	Abramson N, Melton B. Leukocytosis: Basics of clinical assessment. Am. Fam. Physician. 2000.
552 553	25	World Health Organization. Review of evidence on health aspects of air pollution – REVIHAAP Project: Technical Report. 2013. doi:10.1007/BF00379640
554 555		
	529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 546 547 548 549 550 551 551 552 553	529 17 532 17 533 18 535 18 536 19 537 20 541 20 542 21 543 21 544 21 545 22 546 22 547 24 550 24 551 24 552 25 554 25

A: Sensitivity analysis by excluding the individuals with follow-up time below the 25th percentile

Table 1. Hazard ratios (95% CI) for IHD associated with different exercise and commuting habits among persons with
different air pollution exposure at home addresses.

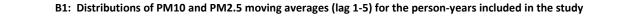
Exercise in training clothes	Overall model with no interaction effects	Adjusted ^a HRs in cate particle exposure	gories of high and low	Adjusted ^a interaction hazard ratio
		Low PM ₁₀ b	High PM ₁₀ b	Benefits of exercise/commuting comparing high and low particle exposure
Never	1	1	1	
≤ once/week	1.00 (0.84-1.19)	1.01 (0.84-1.21)	1.02 (0.85-1.23)	1.02 (0.79-1.31)
≥ twice/week	0.88 (0.76-1.02)	1.0 (0.77-1.31)	0.48 (0.34-0.7)	0.48 (0.31-0.76)
		Low PM2.5 ^c	High PM2.5 ^c	
Never		1	1	
≤ once/week		1.01 (0.84-1.21)	1.02 (0.85-1.23)	1.01 (0.78-1.31)
≥ twice/week		0.95 (0.72-1.24)	0.53 (0.37-0.75)	0.56 (0.36-0.87)
Active commuting per season	~	Low PM10 ^b	High PM10 ^b	
Non-active commuting	1	1	1	
≤ two seasons of four	1.02 (0.89-1.16)	1.16 (0.92-1.46)	0.85 (0.66-1.09)	0.73 (0.52-1.03)
> two seasons of four	0.74 (0.6-0.92)	0.91 (0.74-1.12)	0.83 (0.68-1.02)	0.91 (0.69-1.2)
		Low PM2.5 ^c	High PM2.5 ^c	
Non-active commuting		1	1	
≤ two seasons of four		1.18 (0.93-1.48)	0.84 (0.65-1.08)	0.70 (0.50-0.98)
> two seasons of four		0.98 (0.80-1.2)	0.79 (0.64-0.96)	0.82 (0.62-1.09)

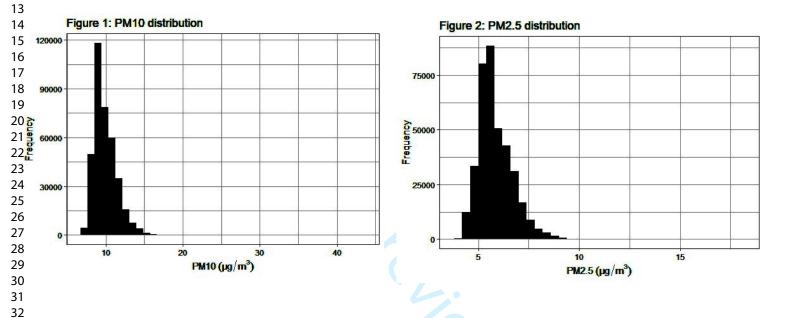
^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, active commuting

 $^{\rm b}$ Low PM₁₀: ≤9.6 µg/m³; High PM₁₀: >9.6 µg/m³

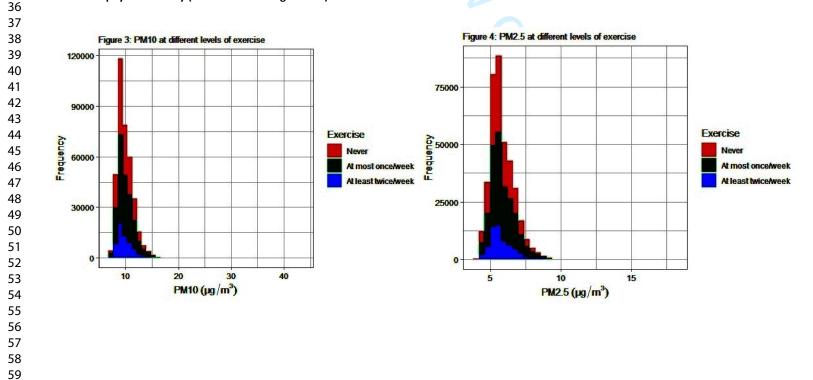
^cLow PM_{2.5} ≤5.7 μg/m³; High PM_{2.5}: >5.7 μg/m³

Table 2. Hazard ratios (95% CI) for IHD associated with high air pollution levels (vs low) at home address among persons with different exercise/commuting habits.


	Overall model with	Adjusted ^a H	Rs in different exercise	categories
	No interaction effects			
	Exercise in training clothes			S
		Never	≤ once/week	≥ twice/week
Low PM ₁₀ ^b	1	1	1	1
High PM10 ^b	1.22 (0.96-1.56)	1.25 (1.0-1.56)	1.27 (1.03-1.58)	0.61 (0.40-0.93)
Low PM _{2.5} ^c	1	1	1	1
High PM _{2.5} ^c	0.95 (0.74-1.21)	1.15 (0.92-1.43)	1.16 (0.94-1.44)	0.64 (0.42-0.97)
			Active commuting	
		Non-active commuting	≤ two seasons of four	> two seasons of four
Low PM ₁₀ ^b		1	1	1
High PM ₁₀ ^b		1.28 (1.04-1.57)	0.94 (0.68-1.29)	1.16 (0.9-1.5)
Low PM _{2.5} ^c		1	1	1
High PM _{2.5} ^c		1.23 (1.0-1.51)	0.88 (0.64-1.21)	0.99 (0.76-1.27)


^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, active commuting

^bLow PM₁₀: ≤9.6 μg/m³; High PM₁₀: >9.6 μg/m³


^cLow PM_{2.5} ≤5.7 μg/m³; High PM_{2.5}: >5.7 μg/m³

BMJ Open

B2: Distributions of PM10 and PM2.5 moving averages (lag 1-5) for the person-years included in the study at different levels of physical activity (exercise in training clothes).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 <tr <="" th=""><th></th></tr> <tr><td>55 56</td><td></td></tr> <tr><th>57 58 59</th><th></th></tr> <tr><td>60</td><td>For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml</td></tr>		55 56		57 58 59		60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
55 56							
57 58 59							
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	5
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	5
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	8
		(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	7
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8-11
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9, 11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12-13
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	14
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Air pollution, physical activity and ischemic heart disease -A prospective cohort study of interaction effects

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040912.R2
Article Type:	Original research
Date Submitted by the Author:	21-Mar-2021
Complete List of Authors:	Raza, Wasif; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable Health Krachler, Benno; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable Health Forsberg, Bertil; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable health Sommar, Johan; Umeå Universitet Medicinska fakulteten, Public Health and Clinical Medicine, Sustainable health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	Ischaemic heart disease < CARDIOLOGY, PUBLIC HEALTH, Coronary heart disease < CARDIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Air pollution, physical activity and ischemic heart disease - A prospective cohort study of interaction effects

Wasif Raza ^{1,*}, Benno Krachler ¹, Bertil Forsberg ¹ and Johan Nilsson Sommar ¹

¹ Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Sweden; <u>wasif.raza@umu.se</u> (W.R.); <u>benno.krachler@umu.se</u> (B.K.); <u>bertil.forsberg@umu.se</u> (B.F.); <u>johan.sommar@umu.se</u> (J.N.S.)

to beet teries only

* Correspondence: <u>wasif.raza@umu.se</u> ; Tel.: +46-72-289-5144

1		-
2		
3 4		
5 6	30	
7 8	31	Abstract
9	32	Objective: To assess a possible interaction effect between physical activity and air pollution on first
10 11	33	incidence of ischemic heart disease (IHD).
12 13	34	Design: Prospective cohort study
14 15	35	Setting: Umeå, Northern Sweden
16 17	36	Participants: We studied 34,748 adult participants of Västerbotten Intervention Programme cohort
18	37	from 1990 to January 2014. Annual particulate matter concentrations (PM _{2.5} and PM ₁₀) at the
19	38	participants' residential addresses were modelled and a questionnaire on frequency of exercise and
20	39	active commuting was completed at baseline. Cox proportional hazards modelling was used to estimate
21 22	40	1) association with physical activity at different levels of air pollution, and 2) the association with
22	41	particulate matter at different levels of physical activity.
24		·
25	42	Outcome: First incidence of IHD.
26	40	
27 28	43	Results: Over a mean follow-up of 12.4 years, there were 1,148 IHD cases. Overall, we observed an
20 29	44	increased risk of IHD among individuals with higher concentrations of particles at their home address.
30	45	Exercise at least twice a week was associated with a lower risk of IHD among participants with high
31	46	residential $PM_{2.5}$ (0.60; 95% CI: 0.44-0.82) and PM_{10} (0.55; 95% CI: 0.4-0.76). The same beneficial effect
32	47	was not observed with low residential PM _{2.5} (0.94; 95% CI: 0.72-1.22) and PM ₁₀ (0.99; 95% CI: 0.76-1.29).
33 34	48	An increased risk associated with higher long-term exposure to particles was only observed among
34 35	49	participants never exercising in training clothes and among those not performing any active commuting.
36	50	However, only the interaction effect on hazard ratios for exercise was statistically significant.
37	51	Conclusion: Exercise was associated with a lower risk of first incidence of IHD among individuals with
38	52	higher residential particle concentrations. An air pollution-associated risk was only observed among
39 40	53	those who exercised less. The findings support the promotion of physical activity and a mitigation of air
40	55 54	pollution.
42	54	
43	55	
44		
45 46	56	Key Words: Air pollution, $PM_{2.5}$, PM_{10} , exercise, interaction, ischemic heart disease
47	57	
48	58	
49		
50	59	
51 52	60	
53	00	
54	61	
55	67	
56	62	
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Strengths and limitations of this study This study simultaneously evaluated the impact of physical activity and air pollution and their • interaction on first incident IHD cases in a population with relatively low level of air pollution concentrations. For air pollution exposure, this study used individual time varying exposures of annual mean concentrations during follow-up based on population address registries. Another strength is the prospective design and the availability of baseline data on several • important confounders. No exposure-response assessment could be performed since the statistical power only allowed for the formation of two exposure categories. Differences in air pollution exposure during active commuting might cause biased estimates due to exposure misclassification.

104 1 Introduction

Cardiovascular disease (CVD) is the most important cause of morbidity and premature mortality worldwide, accounting for 422.3 million cases and 17.92 million deaths in 2015 [1]. There is solid evidence that inflammation is a key upstream pathogenic mechanism [2]. Ambient air pollution, generally comprising ozone, sulphur dioxide, nitrogen dioxide and particulate matter (PM), is a leading contributor to the global burden of disease and an important risk factor for morbidity and mortality. Particulate matter is often measured as PM_{2.5}, to represent particles with a diameter of 2.5 micrometres or less, and PM_{10} , to represent particles with a diameter of 10 micrometres or less. Ambient PM_{25} exposure alone has been estimated to account for 4.2 million deaths in 2015, of which 1.5 million deaths were caused by ischemic heart diseases (IHD) [3]. The underlying mechanisms mediating the pathogenic impact of air pollution involve systemic oxidative stress and inflammation [4,5]. Physical activity is a salutogenic factor in numerous non-communicable chronic diseases (NCDs), with physical inactivity being responsible for 6% of the burden of disease from coronary heart disease [6,7]. The beneficial effects of physical activity include protection against low-grade inflammation by releasing anti-inflammatory substances, such as interleukin 6, from contracting muscles [8,9]. Rapid urbanization and increased use of motorized transport contribute to modern day problems such as traffic congestion, traffic related air pollution and lack of physical activity. Promotion of active transportation by changing mode of transport from car to cycling and walking are among the different strategies used to tackle these challenges [10–12]. As inflammation is a causative mechanism for cardiovascular disease, it is conceivable that the anti-inflammatory effects of physical activity may mitigate the harmful effects associated with exposure to air pollution. However, one major concern with physical activity in a polluted environment is the increased inhalation of particles due to an increase in respiratory volume that may counteract the beneficial effects of physical activity [13,14]. The long-term effects of air pollution among individuals with different levels of leisure time physical activity have been estimated within the Danish Diet, Cancer, and Health cohort. The incidence of diabetes was assessed in relation to leisure time physical activity and nitrogen dioxide (NO_2) concentration at the home address. Residential NO₂ was found to be associated with increased incidence of diabetes, but only among physically active individuals [15]. As far as we know, only one study has examined the modifying effect of air pollution on the association between physical activity and cardiovascular disease. In their recent study, Kubesch and colleagues conclude that physical activity reduced the risk of first incidence of myocardial infarction (MI) and recurrent MI among individuals with high NO_2 concentration at the residential addresses [16]. As only one pollutant (NO_2) and only one cardiovascular outcome (MI) have been studied, the knowledge of a possible interaction between air pollution and physical activity on CVD is inconclusive. A Taiwanese study found an independent inverse association of habitual physical activity with inflammation across different levels of PM_{2.5} exposure, although long term exposure was associated with increased inflammation at all levels of physical activity [17]. We therefore aimed to examine interaction effects between physical activity and long-term exposure to $PM_{2.5}$ and PM_{10} at residential addresses on the incidence of ischemic heart disease (IHD). We wanted to assess: 1) whether air pollution modifies the beneficial effects of physical activity on IHD, and 2) whether physical activity modifies the harmful effects of air pollution on IHD.

2 Methods

To determine the interaction effect between air pollution and physical activity on IHD incidence, we combined cohort data which comprised risk factors for IHD, national registry data on IHD incidence from the Swedish National Board of Health and Welfare, and yearly annual mean air pollution particle concentrations at the individuals' residential addresses using dispersion models from the Swedish Clean Air and Climate Research Program (SCAC).

VIP (Västerbotten Intervention Programme) is a population based screening and prospective cohort study, developed to reduce the risk of future CVD and diabetes by promoting a healthy lifestyle among individuals living in the Västerbotten region. The SCAC developed methods to estimate exposure to source-specific particulate matter such as PM_{2.5} and PM₁₀ and at residential addresses in Gothenburg, Stockholm and Umeå.

2.1 Study population

VIP is an ongoing population-based health investigation survey of all individuals at ages 40, 50 or 60 years, depending upon risk factors, living in the Västerbotten region, who are invited to participate in systematic risk factor screening and individual counselling about healthy lifestyle habits. A detailed description of VIP has been presented elsewhere [18]. Between 1990 and 2014, a total of 42,488 of the VIP participants that lived in Umeå Municipality during the study period were included in the analysis. After exclusion of 7,740 participants with missing information on exercise, the study sample thus consisted of 34,748 individuals, 53% men and 47% women, 40-60 years of age at baseline examination, with no previous history of IHD at time of enrolment. After exclusion of individuals with missing information on included confounders the final number of included individuals were 31424 and 29218 for the analyses of exercise in training clothes and active commuting, respectively. All participants in the VIP gave their informed written consent, and the study was approved by the Regional Ethics Review Board at Umea University (DNR: 2014-136-32M and 2015/16-31Ö).

2.2 Leisure time exercise and active commuting

The VIP questionnaire includes various self-reported information on physical activity including frequency of leisure time physical activity and active commuting (cycling or walking to and from work). The association with IHD was assessed in relation to frequency of exercise in training clothes and amounts of active commuting. Exercise during the previous three months was categorized as never, rarely, once per week, 2-3 times per week or more than 3 times per week. Based on this information, participants were categorized as "Twice per week or more" if they exercised with a frequency of 2-3 times per week and more, "At most once a week" if they exercised rarely or once per week, and "Never" if no activity was performed. For active commuting, participants were asked about their mode of transport to work each season. Participants were classified in three categories: "Non- active commuting" if commuting every season by car or bus, "At most two seasons out of four" if cycling or walking at most half a year and "More than two seasons out of four", if cycling and walking more than half a year.

2.3 Covariates

The VIP questionnaire also gathered information on participants' educational status, occupation, smoking, alcohol intake and economic status. Education was defined according to the International Standard Classification of Education (ISCED), United Nations Educational, Scientific and Cultural Organization (UNESCO) 1997. Participants were asked about the highest level education they had achieved with eight predefined categories ranging from "pre-school" to "university education." Alcohol intake was assessed by the reported frequency of consumption with answering options that ranged from "Never" to "2-4 times/week." Information on smoking was gathered by using the question, "How often do you smoke?" Information on occupational status was obtained with a question, "What kind of job do you have nowadays?" with the answering options of eight predefined categories. Finally, information on occupation status was asked with the question, "What is your current occupation?" with 8 categories ranging from permanently employed to retired.

2.4 Air pollution concentrations

Annual mean total concentrations of PM_{2.5} and PM₁₀ for the years 1990-2011 (and thereafter linearly extrapolated up until year 2014) were obtained from the SCAC research program, described in detail elsewhere [19]. Briefly, concentrations of $PM_{2.5}$ and PM_{10} were estimated within SCAC by applying dispersion models on local or regional emission inventories. These emission inventories contain detailed information on emissions from different source categories, such as road traffic exhaust, road traffic non-exhaust, domestic heating, shipping and industrial activities. For Umeå, inventories were validated through monitoring for consistency. Emissions from small-scale residential heating were assessed using registry data from chimney sweepers that included the type of wood stove or boiler. The addresses of these residences were geocoded using the geographical centre coordinate of the estate. Road traffic emission factors for PM exhaust for different vehicle types, speeds and driving conditions were calculated based on the Handbook Emission Factors for Road Transport (HBEFA) version 3.1 [20]. Estimates for non-exhaust contribution from brake and tire wear were based on Omstedt et al. [21]. The annual average emission from shipping was used in the modelling on a 1x1 km² grid resolution. The emissions from other sources such as industrial processes, off-road machinery and agriculture was collected from Swedish Meteorological and Hydrological Institute (SMHI). To obtain annual average emissions of PM_{2.5} and PM₁₀, Gaussian models included in the Airviro air quality management system (SMHI, 2010) were used for simulation based on hourly meteorological data for 1990, 2000 and 2011 [22]. The comparison between measured and modelled $PM_{2.5}$ and PM_{10} agreed well at most monitoring stations (r²=0.87 and r²=0.65, respectively).

2.5 Outcome

We linked the records in VIP and through the unique Swedish personal identification number with data on first IHD event cases from the National Patient Register and the Cause of Death Register, both at the National Board of Health and Welfare, using primary discharge diagnoses for IHD according to International Classification of Diseases, 10th revision (ICD-10): code I20-125.

7

1 2		
2 3	226	2.C. Detient and mublic involvement
4	236	2.6 Patient and public involvement
5	237	
6 7	238	No patients were involved in this study.
8 9	239 240	
10 11	241	2.7 Statistical Analysis
12 13	242	
14	243	We performed survival analyses using Cox regression proportion hazard model to estimate hazard ratios
15	244	(HRs), and 95% confidence intervals (CIs), to estimate 1) the association between first incident IHD and
16	245	air pollution exposure at different levels of physical activity and 2) the association between first incident
17	246	IHD and physical activity at different levels of air pollution exposure. Age was used as the underlying
18	247	timescale since it is a stronger confounder than calendar time. Follow-up started at date of recruitment
19	248	to the cohort and ended with the earliest of the date of first IHD case, emigration, death, or 31
20	249	December 2013. Interaction between physical activity and air pollution and their impact on IHD was
21 22	250	studied by introducing an interaction term into the model. Residential annual mean particle
22	251	concentrations were used to calculate moving averages over the recent five years which were thereafter
24	252	categorized as below or above the median concentration for $PM_{2.5}$ and PM10, respectively. Sensitivity
25	253	analyses were also performed with PM concentrations categorized by tertiles. Interaction with physical
26	254	activity was assessed based on 1) the frequency of exercise in training clothes and 2) the number of
27	255	seasons the individual walked or cycled to work. Active commuting by walking or cycling was
28	256	categorized into three groups: non-active commuters, active commuters at most half of the year (up to
29	257	two out of four seasons), active commuters more than half a year (more than two out of four seasons).
30	258	Estimates were adjusted for a pre-specified set of covariates: calendar year as a penalized cubic spline
31	259	with 3 degrees of freedom, gender (male vs female), highest education level (compulsory, high school,
32 33	260	university), alcohol intake (never, once/month or sometimes, 2-4 times/month, 2-3 times/week, ≥4
33 34	261	times/week), smoking (previous non-regular smoker, non-regular smoker, cigarette smoker, cigar or
35	262	pipe smoker), occupation (gainfully employed, unemployed, not gainfully employed, retired), and
36	263	registry data on area level mean income year 1994. In the basic model we adjusted only for gender and
37	264	exposure year. All analyses were performed using R version 3.4.2, and the statistical inference was
38	265	conducted with a 5% significance level. T-tests, global analysis of variance tests (ANOVA) and chi-square
39	265	tests were used to test for differences in means and proportions of covariates between categories of
40	267	exercise in training clothes (Table 1). The Schoenfeld residuals test was used to assess the assumption of
41	268	proportional hazards. A sensitivity analysis was conducted by excluding participants with follow-up time
42 43	269	below the 25th percentile.
43 44	209	below the 25th percentile.
45	270	
46		
47	271	3 Results
48	272	
49 50	272	The many and structure the this school uses 45.0 years, Among the 24.740 participants 1.140 second
50 51	273	The mean age at recruitment to this cohort was 45.8 years. Among the 34,748 participants 1,148 cases
52	274 275	of IHD were identified during a mean follow-up time of 12.4 years. Of those cases, 500 never exercised,
53	275	529 exercised at most once a week and 119 exercised at least twice a week. Table 1 summarizes
54	276	characteristics of participants according to different levels of leisure time physical activity. Participants
55	277	not reporting any leisure time exercise were older and more likely to be male, non-commuters and to
56	278	belong to a lower socioeconomic group. Subjects performing moderate to high-level physical activity,
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
50		

1 2 3		
4 5 6 7 8	279 280 281 282 283	were more likely to be women, non-smokers, and active commuters. The 5-year means of PM ₁₀ and PM _{2.5} concentrations were different between leisure time physical activity categories, with at most 7 and 6% difference respectively for PM ₁₀ and PM _{2.5} (with distributions presented in Supplemental material A: Figures 1-4).
9 10 11 12	284 285 286 287 288	
13 14 15 16 17	289 290 291	
18 19 20 21		
22 23 24 25		
26 27 28 29 30		
31 32 33 34		
35 36 37 38		
39 40 41 42 43		
43 44 45 46 47		
48 49 50 51		
52 53 54 55		
56 57 58 59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xntmi

Table 1: Characteristics of participants at different levels of exercise	in training clothes at baseline
--	---------------------------------

Characteristics	Never	At most once a week	Twice per week or more	р	
Exercise in training clothes n (%)	13043 (37.5)	14994 (43.2)	6711 (19.3)		
PM ₁₀ , μg/m³ (mean (SD))	10.93 (2.00)	11.06 (1.96)	10.39 (1.94)	<0.001	
PM _{2.5,} μg/m ³ (mean (SD))	6.41 (1.12)	6.49 (1.12)	6.11 (1.11)	<0.001	
Frequency of active commuting (%)				<0.001	
Non-active commuting	6369 (48.8)	6409 (42.7)	2666 (39.7)		
At most two seasons of four	1806 (13.8)	2547 (17.0)	1037 (15.5)		
More than two seasons of four	3506 (26.9)	4976 (33.2)	2555 (38.1)		
Missing	1362 (10.4)	1062 (7.1)	453 (6.8)		
Alcohol intake (%)				<0.001	
Never	135 (1.0)	120 (0.8)	79 (1.2)		
Once/month or sometimes	5337 (40.9)	5950 (39.7)	2790 (41.6)		
2-4 times/month	2000 (15.3)	2436 (16.2)	1061 (15.8)		
2-3 times/week	97 (0.7)	93 (0.6)	54 (0.8)		
≥ 4 times/week	5068 (38.9)	5861 (39.1)	2265 (33.8)		
Missing	406 (3.1)	534 (3.6)	462 (6.9)		
Smoking (%)				<0.001	
Never smoker	5139 (39.4)	7240 (48.3)	3467 (51.7)		
Previous non-regular smoker	1072 (8.2)	1458 (9.7)	711 (10.6)		
Non-regular smoker	581 (4.5)	807 (5.4)	348 (5.2)		
Previous regular smoker	2729 (20.9)	2865 (19.1)	1201 (17.9)		
Cigarette smoker	2789 (21.4)	1805 (12.0)	426 (6.3)		
Cigar or pipe smoker	186 (1.4)	130 (0.9)	45 (0.7)		
Missing	547 (4.2)	689 (4.6)	513 (7.6)		
Highest education level (%)				<0.001	
Compulsory	5534 (42.4)	4319 (28.8)	1369 (20.4)		
High	3573 (27.4)	4116 (27.5)	1951 (29.1)		
University	3449 (26.4)	5933 (39.6)	2911 (43.4)		
Missing	487 (3.7)	626 (4.2)	480 (7.2)		
Gender %, (men)	7072 (54.2)	8036 (53.6)	3274 (48.8)	<0.001	
Age, y (mean (SD))	47.3 (9.1)	45.3 (9.0)	44.3 (8.6)	<0.001	
Occupation (%)	<0.001				
Gainfully employed	10536 (80.8)	12690 (84.6)	5452 (81.2)		
Unemployed	478 (3.7)	382 (2.5)	174 (2.6)		
Not gainfully employed	318 (2.4)	352 (2.3)	160 (2.4)		
Retired	673 (5.2)	449 (3.0)	194 (2.9)		
Missing	1038 (8.0)	1121 (7.5)	731 (10.9)		
Mean income for the neighbourhood (SEK*) (mean (SD))	128286 (23018)	130332 (23875)	130222 (24606)	<0.001	

*SEK=Swedish krona

Page 11 of 25

BMJ Open

2		
3	298	Compared with individuals who reported no exercise, those participants that exercised at least twice per
4 5	299	week had a 24% lower risk of IHD (Table 2). The corresponding overall estimate associated with active
6	300	commuting was a 13% reduced risk of IHD among individuals commuting more than two seasons per
7	301	year.
8		
9	302	Allowing for an interaction between the frequency of exercise in training clothes and particle
10	303	concentrations (PM_{10} and $PM_{2.5}$) at the home address, the average 24% risk reduction from exercising at
11		

least twice per week was found to be driven by statistically significant interaction between exercise and particle exposure with 45% and 40% risk reduction among individuals with high PM₁₀ and PM₂₅ concentrations, respectively (table 2). The interaction coefficients estimating the additional benefit of exercise among individuals with a high PM₁₀ concentration at their home addresses were a 3% increased risk among those who exercised at most once a week whereas a decreased risk of 44% was estimated among those who exercised at least twice a week. The corresponding estimates among those with high PM_{2.5} concentrations were a risk reduction of 0% and 36% respectively.

For active commuters with low particle exposure at their home address, the risk of incident IHD was 17% and 18% higher among those commuting one or two seasons per year and 7% and 3% lower among those commuting at least two seasons per year, for PM₁₀ and PM_{2.5} respectively. The benefit of active commuting was larger among individuals with a high particle concentration at their home address: risk reductions for active commuting during one or two seasons were 12% and 13% and for more than two seasons 18% and 21% respectively, compared with non-active commuters. No statistically significant interaction was found between active commuting and particle concentrations at the home address.

Table 2: Hazard ratios (95% CI) for IHD associated with different exercise and commuting habits among persons with
 different air pollution exposure at home addresses.

5 324 6 325

Exercise in training clothes	Overall model with no interaction effects	Prop ortio nal haza rd p ^d - value *	Adjusted ^a HRs in categories of high and low particle exposure				Adjusted ^a interaction hazard ratio	
	~		Low PM ₁₀ ^b	Prop ortio nal haza rd p- value d	High PM ₁₀ b	Prop ortio nal haza rd p- value d	Benefits of exercise/commuti ng comparing high and low particle exposure	Pi oi r hi rc va
Never	1		1		1			
≤ once/week	1.03 (0.90-1.16)	0.35	1.01 (0.84-1.21)	0.67	1.04 (0.88-1.23)	0.35	1.03 (0.81-1.32)	0
≥ twice/week	0.76 (0.62-0.93)	0.08	0.99 (0.76-1.29)	0.47	0.55 (0.40-0.76)	0.24	0.56 (0.37-0.84)	0
			Low PM _{2.5} ^c		High PM _{2.5} ^c			
Never			1		1			
≤ once/week			1.03 (0.86-1.23)	0.78	1.03 (0.87-1.22)	0.30	1.00 (0.78-1.28)	0
≥ twice/week			0.94 (0.72-1.22)	0.69	0.60 (0.44-0.82)	0.09	0.64 (0.43-0.96)	0
Active commuting per season			Low PM ₁₀ ^b		High PM ₁₀ ^b			
Non-active commuting	1		1		1			
≤ two seasons of four	1.01 (0.86-1.19)	0.50	1.17 (0.93-1.47)	0.35	0.88 (0.70-1.11)	0.70	0.76 (0.55-1.04)	0
> two seasons of four	0.87 (0.76-0.998)	0.85	0.93 (0.76-1.14)	0.48	0.82 (0.68-0.98)	0.89	0.88 (0.67-1.15)	0
			Low PM _{2.5} ^c		High PM _{2.5} ^c			
Non-active commuting			1		1			
≤ two seasons of four			1.18 (0.94-1.49)	0.43	0.87 (0.69-1.10)	0.76	0.73 (0.53-1.01)	C
> two seasons of four			0.97 (0.80-1.19)	0.37	0.79 (0.65-0.95)	0.89	0.81 (0.62-1.06)	C

327 ^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity,

328
329and active
commuting

330 ^bLow PM₁₀: ≤9.6 μg/m³; High PM₁₀: >9.6 μg/m³

331 °Low PM_{2.5} \leq 5.7 µg/m³; High PM_{2.5}: >5.7 µg/m³

332 ^d p-value of the Schoenfeld residual test of proportional hazards

Page 13 of 25

1

BMJ Open

2		
3	344	Individuals exposed to high concentrations of PM_{10} and $PM_{2.5}$ at their home address had a 14% and 1%
4 5	345	increased risk of incident IHD respectively, compared to individuals with low concentrations (Table 3).
6	346	These increased risks were, however, not statistically significant.
7 8	347	When including an interaction between particle concentrations and exercise, risk estimates showed a
9	348	positive association between air pollution and IHD among individuals performing no exercise and those
10	349	exercising no more than once a week, whereas a negative association was found among those exercising
11 12	350	more than twice a week (Table 3).
13	351	Compared with individuals with low residential particle concentration, a high concentration of PM_{10} was
14	352	associated with 21% and 25% increased risk for IHD for those who never exercised in training clothes
15 16	353	and those who exercised at most once a week, respectively, and showed a 32% decreased risk for those
17	354	exercising at least twice a week; only the association for those exercising at most once a week was
18	355	statistically significant. The corresponding estimates associated with PM _{2.5} are increased risk of IHD of
19	356	16% for those never exercising and those who exercised at most once a week, and a decreased risk of
20	357	26% among those exercising at least twice a week (Table 3); none of these associations was statistically
21	358	significant.
22	000	
23 24	359	IHD risk associated with high residential PM_{10} and $PM_{2.5}$ compared with low residential particle
25	360	concentration was found to be 26% and 24% higher, respectively, among those never actively
26	361	commuting; both these results were statistically significant. Among those actively commuting one or
27	362	two seasons per year, IHD risk was 5% and 9% lower, respectively, while among those actively
28	363	commuting more than two seasons out of four, the risk was 10% and 1% higher, respectively; none of
29	364	these risks were, however, statistically significantly different from the air pollution-associated risks
30 31	365	among the active commuters (Table 2). Overall, no statistically significant modifying effect of exercise
32	366	and active commuting on the association between high particle concentration at home addresses and
33 34	367	IHD was observed (Table 3).
35	368	Sensitivity analyses
36 37	369	Excluding participants with short follow-up time (below the 25th percentile of 3.4 years) did not affect
38	370	the main conclusions of our study, however estimates tended to be lower for overall effect of air
39 40	370	pollution on IHD (Supplementary material B: Tables 1 and 2).
41	372	Sensitivity analyses were also conducted with PM concentrations in tertiles. An indication of a dose-
42	373	response was found, with increasing benefits of exercise in training clothes with higher levels of PM
43	374	concentrations at the home address (Supplementary material C: Table 3). Exercising at least twice per
44 45	375	week (compared with never) reduced the risk of incident IHD by 5, 17, and 49% within the first, second
46	376	and third tertile of PM10 exposure, respectively. Similar risk reductions were found in relation to tertiles
47	370	of PM2.5.
48	577	
49	378	No such interaction dose-response was however found for risks associated with PM exposure. Risk
50	379	estimates associated with PM were somewhat higher among individuals that exercised once a week
51 52	380	compared those who never exercised, whereas no increased risk associated with either PM10 or PM2.5
52 53	381	was found among individuals that exercised at least twice per week (Supplementary material C: Table 4).
55 54	382	A dose-response with increasing risks for IHD were found with both PM10 and PM2.5 among those that
55	383	never exercised.
56 57	205	
57 58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

These interactions between PM concentrations and exercise at least twice per week (compared with

4 5	385	never) were statistically significant for PM10 and borderline statistically significant for PM2.5
6 7	386	(Supplementary material C: Table 5).
8	387	
9 10	388	
10		
12		
13 14		
15		
16 17		
18		
19 20		
21		
22		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
51 52		
53		
54 55		
56		
57 58		
59		Ear poor roviou only http://bmionon.hmi.com/site/shout/swidelines.uktrol
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Overall model with no interaction effects	Proportional hazard p- value ^d	Adjusted ^a HRs i	n categories of h	iigh and low par	ticle exposure		
					Exercise in tr	aining clothes		
			Never	Proportional hazard p- value ^d	≤ once/week	Proportional hazard p- value ^d	≥ twice/week	Proportiona hazard p- value ^d
Low PM ₁₀ ^b	1		1		1		1	
High PM ₁₀ ^b	1.14 (0.9- 1.45)	0.55	1.21 (0.97- 1.49)	0.71	1.25 (1.01- 1.54)	0.45	0.68 (0.46- 0.998)	0.50
Low PM _{2.5} ^c	1		1		1		1	
High PM _{2.5} c	1.01 (0.8- 1.28)	1.10	1.16 (0.94- 1.44)	0.38	1.16 (0.95- 1.43)	0.13	0.74 (0.51- 1.09)	0.11
					Active co	ommuting		
			Non-active commuting		≤ two seasons of four	P-value	> two seasons of four	
Low PM ₁₀ ^b			1		1		1	
High PM ₁₀ ^b			1.26 (1.03- 1.54)	0.39	0.95 (0.7- 1.29)	0.66	1.10 (0.86- 1.41)	0.17
Low PM _{2.5} ^c			1		1		1	
High PM _{2.5} ^c			1.24 (1.02- 1.51)	0.11	0.91 (0.67- 1.24)	0.84	1.01 (0.79- 1.29)	0.04

^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, active commuting

^bLow PM₁₀: ≤9.6 μ g/m³; High PM₁₀: >9.6 μ g/m³

^cLow $PM_{2.5} \le 5.7 \ \mu g/m^3$; High $PM_{2.5}$: >5.7 $\mu g/m^3$

^d p-value of the Schoenfeld residual test of proportional hazards

4 Discussion

Overall, we found increased risk of first incident IHD associated with air pollution at the home address but a protective effect of physical activity. A statistically significant beneficial effect of exercise was found among individuals with high PM10/PM2.5, but not among individuals with low levels. Also, for active commuting the benefits were greater among individuals with high residential particle concentrations, but these differences were not statistically significant. Air pollution concentration-associated risks were found among individuals who exercise at most once a week but not among individuals exercising at least twice a week. Statistically significantly increased risks were also found among non-active commuters. These risks were, however, not statistically significantly different from air pollution-associated risks among the active commuters.

Our findings are in accordance with a longitudinal cohort study on MI within the Danish Diet, Cancer, and Health cohort which found an increased benefit of participation in sports among individuals with high NO₂ concentration at the home addresses [16]. The reported risk reduction was 9, 15, and 24% respectively among individuals with low (<14.3 µg/m3), medium (14.3-21 µg/m3) and high (>21 µg/m3) residential NO₂ concentration. For walking and cycling they also estimated greater risk reductions for first incident MI among individuals with higher air pollution concentrations. In the same Danish cohort, the long term benefits of physical activity on CVD mortality were also found to be greater among individuals with high residential NO_2 [23]. The risk reduction associated with participation in cycling and gardening among individuals exposed to high residential NO₂ (\geq 19 µg/m3) was greater than those exposed to moderate/low NO₂ concentration (<19 μ g/m3). Among participants exposed to high NO₂, the risk reduction for cycling and gardening was 30% and 23%, respectively, whereas among participants exposed to low NO₂, risk reduction was 17% and 15%, respectively. However, the interaction effects in these two studies were not statistically significant.

Opposite findings were observed for the modifying effect of physical activity on the association between air pollution and the incidence of diabetes [15]. Among the participants in the Danish cohort, the risk of developing diabetes increased by 10% per interquartile range of 4.9 mg/m³ residential NO₂ among physically active individuals, but there was no difference among less physically active individuals. The authors considered that this may be due to an additive rather multiplicative interaction, thus resulting in an increased risk estimate only among physical active individuals with a low risk of developing diabetes.

As inflammation is a causative mechanism for cardiovascular disease, we hypothesized that the anti-inflammatory effects of physical activity may reduce air pollution-associated risks since inflammation is one among several different pathways for the harmful health effects of air pollution. The findings of greater benefits of physical activity among individuals with higher air pollution exposure for incident IHD risk in our study and incident MI and CVD mortality in the Danish cohort, support such a hypothesis. However, a study on physical activity and white blood cell counts conducted in a large cohort of Taiwanese adults suggested no effect modification by residential air pollution measured as PM_{2.5} [17]. Both physical activity and residential air pollution were, however, found to be associated with an inflammatory response assessed by white blood cell counts. However, the association between physical activity and white blood cell count is variable because exercise also causes a transient increase in white blood cell count which usually normalises within 24 hours [24]. The results of our study cannot be directly compared with the above mentioned studies due to the difference in pollutants [15,16,23] and health outcomes [15,16,23]. This study contributes with air pollution effect estimates on IHD incidence in a population with a relatively low level of air pollution concentrations. Compared with the previous

Page 17 of 25

60

BMJ Open

		16
1		
2 3		
4	455	cohort studies on interaction effects between air pollution and physical activity, the annual mean $PM_{2.5}$
5	456 457	concentration was 3-4 times lower. The annual mean in the Taiwanese cohort was 27 μ g/m3 and a recent study within the same population as the DHC-cohort studies reported 18 μ g/m3. Even at these
6	457 458	lower levels of air pollution an increased risk associated with air pollution exposure was found, however
7	459	not among those who exercised at least twice a week. Even though active commuting may result in
8 9	460	higher air pollution exposure compared with for instance driving a car to work, the risk of an IHD event
10	461	was still reduced since the benefit of the physical activity was greater than the IHD risk imposed by the
11	462	air pollution exposure.
12	463	
13	464	A major strength of our study is the air pollution particle concentration exposure data since particles are
14 15	465	considered to be the causal component of air pollution [25]. The study used individual time varying
16	466	exposures of annual mean concentrations during follow-up based on population address registries. The
17	467	dispersion model used for modelling of particle concentrations has previously been validated [19].
18	468	Within the DHC studies NO ₂ was used as a proxy for traffic generated air pollution and was assessed only
19 20	469	at residential addresses at the year of recruitment or as an annual mean during follow-up. A limitation
20 21	470	of our exposure data is that the statistical power only allowed for two exposure categories and
22	471	therefore no exposure-response assessment was performed.
23	470	Another strength of supplying the property design the long following design the long
24	472	Another strength of our study is the prospective design, the long follow-up period, the large cohort size
25 26	473	and the availability of baseline data on several important confounders. A limitation is the lack of
20	474	information on the intensity and duration of physical activity and therefore only frequency of exercise
28	475	could be considered. The study also lacked information on changes in physical activity and other life-
29	476	style factors during follow-up as the information was only retrieved at baseline.
30	477	There is a risk of reverse causation if individuals at their baseline examination had a low physical activity
31 32	478	level due to poorer health. Individuals could for instance have diseases that affect their risk to later in
33	479	life have an IHD event (such as diabetes) prior to baseline examination. If this prior disease also affected
34	480	the frequency the individual exercised in training clothes, or mode of commuting, then a reverse
35	481	causation between physical activity and IHD risk may occur. Individuals with a prior IHD event at
36 37	482	baseline were however excluded, and the sensitivity analyses that excluded individuals with follow-up
38	483	time below the 25th percentile showed that this did not change the results. Furthermore, we lacked
39	484	information on whether exercise is taking place outdoors or indoors. For active commuters we also lack
40	485	air pollution exposure calculations during the commute. This would cause exposure misclassification
41 42	486	among active commuters with a higher in-traffic air pollution exposure dose compared with non-active
42	487	commuters, causing a possible bias to the null. This would also occur if individuals chose not to exercise
44	488	outside during times with high air pollution exposure.
45	489	
46	105	
47 48	490	
49		
50		
51		
52 53		
54		
55		
56		
57		
58 59		
59		For neer review only - http://bmionen.bmi.com/site/about/quidelines.xhtml

4 491 **5 Conclusion**

The study estimated that exercise reduced the risk of first incident IHD, but only among individuals with higher residential particle concentrations (above median). Similarly, the harmful air pollution effect on IHD was only found among those who exercised less. Our results reinforce the public health message that physical activity is beneficial for cardiovascular health and thus support the adoption of strategies to improve health through promotion of physical activity and mitigation of air pollution. Further studies are needed to build on the evidence of physical activity and air pollution interactions on the incidence cardiovascular disease. Air pollution exposures during commuting should also be considered in these studies.

16 500

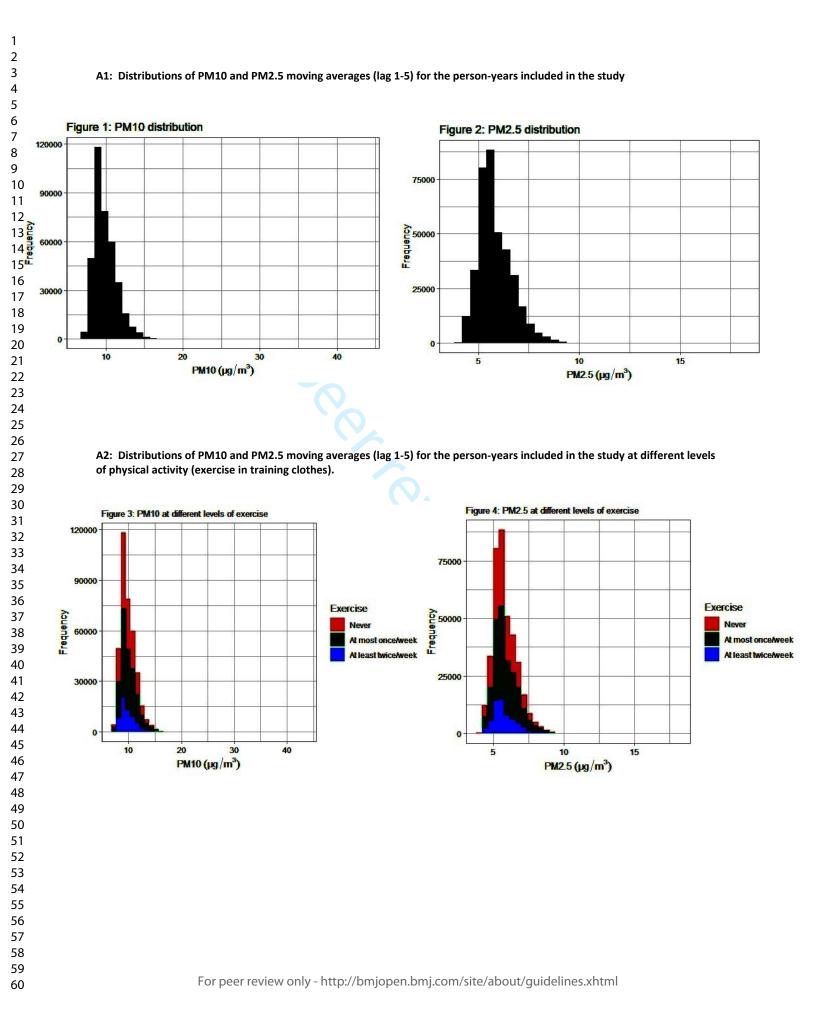
Author's contributions: All the authors contributed to the study conception and design. W.R. and J.N.S.
 analysed the data. W.R wrote the first draft of the manuscript. B.F., B.K. and J.N.S. critically revised the
 manuscript for important intellectual content. All authors read and approved the final version of the
 manuscript.

Funding: The study was funded by FORTE (Forskingsrådet för hälsa, arbetsliv och välfärd) [grant number
 506 2012-1296], a Swedish state agency that finances scientific research in health, welfare, and working life,
 and by grants from Folksam research foundation and the Swedish state under the agreement between
 508 the Swedish government and the county councils (ALF) awarded B F [grant number: VLL-645781].

28 509 **Competing interests**: None.

30 510 Participants consent: Obtained.
 31

511 Ethics approval: The study was approved by the Regional Ethics Review Board at Umea University (DNR:
 512 2014-136-32M and 2015/16-31Ö).


34
35513
ata availability: No additional data is available

18

6 References 518

4	510	U	hereitetes
5			
6 7	519		
8		1	Loliovald L. Klingmüller K. Dazzar A. et al. Cardiovacoular disease burden from ambient air
9	520	1	Lelieveld J, Klingmüller K, Pozzer A, et al. Cardiovascular disease burden from ambient air
9 10	521		pollution in Europe reassessed using novel hazard ratio functions. <i>Eur Heart J</i> Published Online
11	522		First: 2019. doi:10.1093/eurheartj/ehz135
12	523	2	Shrivastava AK, Singh HV, Raizada A, et al. C-reactive protein, inflammation and coronary heart
13		Z	
14	524		disease. Egypt. Hear. J. 2015. doi:10.1016/j.ehj.2014.11.005
15	525	3	Cohen AJ, Brauer M, Burnett R, <i>et al</i> . Estimates and 25-year trends of the global burden of
16	526	5	disease attributable to ambient air pollution: an analysis of data from the Global Burden of
17	527		Diseases Study 2015. Lancet Published Online First: 2017. doi:10.1016/S0140-6736(17)30505-6
18	527		Diseases Study 2013. Lancet Published Online First. 2017. doi.10.1010/30140-0730(17)30303-0
19	528	4	Münzel T, Gori T, Al-Kindi S, et al. Effects of gaseous and solid constituents of air pollution on
20	529		endothelial function. Eur. Heart J. 2018. doi:10.1093/eurheartj/ehy481
21	525		
22	530	5	Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular
23	531		disease: An update to the scientific statement from the American Heart Association. Circulation
24	532		Published Online First: 2010. doi:10.1161/CIR.0b013e3181dbece1
25			
26	533	6	Stevens G. Global Health Risks: Mortality and burden of disease attributable to selected major
27	534		risks. World Heal. Organ. 2009; 87 :646–646. doi:10.2471/BLT.09.070565
28			
29	535	7	Lee I, Shiroma EJ, Lobelo F, et al. Impact of Physical Inactivity on the World's Major Non-
30	536		Communicable Diseases. Lancet Published Online First: 2012. doi:10.1016/S0140-6736(12)61031-
31	537		9
32			
33	538	8	Nimmo MA, Leggate M, Viana JL, et al. The effect of physical activity on mediators of
34	539		inflammation. Diabetes, Obes. Metab. 2013. doi:10.1111/dom.12156
35	540	9	Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol Published
36		9	
37	541		Online First: 2005. doi:10.1152/japplphysiol.00164.2004
38 39	542	10	Rajé F, Tight M, Pope FD. Traffic pollution: A search for solutions for a city like Nairobi. Cities
39 40	543		Published Online First: 2018. doi:10.1016/j.cities.2018.05.008
40 41	545		r ubisited etilite r i st. 2010. doi:10.1010/j.etile3.2010.05.000
42	544	11	Rojas-Rueda D, De Nazelle A, Teixidó O, et al. Health impact assessment of increasing public
43	545		transport and cycling use in Barcelona: a morbidity and burden of disease approach. Prev Med
44	546		(Baltim) 2013; 57 :573–9.
45			
46	547	12	Maizlish N, Woodcock J, Co S, et al. Health cobenefits and transportation-related reductions in
47	548		greenhouse gas emissions in the San Francisco Bay area. Am J Public Health 2013; 103 :703–9.
48			
49	549	13	Tainio M, de Nazelle AJ, Götschi T, et al. Can air pollution negate the health benefits of cycling
50	550		and walking? Prev Med (Baltim) Published Online First: 2015. doi:10.1016/j.ypmed.2016.02.002
51	FF 4	1 1	Ciles LV. Keekle MC. The baskth offerste of eventicing in signally time. Court Mord 2014
52	551	14	Giles L V., Koehle MS. The health effects of exercising in air pollution. Sport. Med. 2014.
53	552		doi:10.1007/s40279-013-0108-z
54	553	15	Andersen ZJ, Raaschou-Nielsen O, Ketzel M, et al. Diabetes incidence and long-term exposure to
55	554	10	air pollution: A cohort study. <i>Diabetes Care</i> Published Online First: 2012. doi:10.2337/dc11-1155
56	554		an ponution. A conort study. <i>Diabetes care</i> rubiished Onnine First. 2012. a01.10.2557/aC11-1155
57			
58			
59			For noor roughly only better (herein an herein and feith lake sut (such a line such trail
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4 5 6 7	555 556 557 558	16	Kubesch NJ, Jørgensen JT, Hoffmann B, <i>et al.</i> Effects of leisure-time and transport-related physical activities on the risk of incident and recurrent myocardial infarction and interaction with traffic-related air pollution: A cohort study. <i>J Am Heart Assoc</i> Published Online First: 2018. doi:10.1161/JAHA.118.009554
8 9 10 11	559 560 561	17	Zhang Z, Hoek G, Chang L yun, <i>et al</i> . Particulate matter air pollution, physical activity and systemic inflammation in Taiwanese adults. <i>Int J Hyg Environ Health</i> Published Online First: 2018. doi:10.1016/j.ijheh.2017.10.001
12 13 14 15	562 563 564	18	Norberg M, Wall S, Boman K, <i>et al.</i> The Västerbotten Intervention Programme: background, design and implications. <i>Glob Health Action</i> Published Online First: 2010. doi:10.3402/gha.v3i0.4643
16 17 18 19	565 566 567	19	Segersson D, Eneroth K, Gidhagen L, <i>et al.</i> Health impact of PM10, PM2.5 and black carbon exposure due to different source sectors in Stockholm, Gothenburg and Umea, Sweden. <i>Int J Environ Res Public Health</i> Published Online First: 2017. doi:10.3390/ijerph14070742
20 21 22	568 569	20	Hausberger S, Rexeis M, Zallinger M, <i>et al</i> . Emission Factors from the Model PHEM for the HBEFA Version 3. 2009.
23 24 25 26	570 571 572	21	Omstedt G, Bringfelt B, Johansson C. A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. <i>Atmos Environ</i> Published Online First: 2005. doi:10.1016/j.atmosenv.2005.06.037
27 28 29	573 574	22	SMHI. Airviro technical specification, appendix E. 2010. http://www.smhi.se/airviro/2.867/specification/
30 31 32 33	575 576 577	23	Andersen ZJ, de Nazelle A, Mendez MA, <i>et al</i> . A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: The Danish Diet, Cancer, and Health Cohort. <i>Environ Health Perspect</i> 2015.
34 35	578	24	Abramson N, Melton B. Leukocytosis: Basics of clinical assessment. Am. Fam. Physician. 2000.
36 37 38	579 580	25	World Health Organization. Review of evidence on health aspects of air pollution – REVIHAAP Project: Technical Report. 2013. doi:10.1007/BF00379640
39 40	581		
41 42 43	582		
44			
45 46			
47			
48			
49 50			
50 51			
52			
53			
54			
55 56			
57			
58			

B: Sensitivity analysis by excluding the individuals with follow-up time below the 25th percentile

Table 1. Hazard ratios (95% CI) for IHD associated with different exercise and commuting habits among persons with
different air pollution exposure at home addresses.

Exercise in training clothes	Overall model with no interaction effects	Adjusted ^a HRs in cate particle exposure	gories of high and low	Adjusted ^a interaction hazard ratio
		Low PM ₁₀ b	High PM ₁₀ ^b	Benefits of exercise/commuting comparing high and low particle exposure
Never	1	1	1	
≤ once/week	1.00 (0.84-1.19)	1.01 (0.84-1.21)	1.02 (0.85-1.23)	1.02 (0.79-1.31)
≥ twice/week	0.88 (0.76-1.02)	1.0 (0.77-1.31)	0.48 (0.34-0.7)	0.48 (0.31-0.76)
		Low PM2.5 ^c	High PM2.5 ^c	
Never		1	1	
≤ once/week		1.01 (0.84-1.21)	1.02 (0.85-1.23)	1.01 (0.78-1.31)
≥ twice/week		0.95 (0.72-1.24)	0.53 (0.37-0.75)	0.56 (0.36-0.87)
Active commuting per season		Low PM10 ^b	High PM10 ^b	
Non-active commuting	1	1	1	
≤ two seasons of four	1.02 (0.89-1.16)	1.16 (0.92-1.46)	0.85 (0.66-1.09)	0.73 (0.52-1.03)
> two seasons of four	0.74 (0.6-0.92)	0.91 (0.74-1.12)	0.83 (0.68-1.02)	0.91 (0.69-1.2)
		Low PM2.5 ^c	High PM2.5 ^c	
Non-active commuting		1	1	
≤ two seasons of four		1.18 (0.93-1.48)	0.84 (0.65-1.08)	0.70 (0.50-0.98)
> two seasons of four		0.98 (0.80-1.2)	0.79 (0.64-0.96)	0.82 (0.62-1.09)

^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, active commuting

 b Low PM₁₀: ≤9.6 µg/m³; High PM₁₀: >9.6 µg/m³

^cLow PM_{2.5} ≤5.7 μg/m³; High PM_{2.5}: >5.7 μg/m³

Table 2. Hazard ratios (95% CI) for IHD associated with high air pollution levels (vs low) at home address among persons with different exercise/commuting habits.

	Overall model with No interaction effects	Adjusted ^a HRs in different exercise categories				
		Ex	ercise in training clothe	s		
		Never	≤ once/week	≥ twice/week		
Low PM ₁₀ ^b	1	1	1	1		
High PM10 ^b	1.22 (0.96-1.56)	1.25 (1.0-1.56)	1.27 (1.03-1.58)	0.61 (0.40-0.93)		
Low PM _{2.5} ^c	1	1	1	1		
High PM _{2.5} ^c	0.95 (0.74-1.21)	1.15 (0.92-1.43)	1.16 (0.94-1.44)	0.64 (0.42-0.97)		
			Active commuting			
		Non-active commuting	≤ two seasons of four	> two seasons of four		
Low PM ₁₀ ^b		1	1	1		
High PM ₁₀ ^b		1.28 (1.04-1.57)	0.94 (0.68-1.29)	1.16 (0.9-1.5)		
Low PM _{2.5} ^c		1	1	1		
High PM _{2.5} c		1.23 (1.0-1.51)	0.88 (0.64-1.21)	0.99 (0.76-1.27)		

^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, active commuting

^bLow PM₁₀: ≤9.6 μg/m³; High PM₁₀: >9.6 μg/m³

^cLow PM_{2.5} ≤5.7 μg/m³; High PM_{2.5}: >5.7 μg/m³

C: Sensitivity analyses with PM10 and PM2.5 concentrations categorized by tertile limits

Table 3. Hazard ratios (95% CI) for IHD associated with different exercise and commuting habits among persons with different air pollution exposure at home addresses.

Exercise in training clothes	Overall model with no interaction effects	Propo rtional hazard p ^d - value*	Ad	justed ^a HRs	in categories of high	and low p	article exposure	
			Low PM ₁₀ b	Propor tional hazard p- value ^d	Moderate PM ₁₀ ^b	Propor tional hazard p- value ^d	High PM ₁₀ ^b	Propor tional hazard p- value ^d
Never	1		1		1			
≤ once/week	1.03 (0.90-1.16)	0.36	0.93 (0.74- 1.16)	0.42	1.15 (0.94-1.41)	0.95	0.99 (0.80-1.23)	0.37
≥ twice/week	0.76 (0.62-0.93)	0.09	0.95 (0.68- 1.32)	0.54	0.83 (0.60-1.15)	0.16	0.51 (0.34-0.77)	0.86
			Low PM _{2.5} ^c		Moderate PM _{2.5} ^c		High PM _{2.5} ^c	
Never			1		1			
≤ once/week			0.98 (0.78- 1.22)	0.67	1.08 (0.88-1.32)	0.60	1.02 (0.82-1.26)	0.48
≥ twice/week			0.91 (0.65- 1.27)	0.71	0.83 (0.60-1.14)	0.13	0.54 (0.36-0.82)	0.60

^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, and active commuting

^bLow PM₁₀: ≤9.6 μ g/m³; High PM₁₀: >9.6 μ g/m³

^cLow PM_{2.5} \leq 5.7 µg/m³; High PM_{2.5}: >5.7 µg/m³

hazards ^dp-value of the Schoenfeld residual test of proportional hazards

Table 4. Hazard ratios (95% CI) for IHD associated with high and moderate air pollution levels (vs low) at home address among persons with different exercise/commuting habits.

	Overall model with no interaction effects	Proportional hazard p- value ^d	Adjusted ^a HRs i	n categories of h	iigh and low par	ticle exposure		
					Exercise in tr	aining clothes		
			Never	Proportional hazard p- value ^d	≤ once/week	Proportional hazard p- value ^d	≥ twice/week	Proportional hazard p- value ^d
Low PM ₁₀ ^b	1		1		1		1	
Moderate PM ₁₀ ^b	1.04 (0.81- 1.34)	0.55	1.05 (0.83 - 1.32)	0.35	1.30 (1.03 1.63)	0.95	0.92 (0.61- 1.39)	0.26
High PM ₁₀ ^b	1.00 (0.69- 1.45)	0.99	1.16 (0.87 1.53)	0.13	1.23 (0.93- 1.64)	0.13	0.62 (0.37- 1.04)	0.56
Low PM _{2.5} ^c	1		1		1		1	
Moderate PM ₁₀ ^b	1.12 (0.88- 1.43)	0.94	1.11 (0.89 1.39)	0.73	1.23 (0.98- 1.53)	0.73	1.02 (0.67- 1.54)	0.30
High PM _{2.5} c	1.15 (0.79- 1.68)	0.13	1.18 (0.89 1.57)	0.05	1.23 (0.92- 1.64)	0.04	0.71 (0.42- 1.18)	0.22

^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, and active commuting

^bLow PM₁₀: $\leq 9.6 \ \mu g/m^3$; High PM₁₀: >9.6 $\mu g/m^3$

^cLow PM_{2.5} \leq 5.7 µg/m³; High PM_{2.5}: >5.7 µg/m³

^dp-value of the Schoenfeld residual test of proportional hazards

Table 5. Interaction hazard ratios between exercise and air pollution for incident IHD

Exercise in training	Adjusted ^a interaction hazard ratio						
clothes							
	Benefits of exercise com	paring moderate with low	Benefits of exercise comparing high with low particle				
	particle	exposure	exposure				
	Moderate PM ₁₀ ^b	Proportional hazard p-	High PM ₁₀ ^b	Proportional hazard p-			
		value ^d		value ^d			
Never	1		1				
≤ once/week	1.24 (0.91-1.68)	0.51	1.07 (0.78-1.45)	0.99			
≥ twice/week	0.88 (0.55-1.39)	0.58	0.54 (0.32-0.92)	0.81			
	Benefits of exercise comp	paring high with low PM _{2.5} ^b	Benefits of exercise comparing moderate with l				
	expo	osure	PM _{2.5} ^b 6	exposure			
Never	1		1				
≤ once/week	1.11 (0.82-1.50)	0.97	1.04 (0.77-1.42)	0.87			
≥ twice/week	0.92 (0.58-1.46)	0.45	0.60 (0.35-1.02)	0.87			

^aAdjusted for sex, calendar year, education, smoking, alcohol intake, occupation, neighbourhood mean income, leisure time physical activity, and active

commuting

^ьLow PM₁₀: ≤9.6 μg/m³; High PM₁₀: >9.6 μg/m³

^cLow PM_{2.5} ≤5.7 μg/m³; High PM_{2.5}: >5.7 μg/m³

^dp-value of the Schoenfeld residual test of proportional hazards

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	5
		(b) For matched studies, give matching criteria and number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5-6
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	5-6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	7
		(b) Describe any methods used to examine subgroups and interactions	7
		(c) Explain how missing data were addressed	5
		(d) If applicable, explain how loss to follow-up was addressed	7
		(e) Describe any sensitivity analyses	

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	5
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	5
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	7
	_	confounders	
		(b) Indicate number of participants with missing data for each variable of interest	8
	_	(c) Summarise follow-up time (eg, average and total amount)	7
Outcome data	15*	Report numbers of outcome events or summary measures over time	7
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	8-11
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9, 11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9-11
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	12-13
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	14
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml