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SUMMARY
Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are
generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory
variants. INS promoter mutations cause recessive neonatal diabetes.We show that all INS promoter point mu-
tations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal
promoter function. To model CC mutations, we humanized an �3.1-kb region of the mouse Ins2 gene. This
recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however,
abrogated active chromatin formation during pancreas development. A search for transcription factors acting
through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to
derepress INS chromatin, which is hampered by the CCmutation. Our in vivo analysis, therefore, connects two
human genetic defects in an essential mechanism for developmental activation of the INS gene.
INTRODUCTION

Most sequence variants underlying Mendelian diseases affect

coding sequences, although several patients are known to har-

bor causal cis-regulatory mutations (Benko et al., 2009; Garin

et al., 2010; Hansen et al., 2002; Lettice et al., 2003; Weedon

et al., 2014). This number is expected to rise asmillions of human

genomes are sequenced and the field learns to discriminate

pathogenic noncodingmutations from a vast number of inconse-

quential variants (Chong et al., 2015; Huang et al., 2017; Kowal-

ski et al., 2019; Ward and Kellis, 2012). In polygenic diseases,

common and rare cis-regulatory variants play a central role in

the genetic susceptibility (Cowper-Sal lari et al., 2012; Maurano

et al., 2012; Pasquali et al., 2014).

Despite the relevance of cis-regulatory variants, they have

been largely studied outside their chromosomal context. Current

experimental models usually test noncoding variants with

episomal DNA constructs, ectopically located transgenes, or

in vitro protein-DNA interaction assays. The extent to which
This is an open access article under the CC BY-N
these models reflect the true impact of cis-regulatory variants

is unknown. Expression quantitative trait loci can provide in-

sights into which genes are affected by regulatory variants in

their native genome context yet often fail to distinguish causal

from linked variants. It is now also possible to directly edit muta-

tions in stem cells and differentiate them in vitro, but this does not

always allow modeling the mutational impact in relevant devel-

opmental or physiological in vivo contexts. There is a need,

therefore, to develop complementary tools that facilitate under-

standing of the in vivo impact of noncoding variants.

One approach to address this need is to engineer human

genomic sequences in mice. Several examples of human knock-

ins in the mouse genome have been created to model human

protein-coding mutations (Zhu et al., 2019). One study success-

fully edited a 5-bp noncoding sequence in mice to model a com-

mon human regulatory variant (Pashos et al., 2017). However,

the extent to which mice can be used to study human cis-

regulatory mutations in more-extended orthologous genomic

contexts is poorly explored.
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Figure 1. Location of INS promoter mutations

The top panel is a schematic of the human INS 50 flanking sequence, showing

approximate locations of established cis-regulatory sequences based on

published mutational analyses of episomal sequences. The bottom panel

shows a zoomed-in sequence that contains previously characterized MAFA,

NEUROD1, and PDX1-bound cis-elements (C1, E1, and A1, respectively), as

well as the CC element, with a graph that depicts the location of all INS pro-

moter recessive mutations from our analysis. Each dot represents a patient,

and the color represents the genotype. All single-base-pair mutations are

located in the CC element, including a distinct 24-bp deletion that disrupts

MAFA and NEUROD1 binding sites.
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Modeling noncoding mutations in model organisms poses

major challenges, because the consequence of mutations that

disrupt transcription factor-DNA interactions can be influenced

by essential combinatorial interactions with nearby transcription

factor binding sites or by the existence of redundant binding

sites (Biggin, 2011; Heinz et al., 2013; Junion et al., 2012).

Unlike coding sequences, which are often highly conserved,

noncoding DNA sequences can maintain functions despite

substantial evolutionary turnover, and conserved noncoding se-

quences can acquire divergent functions (Khoueiry et al., 2017;

Villar et al., 2015). It is thus difficult to predict pathological

consequences of human cis-regulatory mutations from

mouse models unless the broader sequence context has been

humanized.

We have now examined a cis-regulatory mutation in the INS

gene that causes diabetes mellitus. A subset of patients with

neonatal diabetes harbors recessive loss-of-function coding or

promoter mutations in INS, encoding for insulin (Garin et al.,

2010). Single-nucleotide mutations of the INS promoter pub-

lished so far are located in a CC dinucleotide 331 bp upstream

of the INS start codon (Bonnefond et al., 2011; Deeb et al.,

2016; Demirbilek et al., 2015; Garin et al., 2010). Functional

studies in tumoral b cells using episomal luciferase assays

showed that c.-331C > G, the most common of these mutations,

causes partial disruption of INS promoter activity (Garin et al.,

2010). However, decades of work have shown that artificial mu-

tations in various other elements of the INS 50 flanking region that

disrupt binding by transcription factors, such asMAFA, PDX1, or

NEUROD1, also lead to reduced transcriptional activity in

episomal assays (Docherty et al., 2005; German et al., 1995;

Le Lay and Stein, 2006; Melloul et al., 2002; Odagiri et al.,

1996). This raises the question of whether the CC element is spe-

cifically vulnerable due to an essential role in the in vivo regula-

tion of the INS gene that cannot be examined in episomal assays.

In this study, we establish the selectivity of CC element muta-

tions in an extended cohort of patients. We humanized a large

noncoding region of the mouse Ins2 gene and used a mutant

version of this model to show that the c.-331C > G mutation dis-

rupts active chromatin formation during pancreas development.

We then linked the CC element to GLIS3, a zinc finger transcrip-

tion factor that also carries neonatal diabetes mutations, as well

as type 1 and type 2 diabetes risk variants (Barrett et al., 2009;

Dupuis et al., 2010; Senée et al., 2006). GLIS3, one of several

transcription factors known to regulate the insulin gene (Kang

et al., 2009; Yang et al., 2009), showed a singular capacity to

create INS gene active chromatin in non-pancreatic cells, and

this was inhibited in the CC mutant. This in vivo analysis of two

regulatory defects has therefore revealed a pioneering mecha-

nism of the human INS gene. These insights are relevant to the

mechanisms of diabetes and for regenerative strategies that

aim to activate the INS gene in non-pancreatic cells.

RESULTS

Human genetics establishes a unique role of the INS

promoter CC element
To further define the importance of the INS promoter CC

element, we re-examined the selectivity of mutations in a large
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cohort of previously published (n = 19) and unpublished (n =

41) patients with diabetes caused by recessive INS promoter

mutations. This showed that, among 60 patients from 44

families, all single-base-pair mutations located 50 of the tran-

scriptional start site resided in the CC element. This included

42 patients with c.-331C > G mutations (40 homozygous; two

compounds heterozygous), two with c.-332C > G mutations

(one homozygous; another compound heterozygous), and 13

with c.-331C > A mutations (12 homozygous; one compound

heterozygous with a c.-331C deletion; Figure 1; Table S1). This

newly described c.-331C single-base-pair deletion is interesting,

because it strongly favors a loss- rather than gain-of-function

mechanism for CCmutations. The only other pathogenic INS up-

streammutation was a larger homozygous deletion that disrupts

MAFA and NEUROD1 binding sites, which was observed in four

patients from two families. Most patients had characteristic clin-

ical features of insulin-deficient neonatal diabetes, with low birth



Figure 2. Generation of HIPKI and HIPKI-C331G mouse alleles

A rectangle with dotted lines in the top two panels depicts the 3.1-kb human

sequence located between the human TH and INS genes (including INS 50

untranslated transcribed sequences), which was cloned into a targeting vec-

tor. This targeting vector contained the 3.1-kb human INS upstream region

followed by Ins2-IRES-GFP, which includes mouse Ins2 exons and intron and

an IRES, GFP, and Ins2 30 UTR and was flanked by mouse Ins2 homology

arms. Targeted replacement of the indicated mouse Ins2 sequence with this

human upstream INS sequence followed by Ins2-IRES-GFPwas carried out by

homologous recombination. The same process was used to create two allelic

versions carrying the normal human INS sequence or the c.-331C > G muta-

tion. A neomycin cassette flanked by LoxP sites was excised in vivo and is

omitted for simplicity. The sequence of the neomycin-excised targeted allele is

provided in File S1.
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weight and diabetes onset soon after birth, although 2 patients

were diagnosed outside the neonatal period and 12 (including

both patients with -332 mutations) showed transient neonatal

diabetes (Table S1). No associated clinical abnormalities were

consistently noted in this patient series. These extended human

genetic findings, therefore, establish that the CC dinucleotide

sequence of the INS promoter is unusually sensitive to muta-

tions, suggesting a singular function of this cis-regulatory

element.

Generation of a human cis-regulatory mutation mouse
model
To study the function of the CC element in vivo, we modeled the

c.-331C > G mutation in a humanized sequence context. We
generated mice in which homologous recombination was used

to replace the endogenous 3.17-kb mouse genomic region con-

taining the Ins2 gene and its upstream regions with a human INS

upstream DNA fragment. This genomic region showed high-

sequence conservation to the mouse counterpart in an �350-

bp region upstream of INS TSS and another �500-bp region

downstream of the TH gene but contained intervening se-

quences lacking identifiable orthology with the mouse genome,

including a primate-specific variable number tandem repeat re-

gion previously reported to influence INS transcription (Kennedy

et al., 1995; Figure S1A). The knocked in allele thus contained (1)

this 3.10-kb upstream region of human INS, including a tran-

scribed INS 50 untranslated sequence; (2) mouse Ins2 exon1,

intron, and exon 2; and (3) an internal ribosome entry site

(IRES) followed by green fluorescent protein (GFP) sequence

(Figure 2). The resulting transcript was thus translated into two

proteins: mouse preproinsulin-2 and GFP. In parallel, we gener-

ated a mouse model harboring the same humanized sequence

and the INS c.-331C > G single point mutation (Figure 2). We

named mice carrying the two human INS upstream knockin al-

leles HIPKI and HIPKI-C331G.

Homozygous HIPKI and HIPKI-C331G mice were born at

expected Mendelian ratios and appeared healthy without overt

hyperglycemia (Figure S1B), consistent with the fact that HIP

knockin mice retained an intact copy of Ins1, a retroposed

mouse gene that also encodes insulin (Duvillié et al., 1997; Ler-

oux et al., 2001).

HIPKI recapitulates, and HIPKI-C331G abrogates, cell-
specific INS transcription
To determine whether the human INS 50 flanking region inserted

into its orthologous mouse chromosomal context was able to

drive b-cell-specific expression in HIPKI mice, we used dual

immunofluorescence analysis of GFP and islet hormones in tis-

sues from newborn mice (postnatal day 1 [P1]–P3). This showed

that GFP expression was restricted to insulin-positive pancreatic

islet core b cells of HIPKI mice, whereas it was not detected in

mantle glucagon- or somatostatin-positive islet cells or sur-

rounding exocrine cells (Figures 3A and 3B). Moreover, GFP

fluorescence was readily detected in live islets isolated from

3- to 5-month-old HIPKI mice (Figure 3C). Ins2-IRES-GFP

transcript was also restricted to islets across a panel of mouse

tissues (Figure S1C).

In sharp contrast to HIPKI islets, HIPKI-C331G islets showed no

detectable GFP fluorescence or immunoreactivity (Figures 3A–

3C). Thus, Ins2-IRES-GFP expression in HIPKI mice recapitulates

expected b-cell-specific patterns of insulin expression, whereas

the HIPKI-C331G mutation disrupts this expression pattern.

To further assess the function of human INS flanking

regions, we measured Ins2 mRNA in islets isolated from HIPKI

and HIPKI-C331G mice. Quantitative RT-PCR analysis revealed

Ins2 mRNA in islets isolated from both control C57BL/6 and

HIPKI mice, but not in HIPKI-C331G mouse (Figure 3D), thus con-

firming that the c.-331C > G single point mutation abrogates

transcriptional activity of the humanized INS/Ins2 locus in

mice. We note, however, that Ins2 transcripts in HIPKI islets,

which form part of the larger Ins2-IRES-GFP transcript, were

reduced in comparison to control C57BL/6 islets (Figure 3C).
Cell Reports 35, 108981, April 13, 2021 3
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Figure 3. HIPKI recapitulates and HIPKI-C331G abrogates b cell-spe-

cific Ins2 expression

(A) Immunofluorescence imaging of insulin, glucagon, and GFP, showing se-

lective GFP expression in HIPKI insulin-positive core islet cells, but not in the

surrounding glucagon islet mantle, or in extra-islet exocrine cells. In contrast,

no GFP expression is detected in HIPKI-C331G islet cells.

(B) Immunofluorescence imaging of glucagon, somatostatin, and GFP,

showing lack of GFP expression in somatostatin or glucagon-positive cells.

(C) Bright-field and fluorescence imaging of islets isolated from HIPKI and

HIPKI-C331G mice.

(D) Quantitative PCR analysis of Ins2 and Ins1mRNAs in pancreatic islets from

3- to 5-month-old C57BL/6 (n = 4), HIPKI (n = 6), and HIPKI-C331G (n = 6) mice.

Values were normalized to Actb mRNA. ***p < 0.0001 (Student’s t test).
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This resulted from a combined effect of �10-fold reduced tran-

scription and �14-fold reduced stability of the Ins2-IRES-GFP

transcript, as compared to the intact Ins2 mRNA from C57BL/6

islets (Figures S1D and S1E).

Further analysis revealed normal levels of Ins1, Pdx1, Glis3,

NeuroD1, MafA, Glut2, and Gck mRNAs in HIPKI and HIPKI-C331G

islets, suggesting that humanization of regulatory sequences in

the mouse Ins2 locus did not impact these key pancreatic b cell

identity markers (Figures 3C and S1F).

Mice with homozygous null Ins2 mutations display mild tran-

sient hyperglycemia (Duvillié et al., 1997; Leroux et al., 2001).

Consistently, HIPKI-C331G mice, which were Ins2-deficient,

showed mildly increased glycemia (119[32] versus 145[24] mg/

dL; mean [IQR]; Student’s t test p = 0.0031; Figure S1A).
4 Cell Reports 35, 108981, April 13, 2021
These findings indicate that an�3-kb human INS upstream re-

gion can replace its mouse orthologous region and still direct

cell-specific transcription in mouse b cells. Furthermore, they

show that the human INS c.-331C > G point mutation abrogates

the function of this humanized region, consistent with the severe

phenotype observed in humans with neonatal diabetes.

HIPKI, but not HIPKI-C331G, islets mirror human islet INS
chromatin
Nucleosomes that flank promoters of transcriptionally active

genes are typically enriched in trimethylated histone H3 lysine

4 (H3K4me3) and acetylated histone H3 lysine 27 (H3K27ac),

and this was expectedly also observed in the human INS pro-

moter in human islets (Morán et al., 2012; Pasquali et al., 2014;

Figure S2). We thus examined these histone modifications at

the INS promoter in HIPKI and HIPKI-C331G adult mouse islets

by chromatin immunoprecipitation (ChIP) assays. The INS prox-

imal promoter showed enriched H3K4me3 and H3K27ac in adult

HIPKI mouse islets (Figures 4A–4C). By contrast, HIPKI-C331G is-

lets showed 5-fold and 7-fold lower signals (Student’s t test;

p < 0.001; Figures 4B and 4C). HIPKI-C331G islets also showed

markedly reduced INS promoter chromatin accessibility as

measured by formaldehyde-assisted isolation of regulatory ele-

ments (FAIRE) (Figure 4D) and reduced binding of PDX1, an islet

transcription factor that binds to multiple sites in the INS pro-

moter (Figure 4E). These findings, therefore, demonstrate that

the c.-331C > G point mutation does not only prevent transcrip-

tional activity conferred by the human INS 50 flanking region but

also the formation of accessible active chromatin and thereby

occupancy by a key INS gene transcription factor.

Activation of humanized INS locus during development
We next used HIPKI and HIPKI-C331G models to assess how the

c.-331C > G mutation influences chromatin activation at the

INS gene during pancreas development. As a reference, we

analyzed ChIP sequencing (ChIP-seq) maps of H3K4me1 and

H3K4me3 histone modifications in human fetal pancreas at Car-

negie stage 23 (Cebola et al., 2015), which precedes INS gene

activation, and compared them with analogous maps from adult

human islets (Morán et al., 2012; Pasquali et al., 2014). In the hu-

man fetal pancreas, we observed that the histone modification

H3K4me1 demarcated a broad region that encompasses the

TH and INS genes as well as downstream regions, without

detectable H3K4me3, a histone modification associated with

active promoters (Figure 5A). This combination, H3K4me1

enrichment and absence of H3K4me3, has been described in

genomic regions that are poised for gene activation (Creyghton

et al., 2010) and is consistent with the virtual absence of INS tran-

scription in the early fetal pancreas. In adult human islets, by

contrast, H3K4me1 in the INS locus was largely replaced with

H3K4me3, in keeping with active INS transcription (Figure 5A).

We next examined whether the chromatin environment that

precedes transcriptional activation of the INS locus is recapitu-

lated in HIPKI embryos. As in human fetal pancreas, we observed

deposition of H3K4me1 in the humanized INS flanking regions in

HIPKI embryonic day 12.5 (E12.5) mouse fetal pancreas (Fig-

ure 5B). Ins2 mRNA was expectedly not detected above back-

ground levels at this stage (Figure 5C). Interestingly, both HIPKI
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Figure 4. HIPKI recapitulates and HIPKI-

C331G abrogates formation of active chro-

matin at the INS locus

(A) Schematic showing approximate primer loca-

tions for ChIP assays. INSCC primers encompass

the CC element.

(B–D) ChIP quantification of H3K4me3, H3K27ac,

and FAIRE accessibility at the humanized INS lo-

cus and control regions in HIPKI or HIPKI-C331G

adult mouse islets. The Actb promoter was used

as a positive control, and a gene desert lacking

active histonemodifications in islets was used as a

negative control. ChIP and FAIRE DNA were ex-

pressed as a percentage of the total input DNA. n =

3 independent experiments.

(E) ChIP for the transcription factor PDX1 in HIPKI

or HIPKI-C331G adult mouse islets at a known

PDX1-bound enhancer near Pdx1 as a positive

control. Data are expressed as a percentage of

input DNA. n = 3 independent experiments. Error

bars indicate SEM; asterisks indicate Student’s t

test p values (*p < 0.05; **p < 0.001; ***p < 0.0001).

Article
ll

OPEN ACCESS
and HIPKI-C331G displayed similar H3K4me1 profiles at E12.5

(Figure 5B), indicating that the humanized INS sequences reca-

pitulate poised chromatin preceding gene activity, and this is not

impeded by the c.-331C > G mutation.

By contrast, the c.-331C > G mutation prevented the tran-

scriptional activation of the humanized locus at early stages of

b cell differentiation. Thus, Ins2 mRNA was detectable in HIPKI

E15.5 fetal pancreas, but it was undetectable in HIPKI-C331G em-

bryos (Figure 5C), whereas Ins1 mRNA was readily detected in

both HIPKI and HIPKI-C331G E15.5 pancreas (Figure 5C). Thus,

mice carrying humanized regulatory regions in the Ins2 locus

can recapitulate salient developmental features of the chromatin

landscape of the human INS locus and show that, although the

c.-331C > G mutation does not affect INS chromatin poising, it

disrupts activation of promoter chromatin in differentiated cells.

GLIS3-dependent activation of the INS gene is
prevented by c.-331C > G
We next sought to identify factors whose DNA binding activity is

influenced by the c.-331C > G mutation. We performed stable

isotope labeling by amino acids in cell culture (SILAC) experi-

ments and identified four zinc finger transcription factors (MAZ,

ZFP37, KLF13, and KLF16) that showed decreased in vitro bind-

ing to the c.-331C > G mutation and additionally selected 5 zinc

finger transcription factors expressed in human islets that were

predicted to show differential binding based on in silico and/or

literature analysis (Figure S3A). Of these 9 candidate transcrip-

tion factors, GLIS3, which was previously shown to bind to this
element in vitro (Kang et al., 2009),

induced significant luciferase activity in

a human insulin promoter episomal

construct, and the c.-331C > G mutation

suppressed this effect (Student’s t test

p = 0.02; Figure 6A). Systematic DNA

binding site selection studies predict

that the C > G mutation impairs GLIS3
binding (Beak et al., 2008), and this was confirmed with electro-

mobility shift assays (Figure S3B). These findings, therefore,

indicated that the c.-331C > G mutation disrupts GLIS3 in vitro

binding to the CC element as well as activation of an episomal

INS promoter.

Recently, GLIS3 was shown to bind in vivo to the Ins2 pro-

moter, and pancreatic inactivation of Glis3 in adult mice specif-

ically depletes Ins2 mRNA in islet cells (Scoville et al., 2019;

Yang et al., 2013). To test whether GLIS3 is a direct in vivo regu-

lator of the human INS gene, we performed ChIP-seq of GLIS3 in

human islets. This showed 746 high-confidence binding sites,

which displayed marked enrichment of canonical GLIS3 binding

sequences, including a de novomotif matching the INS promoter

CC element and a specific binding site in the INS promoter (Fig-

ures 6B and S4A; Table S2). Additional GLIS3-bound regions

were observed in genes known to be important for islet cells,

including PDX1,MAFA,CREB1, and DLL1 (Figure S4B). Further-

more, transduction of two independent short hairpin RNAs

(shRNAs) that reduced GLIS3 mRNA in human EndoCb-H1 b

cells led to �2-fold lower INS mRNA levels (Student’s t test p <

0.05; Figure S4C). This provided in vivo evidence that GLIS3 is

a direct regulator of the human INS gene.

To understand GLIS3-mediated regulation of INS locus chro-

matin, we assessed the ability of GLIS3 to activate INS in three

immortalized non-pancreatic human cell lines in which the INS

gene is repressed. Combinations of islet cell transcription factors,

such as PDX1, MAFA, and NEUROG3 or NEUROD1, have been

used to activate b cell programs in pancreatic acinar or liver cells
Cell Reports 35, 108981, April 13, 2021 5
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Figure 5. Developmental activation of INS

promoter chromatin during development

(A) H3K4me1 and H3K4me3 profiles at the INS lo-

cus showing H3K4me1, but not H3K4me3,

enrichment in human fetal pancreas (Carnegie

stage 23; Cebola et al., 2015) across the INS region

and H3K4me3, but not H3K4me1, enrichment in

adult human islets (Morán et al., 2012; Pasquali

et al., 2014).

(B) Top: approximate location of oligonucleotides

for ChIP assays. Bottom: ChIP H3K4me1 enrich-

ments in pancreas from HIPKI or HIPKI-C331G E12.5

embryos are shown. n = 2 independent experi-

ments from pools of 8–12 embryos. Data are ex-

pressed as a percentage of input DNA.

(C) Quantitative PCR analysis for Ins2 and Ins1

mRNA from HIPKI or HIPKI-C331G in E12.5 and E15.5

embryonic pancreas or E15.5 liver (n = 3). Error bars

indicate SEM; asterisks indicate Student’s t test p

values; ***p < 0.0001.
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(Yechoor et al., 2009; Zhou et al., 2008), in line with the knowledge

that PDX1, MAFA, and NEUROD1 directly bind and regulate the

insulin gene promoter in various species (Le Lay and Stein,

2006; Zhao et al., 2005).We found that expression of various com-

binations of such transcription factors failed to elicit major

changes in INS mRNA in cell lines from distant lineages, namely

HEK293T, MCF7, or SW480 cells (Figures 6C and S5A). By

contrast, co-transfection of these factors with GLIS3 led to

ectopic activation of the endogenous INS gene (Figures 6C and

S5A). Other candidate transcription factors that were predicted

to bind to the CC element failed to activate INS in the presence

of PDX1 and NEUROD1 (Figure S5A). Microarray analysis of

HEK293T cells transfected with GLIS3, PDX1, NEUROD1, and

MAFA showed that INSwas themost highly induced gene relative

to cells that were only transfected with PDX1, MAFA, and

NEUROD1 (Figure S5B). These results indicate that GLIS3 has a

specific ability to activate the INS gene in cell lines fromdistant lin-

eages, which requires other INS promoter-binding transcription

factors that do not elicit this effect on their own.

To further understand this unique effect of GLIS3 on the INS

gene, we examined chromatin accessibility using FAIRE. Misex-

pression of GLIS3, PDX1, and NEUROD1 created accessible

chromatin at the endogenous INS gene in HEK293T cells,
6 Cell Reports 35, 108981, April 13, 2021
whereas this was not elicited by PDX1

and NEUROD1 alone (Figure 6D). This ef-

fect was direct, as ChIP experiments

showed that transfected GLIS3 was bound

to the INS promoter (Figure S5C). Thus,

GLIS3 has a singular ability to bind and

activate the INS promoter in repressed

chromatin cellular environments.

Because GLIS3 activation of episomal

INS promoter constructs was impaired

by the c.-331C > G mutation, we next

tested whether the GLIS3-dependent

chromatin pioneering function was also

mediated by the CC element.We thus pre-
pared fibroblasts fromHIPKI andHIPKI-C331G embryos. Given that

other islet transcription factors are required for the GLIS3 effect,

we transduced HIPKI and HIPKI-C331G mouse embryonic

fibroblasts with PDX1, NEUROD1, MAFA, and GLIS3. This com-

bination of transcription factors activated transcription from the

humanized locus in HIP fibroblasts, whereas the effect was in-

hibited by the c.-331C > G mutation (Figure 6E).

These findings, therefore, indicate that GLIS3 has a distinct

pioneering function in the activation of human INS in an endog-

enous chromosomal context and indicate that c.-331C > G mu-

tation impairs this function.

DISCUSSION

We have examined the in vivo consequences of two gene-regu-

latory defects that cause diabetes mellitus. We studied an

extended cohort of patients with neonatal diabetes and provide

firm human genetic evidence that the CC element of the human

INS gene is selectively vulnerable to loss-of-function mutations.

We humanized a large genomic regulatory region in mice and

demonstrated that a neonatal diabetes point mutation in this

element disrupts an essential pioneering step in the activation

of the human INS gene. We further demonstrate that GLIS3,



Figure 6. GLIS3 activates the endogenous

INS gene and requires an intact CC element

(A) Transfection of candidate transcription factors

or PDX1 as a positive control, along with INS pro-

moter (wild-type or c.-331C > G) luciferase re-

porter plasmids in ENDOCb-H1 cells. Statistical

comparisons correspond to GLIS3 versus empty

expression vectors, both with a wild-type reporter

plasmid, or for hGLIS3 vector, the wild-type versus

c.-331C > G reporter plasmid.

(B) ChIP-seq shows GLIS3 binding to the INS

promoter (arrow) in human islets.

(C) GLIS3 activates INS in heterologous cell types.

HEK293T, MCF7, or SW480 cells were transfected

with plasmids encoding indicated transcription

factors or left untreated (unt). INS mRNA was

calculated as INS toGAPDHmRNA ratios3 1,000.

Significance was calculated relative to untreated

samples in 3 independent experiments.

(D) FAIRE assessment of accessible chromatin in

transfected HEK293T cells. FAIRE DNA was

quantified by PCR and expressed as percentage of

input DNA and fold enrichment over untreated

cells. Statistical significance was calculated rela-

tive to untreated samples (n = 3 independent ex-

periments). Expectedly, signal from NANOG and

GAPDH did not change.

(E) GLIS3-dependent activation of INS in fibro-

blasts obtained from HIPKI (n = 7) and HIPKI-C331G

(n = 10) embryos. Fibroblasts were transduced

with mouse GLIS3, MAFA, PDX1, and NEUROD1

lentivirus, and RNAwas analyzed after 2 days. Two

independent experiments were performed with

cells from 7HIPKI and 10 HIPKI-C331G embryos from

two litters. Error bars are SEM; asterisks are Stu-

dent’s t test; *p < 0.05; **p < 0.001; ***p < 0.0001.
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which is also mutated in neonatal diabetes and harbors poly-

genic diabetes risk variants (Barrett et al., 2009; Dupuis et al.,

2010; Senée et al., 2006), has a unique role in the activation of

INS gene chromatin mediated by the CC element that is mutated

in neonatal diabetes. These results revealed cis and trans regu-

lators of an essential mechanism for developmental activation of

the endogenous INS gene.

Transcriptional regulatory DNA variants play a central role in

human disease (Miguel-Escalada et al., 2015), yet so far, most ef-

forts have investigated their function in experimental systems that

do not consider their in vivo impact (Cannon and Mohlke, 2018;

Corradin and Scacheri, 2014; Kircher et al., 2019). This is a major

limitation, because it is currently clear that gene regulation entails

a complex interplay between elements that are difficult to repro-

duce outside of an in vivo context, including chromatin structure,

epigenetic chemical modifications, or noncoding RNAs. Such

factors are highly dynamic throughout development and physio-

logical settings. Importantly, in vitro models cannot easily
examine transcription factor-DNA interac-

tions that overcome repressed chromatin

states. Many transcription factors can

only bind recognition sequences in acces-

sible DNA, whereas a subset of transcrip-

tion factors have the ability to bind to
nucleosomal-bound DNA and to reprogram silent chromatin

(Soufi et al., 2015; Zaret and Carroll, 2011). Such pioneer func-

tions play a major role in differentiation and cellular programming

and should thus be studied with in vivo approaches that recapit-

ulate salient genomic and chromatin contexts.

Previous work with a trans-species aneuploid model showed

that the human chromosome 21 can recapitulate human cell-

specific regulatory landscapes in mice (Wilson et al., 2008).

Our study has now shown that a human�3.1-kb genomic region

could be integrated into an orthologous region of another

mammal and recapitulate stage- and cell-specific functions.

Importantly, we have modeled a human noncoding mutation in

an extended human regulatory sequence integrated in an orthol-

ogous mouse locus, thereby extended earlier models that intro-

duced human mutations in an orthologous mouse sequence

(Zhu et al., 2019). This in vivo strategy was essential to model

CC element mutations, because systematic in vitro binding

studies and episomal reporter assays have disclosed >16
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binding activities and functional elements in the human insulin

promoter that do not appear to harbor mutations that are patho-

genic in humans (Bonnefond et al., 2011; Docherty et al., 2005;

Garin et al., 2010; German et al., 1995; Melloul et al., 2002; Oda-

giri et al., 1996). Interestingly, a mutation of a 34-bp region that

contains the CC element in randomly integrated human INS

promoter transgenics did not significantly alter promoter activity

(Itier et al., 1996). Our humanizedmodel showed that the c.-331C

>Gmutation did not prevent INS chromatin priming in pre-differ-

entiated cells but disrupted H3K4 trimethylation, chromatin

accessibility, and transcription factor binding to the INS pro-

moter in differentiated b cells. This indicates that the CC element

acts as an essential seeding site for chromatin opening and tran-

scriptional activation of the INS promoter in b cell development.

It also shows that the essential function of this element can only

become fully apparent in a natural chromatinized environment,

such as that of human patients or mutant HIP mice.

Our studies also show that the Kr€uppel-like zinc finger protein

GLIS3 activates the human INS gene in vivo. This extends

studies showing that GLIS3 binds the mouse Ins2 promoter

in vivo and the human INS CC element in vitro (Kang et al.,

2009; ZeRuth et al., 2013). Furthermore, pancreatic Glis3-defi-

cient and Glis3+/� mice show severe abnormalities in insulin

expression (Scoville et al., 2019; Yang et al., 2013). Importantly,

our studies now show that GLIS3 has a selective ability among

known INS gene regulators to activate INS in cellular environ-

ments in which this locus is repressed. It is interesting to note

that GLIS1, a GLIS3 paralog, has a major impact on reprogram-

ming of pluripotent cells from somatic cells in the presence of

other pluripotency transcription factors (Maekawa et al., 2011),

and GLIS3 has a similar reprogramming function in some so-

matic cell lineages (Lee et al., 2017). It is therefore likely that

GLIS3 can derepress diverse target genes through combinatorial

interactions with cell-specific transcription factors. We have

further shown that the c.-331C > G mutation prevented GLIS3-

dependent activation of both episomal and integrated human

INS. These findings, therefore, provide a common mechanism

for genetic defects in GLIS3 and the INS CC element.

Our studies, therefore,uncover anunanticipatedprotagonismof

GLIS3 and theCCelement of the INS promoter to initiate an active

chromatin stateat thehuman INSgene.Ourfindingsare relevant to

understanding genetic mechanisms underlying diabetes, as well

as for efforts to use cis-acting sequences and transcription factors

to activate b cell genes for replacement therapies (Bakhti et al.,

2019; Ding et al., 2013; Zhou and Melton, 2018).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

GLIS3 Yang et al. (2011); L. Chan lab, Baylor

College of Medicine, Texas, USA

PMID 21786021

H3 mono methyl K4 Abcam ab8895

Histone H3 (acetyl K27) Abcam ab4729

H3 tri-methyl K4 Millipore 04-745

FLAG M2 (against GLIS3-FLAG) Sigma FLAG-M2 F3165

PDX1 BCBC Ab2027

Insulin Dako A0564

gunie pig anti-Glucagon MilliporeSigma 4031-01F

rabbit anti glucagon Dako A0565

Somatostatin Dako A0566

GFP R&D Systems AF4240

Immunoflourescence secondary antibodies Jackson immunoResearch Cy3, Cy5 and Alexa flour 488

Biological samples

Human Islets European Consortium on Islet

Transplantation (ECIT) AND Islets for Basic

Research Program supported by the

Juvenile Diabetes Research Foundation

https://ecit.dri-sanraffaele.org and

JDRF-program 2-RSC-2019-724-I-X

Chemicals, peptides, and recombinant proteins

Antibody diluent DAKO S3022

b-2-mercaptoethanol Sigma-Aldrich M3148-25ML

BSA Sigma-Aldrich A3059

BSA (for Endo-C culture only) Roche 10775835001

Calf Serum Sigma-Aldrich C8056-100ML

Collagenase Roche 11215809103

Diethylaminoethyl (DEAE) Sigma-Aldrich 67578-5G

DMEM Lonza be12-604f

DMEM 5.5mM Glucose Thermofisher Scientific 31885023

dsDNA BR assay kit Thermofisher Scientific Q32853

dsDNA HS assay kit Thermofisher Scientific Q32854

ECM gel Sigma-Aldrich E1270-10ML

EDTA Thermofisher Scientific AM9260G

Ethanol (immunoflourescence) Panreac Applichem, Spain 141086.1211

Ethanol Merck Millipore 108543

Fetal Calf Serum (FBS) Cambrex 14-801/ 91s1810-500

Fibronectin Sigma-Aldrich F1141

Formaldehyde Calbiochem 344198

Glucose Sigma-Aldrich G-8270-1KG

Glycine Sigma-Aldrich 50046-250G

HBSS Invitrogen 14060-040

HEPES Sigma-Aldrich H7523-50G

Histopaque 1077 Sigma-Aldrich 10771-500ml

Histopaque 1119 Sigma-Aldrich 11191-100ml

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

L-Glutamine Cambrex BE17-605E

LiCl Sigma-Aldrich L9650-100G

Lipofectamine 2000 Invitrogen 11668-019

NEBNext Ultra DNA Library Prep Kit New England Biolabs E7370L

Newborn calf serum (Endo-C during

passage)

GIBCO 16010-159

Nicotinamide Sigma-aldrich 481907

Normal donkey serum Jackson Immunoresearch 017-000-121

NP-40 substitute IGEPAL CA-630 Sigma-Aldrich I8896

Paraformaldehyde Agar Scientific R1026

PBS Sigma-Aldrich D-8537

Penicillin Lonza DE17-602E/ 17-745E

Phenol chloroform Sigma-Aldrich 77617-100ML

Power SYBR green mastermix Applied Biosystems 4368702

Protease inhibitor cocktail Roche 4693132001

Protein A Sepharose beads Ge Healthcare 17-0780-01

Protein G Sepharose beads Ge Healthcare 17-0618-01

Proteinase K Fermentas EO0492

Qiaquick columns QIAGEN 28106

RNase A Sigma-Aldrich R4875-100MG

RPMI 1640 medium Lonza BE12-702F

RPMI 1640 medium- without glucose Lonza BE12-752F

SDS Sigma-Aldrich 71736-500ML

SDS (ChIP) Invitrogen 15553-027

Sodium selenite Sigma-Aldrich S9133

Sodium-chloride Sigma-Aldrich S3014

Sodium-deoxycholate Sigma-Aldrich 30970-100G

Stratagene Site directed mutagenesis kit Stratagene (currently Thermofisher) A13282

Streptomycin Lonza DE17-602E/ 17-745E

Superscript III Reverse Transcriptase Invitrogen 18080093

SYBR green mastermix Applied Biosystems 4368708

TaqMan Probes Applied Biosystems costom

Transferrin Sigma-Aldrich T8158-100MG

TriPure reagent Invitrogen/ Roche 11667165001

Tris-HCL Life Technologies 15568-025

Trypsin-EDTA 0.05% GIBCO 25300062

Xylene PanReac/AppliChem 211769.1714

Critical commercial assays

Dual-LuciferaseReporter Assay System Promega E1960

Deposited data

GLIS3 ChIP-seq in human islets This paper GSE151405

H3K4me1, Human fetal pancrease Cebola et al., 2015 PMID: 25915126

H3K4me3, Human fetal pancrease Cebola et al., 2015 PMID:25915126

H3K4me1, Human donor-derived islet Pasquali et al., 2014 PMID:24413736

H3K4me3, Human donor-derived islet Pasquali et al., 2014 PMID:24413736

H3K27ac, Human donor-derived islet Pasquali et al., 2014 PMID:24413736

PDX1, Human donor-derived islet Pasquali et al., 2014 PMID:24413736

NKX6-1, Human donor-derived islet Pasquali et al., 2014 PMID:24413736

FOXA2, Human donor-derived islet Pasquali et al., 2014 PMID:24413736

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

MAFB, Human donor-derived islet Pasquali et al., 2014 PMID:24413736

RNA-seq, Human donor-derived islet Akerman et al., 2017 PMID:28041957

Experimental models: cell lines

EndoCb-H1 Philippe Ravassard Laboratory N/A

Mouse embryonic fibroblasts (MEFs) Generated in this study N/A

HEK293T ATCC ATCC CRL-11268

MCF7 ATCC HTB-22

SW480 ATCC CCL-228

Experimental models: organisms/strains

C57BL/6 Charles River C57BL/6 (inbred)

HIPKI, HIPKI-C331G Generated in this study N/A

Oligonucleotides

Primers used in this study - Table S3 IDT N/A

Taqman Probe Ins1 Applied Biosystems Mm01259683_g1

Taqman Probe Ins2 Applied Biosystems Mm00731595_gh

Taqman Probe INS Applied Biosystems Hs02741908_m1

Taqman Probe Actb Applied Biosystems Mm00607939_s1

Taqman Probe ACTB Applied Biosystems Hs01060665_g1

Software and algorithms

FASTQC Babraham institute https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

MACS2 Zhang et al., 2008 https://github.com/macs3-project/MACS/

wiki/Install-macs2

Picard Suite Broad Institute https://broadinstitute.github.io/picard/

Rstudio RStudio Team (2020). RStudio:

Integrated Development for R.

https://www.rstudio.com/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Ildem Akerman (i.akerman@

bham.ac.uk).

Materials availability
Materials generated in this study are available upon request from the lead contact.

Data and code availability
Accession number for GLIS3 ChIP-seq data is GEO: GSE151405 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE151405).

All code generated during this study is available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients with monogenic diabetes
The study was conducted in accordance with the Declaration of Helsinki principles with informed parental consent given on behalf of

children. Patients reported in this study comprise all probands and family members with INS promoter homozygous or compound

heterozygous mutations sequenced in the Exeter Genomics laboratory, and 3 additional patients from the original joint description

of recessive INS mutations (DM1293.1, DM1293.2 and DM1265 in Table S1). The coding, flanking intronic regions and up to 450 bp
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upstream of the INS transcriptional start site (NM_000207.2) were analyzed by Sanger sequencing as previously described

(Garin et al., 2010). Clinical information was provided by the referring clinicians via a neonatal diabetes request form (available at

https://www.diabetesgenes.org) and from clinical notes.

Generation of HIPKI and HIPKI-C331G mice
Mouse experiments were conducted following procedures approved by the Ethical Committee of Animal Experimentation of the Uni-

versity of Barcelona. Targeted replacement of Ins2 with human INS 50 flanking sequences driving Ins2 and GFP was performed as

schematized in Figure 1 (genOway). The exact sequences of these regions are provided in File S1. In brief, targeting vectors were

generated with a 3.10 kb unmodified or mutated (c.C331G) 50 flanking INS region, Ins2 exon 1, intron, and exon 2, an IRES-GFP re-

porter cassette inserted in the 30 untranslated region of Ins2 exon 2, followed by a neomycin selection cassette flanked by loxP sites.

This construct was flanked by 5.3 kb and 1.8 kb C57BL/6J mouse homology arms. Targeting of this vector was carried out by ho-

mologous recombination in C57BL/6J embryonic stem cells, using a diphtheria toxon A cassette for negative selection. Recombi-

nants were verified by PCR screening and Southern blotting. Four suitable clones resulted, which were used for blastocyst injections

and generation of the HIP knock-in mouse strains.-This was followed by CRE-mediated excision of the neomycin cassette in vivo,

and again verified by PCR screening and Southern blotting. The sequence of the replaced region was verified by Sanger sequencing.

Oligonucleotides used for genotyping are shown in Table S3.

Human islets
Human pancreatic islets were obtained through the European Consortium on Islet Transplantation (ECIT), Islets for Basic Research

Program supported by the Juvenile Diabetes Research Foundation (program 2-RSC-2019-724-I-X). Pancreatic islets were isolated

from multiorgan donors without a history of glucose intolerance (Nano et al., 2015), shipped in culture medium and re-cultured at

37�C in a humidified chamber with 5% CO2 in glucose-free RPMI 1640 supplemented with 10% fetal calf serum, 100 U/ml penicillin,

100 U/ml streptomycin and 11mM glucose for three days before analysis.

EndoCb-H1 cell line and culture
EndoCb-H1 cells were obtained fromP. Ravassard and cultured on plastic tissue culture vessels coatedwith 2 mg/ml Fibronectin and

1% extracellular matrix (ECM) (Sigma-Aldrich) and with the following media: DMEM containing 5.5 mM glucose (GIBCO), 2% bovine

serum albumin (BSA, Roche), 2 mM glutamine, 10 mM nicotinamide, 100 international units (U)/ml penicillin, 100 mg/ml streptomycin

(P/S), 50 mM b-2-mercaptoethanol, 5.5 mg/ml transferrin and 6.6 ng/ml sodium selenite at 37�C in a humidified chamber with 5%CO2.

MEF, HEK293T, MCF7 and SW480 cultures and cell lines
Mouse embryonic fibroblasts (MEFs) were obtained from E15.5 HIPKI and HIPKI-C331G mouse embryos by clipping the tail tips and

culturing in media (DMEM (with glucose) supplemented with 10% fetal calf serum, 100 U/ml penicillin, 100 U/ml streptomycin at

37�C in a humidified chamber with 5% CO2). HIPKI and HIPKI-C331G MEFs, HEK293T, MCF7 and SW480 cells were maintained in

DMEM (Lonza) and supplemented with 10% fetal calf serum, 100 U/ml penicillin, 100 U/ml streptomycin at 37�C in a humidified

chamber with 5% CO2.

METHOD DETAILS

Immunofluorescence
Pancreases were processed for immunofluorescence as previously described (Maestro et al., 2003).Tissues were fixed in 4% para-

formaldehyde-PBS overnight at 4�C with gentle rotation, then washed once in 20 mL cold PBS and embedded in parrafin. Paraffin

blocks were cut into 4 mm sections, deparaffinized with xylene by washing twice with a 15 minutes incubation. Xylene was removed

and the blocks were rehydrated through serial washes with 5 mL ethanol-water (100% Ethanol incubated for 5 min; 95% Ethanol

incubated for 5 min; 75% Ethanol incubated for 5 min; 100% Water incubated for 5 min) followed by an incubation with PBS for

5 min. Sections were blocked for 30 min at room temperature in antibody diluent (DAKO Corporation) with 3% normal serum-

PBS solution, using serum from the same species as the secondary antibody, and incubated overnight at 4�Cwith primary antibodies

diluted in 100 mL of blocking buffer per section. Antibody dilutions used were: anti-insulin 1:200, anti somatostatin 1:200, rabbit anti

glucagon 1:200, guinea pig anti glucagon 1:1000, anti-GFP 1:200. We then incubated one hour at room temperature with secondary

antibodies also diluted in blocking buffer (100 ml/section) at the manufacturer’s recommended concentration (1:400 for fluoro-

chromesCy3 andCy5 and 1:800 for Alexa 488 fluorochrome). Images were acquired using Leica TSE confocal microscope for immu-

nofluorescence. Antibodies used are shown in Table S3.

Mouse islets and embryonic pancreas isolation and processing
Mouse islets were isolated using previously described protocols (Párrizas et al., 2001; van Arensbergen et al., 2010). C57BL/6, HIPKI

or HIPKI-C331G mice were anesthetized with urethane (15% solution, 1 ml/kg) and sacrificed. Pancreatic islets were isolated using the

following procedure: a cannula tube was inserted in the main pancreatic duct and the pancreas was inflated with Hanks’ balanced

salt solution (HBSS) buffer freshly added with 3U Collagenase P per ml. The pancreas was then removed, placed in a 15 mL falcon
Cell Reports 35, 108981, April 13, 2021 e4
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tube and digested for 10 min at 37�C in a water bath with constant, gentle agitation. The cell suspension was washed twice in 15 mL

cold HBSS–0.5% bovine serum albumin (HBSS-BSA), resuspended in 5 mL cold HBSS–BSA and gently passed through a needle

(0.8 mm diameter, 25 mm gauge). Islets were then washed by adding 10 mL of HBSS-BSA and sedimented for 3 minutes followed

by removal of 10mL from the top half of the solution (islets sediment to the bottom 5ml). Wash procedurewas repeated 3 times. Islets

were then sedimented at 1800 rpm (580 g) for 1 min at 4�C and supernatant was removed. Islets were resuspended in 7mL of HBSS-

BSA and gently placed on top of 7 mL of histopaque mixture. Histopaque mixture is made freshly by mixing a 7:3 ratio of Histopaque

1077 and Histopaque 1119 (Sigma Aldrich). Histopaque mixture is heavier than HBSS-BSA and thus two distinct layers are formed.

The islets were collected at the interphase of the two layers through centrifugation at 2300 rpm (950 g) for 20min at room temperature

(Acceleration = 5, Deceleration = 0). The islet-enriched fraction was aspirated from the interface, washed three times in cold HBSS–

0.5% BSA, and further purified by handpicking under a stereomicroscope. Isolated islets were incubated in 11 mM glucose RPMI

1640medium, supplementedwith 10% fetal calf serum, 100U/ml penicillin, and 100U/ml streptomycin at 37�C in a humidified cham-

ber with 5% CO2 for 48 hours after isolation. For ChIP experiments, mouse islets were immediately crosslinked with formaldehyde

after isolation and snap frozen at �80�C until use.

For isolation of embryonic tissue, embryos from timed-pregnancies were placed in cold PBS and dissected under themicroscope.

Entire embryonic pancreas or liver tissue was removed and placed in 1 mL Tripure (Invitrogen) reagent for RNA harvest.

FAIRE, ChIP and ChIP-Seq
ChIP, ChIP-seq (Chromatin Immunoprecipitation and sequencing) and FAIRE (Formaldehyde-Assisted Isolation of Regulatory Ele-

ments) were performed essentially as previously published protocols (Gaulton et al., 2010; Nammo et al., 2011; Pasquali et al.,

2014). ChIP experiments using antibodies against H3K4me1 and H3K4me3 were performed on �250 mouse islet equivalents

(IEQ) per sample, while ChIP experiments using antibodies against PDX1 were performed on �400 mouse IEQ per sample. FAIRE

experiments were performed on �250 mouse IEQ. GLIS3 ChiP-seq experiments were performed with �3000 human IEQ, using a

previously described antibody (Yang et al., 2011; Table S3).

For ChIP, all cells were fixed in 1% formaldehyde-PBS for 10 minutes at room temperature with gentle agitation. Fixation was

stopped with addition of glycine to a final concentration of 125mM for 5 minutes with gentle agitation. Fixed cells were washed twice

in cold PBS. Fixed islets were then suspended in sonication buffer and sonicated using Bioruptor (Diagenode) to a length of 200–

1000 bp (�12 minutes, 45sec ON, 45 s OFF). Samples were diluted with dilution buffer (1:4 ratio) to obtain 1% Triton X-100, 0.1%

SDS and 130 mM NaCl and were precleared with high speed spin (12,000 rcf., 5 minutes) followed by incubation with protein

A+G-Sepharose beads (1:1) (20 ml/sample) for 2 hours at 4�C. Input DNA (1% of volume of sample) was collected and frozen. Sam-

ples were then subjected to immunoprecipitation with the indicated antibodies (1 mL of H3K4me1/3 and PDX1 and 3 mL of GLIS3

antibodies, Antibody sources are provided in Table S3) overnight at 4�C with gentle rotation. Immune-complexes were collected

by incubation with protein A or G-Sepharose (15 ml/sample) for 2 h at 4�C with gentle rotation. Beads were washed using standard

ChIP wash buffers (1x 1 mL low salt wash buffer, 1x 1 mL high salt wash buffer, 1x 1 mL LiCl buffer, 3x 1 mL TE buffer) and immu-

nocomplexes eluted with 300 mL elution buffer (incubation at room temperature for 15minutes with gentle agitation). Input and eluted

ChIP DNAs were subjected to reverse cross-linking (65�C for 12 hours), RNase A (20 mg) and Proteinase K digestion (90 mg), and pu-

rification with Qiaquick columns (QIAGEN).

For FAIRE assays, sonicated chromatin was subjected to phenol chloroform extraction (2x) without immunoprecipitation and wash

steps62,63.

ChIP Buffers
Sonication Buffer: (2% Triton X-100, 0.5%SDS, 100mMNaCl, 1 mMEDTA,10mMTris-HCl pH 8.0 and 1x protease inhibitor cocktail

(freshly added)

Dilution Buffer: 0.75 % Triton X-100, 140 mM NaCl, 1 mM EDTA, 0.1% Na-deoxycholate, 50 mM HEPES pH8.0, 1x protease

inhibitor cocktail (freshly added)

Low Salt Wash Buffer: 20 mM Tris-HCl, pH 8.0, 140mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% Na Deoxycholate, 0.1% SDS,

1x protease inhibitor cocktail (freshly added)

High Salt Wash Buffer: 20 mM Tris-HCl, pH 8.0, 500mM NaCl, 1mM EDTA, 1% Triton X-100, 0.1% Na Deoxycholate, 0.1% SDS,

1x protease inhibitor cocktail (freshly added)

LiCl Buffer: 20mM Tris-HCl (pH 8.0), 250mM LiCl, 1mM EDTA, 0.5% Na Deoxycholate, 0.5% NP-40 substitute (IGEPAL),

1x protease inhibitor cocktail (freshly added)

TE Buffer: 10mM Tris-HCl (pH 8.0), 1mM EDTA, 1x protease inhibitor cocktail (freshly added)

Elution Buffer: 10mM Tris-HCl (pH 8.0), 1mM EDTA, 1% SDS, 1x protease inhibitor cocktail (freshly

ChIP and FAIRE Library Preparation and sequencing
Sequencing and processing were performed as described (Pasquali et al., 2014). Input DNA samples were quantified with QUBIT

dsDNA BR assay kit (Q32853), and ChIP DNA samples were quantified with QUBIT dsDNA HS assay kit (Q32854). Quantitation
e5 Cell Reports 35, 108981, April 13, 2021



Article
ll

OPEN ACCESS
was performed using Qubit 2.0 fluorometer. ChIP-Seq DNA libraries were prepared from 5-10 ng of Input DNA or ChIP DNA using

NEBNext Ultra DNA Library Prep Kit for Illumina sequencing (New England BioLabs, # E7370L) by the Imperial College Genomics

Facility. Libraries were sequenced using Illumina HiSeq2500.

ChIP and FAIRE data analysis
Reads were subjected to quality control analysis using FastQC (v0.11.5) followed by trimming by the Picard suite (default options).

Trimmed reads were aligned to the human genome (hg19) using bowtie (Langmead and Salzberg, 2012) (v2.2.6, default options).

Peaks were called using MACS2 (Zhang et al., 2008) (v2.2.1, q-value cutoff 0.05, band width 300) as enrichment over ChIP Input

DNA. GLIS3-bound regions (peaks) are provided in Table S2.

References for new and previously reported human islet and fetal pancreas ChIP-seq datasets used in this study (Cebola et al.,

2015; Morán et al., 2012; Pasquali et al., 2014) are provided in Table S4.

Quantitative PCR analysis
RNA was isolated using TriPure reagent as described (Akerman et al., 2017) following manufacturer’s instructions. RNA quality was

ascertained with a 2100 Agilent Bioanalyzer (RIN > 8). Ins2, INS, ActB and Ins2 intronic transcripts were measured using TaqMan

(Applied Biosystems) probes, while other regions were quantified using oligonucleotide primers and SYBR green mastermix (Illu-

mina). cDNA synthesis was carried out using Superscript III (Invitrogen) and real-time PCR was performed with the ABI 7300 Real

Time PCR system using the Power SYBR Green reagent (Applied Biosystems). Serial dilutions of genomic DNA (5 data points)

were used to establish a standard curve. SDS software (Applied Biosystems) was used to generate quantitative values based on

the standard curve with arbitrary units. All mRNA levels were normalized to ActB or Hprt as indicated in Figure legends. Oligonucle-

otides and TaqMan probe sequences can be found in Table S3.

In silico motif analysis
To identify candidate transcription factors that bind the CC element, we performed in silico motif searches using the MEME suite

(Bailey et al., 2009) using the normal andmutated (c.331 C >G) sequences. Analysis of de novo and previously characterized position

weight matrixes (PWM) was performed with HOMER (v3.12) (Heinz et al., 2010) using peak summit coordinates and flags -size

�50,50 -len 6,8,10,12.

GLIS3 knockdown in EndoCb-H1 cells
Lentiviral-mediated knockdown of GLIS3 in the human pancreatic b-cell line EndoCb-H1 was performed with two independent

shRNAs placed in artificial miRNAs as described in detail (Akerman et al., 2017). In brief, five non-targeting and two GLIS3-targeting

amiRNAs were designed using BLOCK-IT software (Invitrogen) and cloned into pTRIP-CMV gateway vectors as described (Akerman

et al., 2017). These were then used to produce lentiviruses (Scharfmann et al., 2014), which were transduced into the EndoC-bH1

cells. For knockdown experiments, cells were dissociated with trypsin (0.05%), washed twice with room temperature PBS. 105 cells

per well (24 wells) were incubated with lentivirus (60 ng of p24 capsid protein) and 10mg/ ml Diethylaminoethyl (DEAE) in 400 mL of

medium for 1 hour at 37�C. Cells were harvested at 80 hours post-transduction, and RNA levels were assessed using real time

PCR. The efficiency of transduction was judged to be > 95%based onGFP expression. Oligonucleotides used for shRNAs are shown

in Table S3.

Luciferase assays
INS promoter activity was measured by transfection of a reporter plasmid: pSOUAPRL-251hINS-Luc (Roland Stein, Vanderbilt Uni-

versity), which contains 251 bp of human INS proximal promoter DNA located in front of the Firefly luciferase cDNA. The c.C331G

mutationwas introduced using site directedmutagenesis (Garin et al., 2010) using Stratagene site directedmutagenesis kit, following

manufacturer’s instructions. The presence of the mutation was verified by Sanger sequencing. The plasmids (0.5 mg/24 well) were

transfected into EndoCb-H1 with Lipofectamine 2000 at 4:1 luciferase:overexpression vector ratio as previously described (Allen

et al., 2011), followingmanufacturer’s instructions. We co-transfected a Renilla expressing construct (pGL4.75, 0.02 ng) as a normal-

izer to correct for differences in transfection efficiency. Expression vectors used in co-transfections are given in Table S3. Luciferase

activity was measured at 48 hours post- transfection using a luminometer (Promega Veritas Microplate luminometer) with the re-

agents of the Promega Dual-Luciferase Reporter Assay System.

Activation of endogenous INS in heterologous cell types
MEFs were transduced with lentiviral vectors, one encoding the transcription factors PDX1, NEUROD1 and MAFA in a polycistronic

transcript, and the other mouse GLIS3-DN155 (Beak et al., 2008; Table S3). Cells were harvested 48 hours post transduction and

subjected to quantitative PCR analysis. HEK293T, MCF7 and SW480 cells were transfected using Lipofectamine 2000, following

manufacturer’s instructions. We note that the omission of MAFA or substitution of NEUROD1 with NEUROG3 in such experiments

resulted in similar INS induction levels. For microarray hybridization experiments described in Figure S5, harvested RNA was hybrid-

ized to Gene ST 1.0 Affymetrix arrays and the data was analyzed on Affymetrix TAC (v1.0.24) software as described (Pasquali et al.,

2014).
Cell Reports 35, 108981, April 13, 2021 e6
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We used Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for mass spectrometry identification of proteins that specif-

ically bound to unmodified or mutated (c.C331G) double stranded oligonucleotides containing a 50 linker and PstI restriction site

(Table S3), exactly as described in detail (Mittler et al., 2009), using MIN6 immortalized mouse beta-cells (Miyazaki et al., 1990).

MIN6 cells were maintained in DMEM (4.5g/L Glucose), 15% fetal calf serum, 100 U/ml penicillin, 100 U/ml streptomycin at 37�C
in a humidified chamber with 5% CO2) and 50 mM beta-mercaptoethanol. SILAC identified 4 proteins whose binding was affected

by the mutation: Krueppel-like factor 13 (UniProtKB/Swiss-Prot Q9Y2Y9), Krueppel-like factor 16 (UniProtKB/Swiss-Prot Q9BXK1),

MAZ (UniProtKB/TrEMBL Q8IUI2) and ZFP37 (UniProtKB/Swiss-Prot Q9Y6Q3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Boxplots were drawn using Rstudio (v3.5). Line within the boxplot represents median, whereas the bounds of the box define the first

and third quartiles. Bottom and top of whiskers represent minimum and maximum numbers respectively for each boxplot. Dot plots

and bar plots were drawn using Excel. Where indicated, Student’s t test was used to calculate statistically significant differences

between samples.
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Figure S1. Related to Main Figure 1 
(A) UCSC genome browser snapshot of the region between the INS gene and the TH gene. Multiz Alignment 
representing the level of conservation between the displayed species is shown.  
(B) Glycemia from ad libitum-fed HIPKI and HIPKI-C331G mice. P values were calculated with Student’s t test. 
(C) Quantification of  Ins2-IRES-GFP mRNA in islets and a panel of tissues in HIPKI mice. Bars represent 
average values normalised to Actb mRNA from n=6 mice. Cerebellum and hypothalamus display ~50,000 and 
~850,000 fold less Ins2-IRES-GFP mRNA respectively, while no transcription is detectable in other tissues. 
(D) Measurements of intronic Ins2 transcript levels. Ins2 intronic transcripts, representing the amount of nascent 
transcription, was quantified using quantitative PCR with taqman probes in islets isolated from C57BL/6 mice 
(n=4) or HIPKI (n=6). 
(E) Nascent and spliced Ins2 RNA ratios in wild type and HIPKI mice. Intronic Ins2 transcript levels and Ins2 
transcript levels were quantified using taqman probes in islets isolated from C57BL/6 mice (n=4) or HIPKI (n=6). 
(F) Reverse transcription quantitative PCR for Pdx1, Glis3, NeuroD1, and MafA mRNAs from pancreatic islets 
from 3-5 month control C57BL/6 (n=4), HIPKI (n=6) and HIPKI-C331G (n=6) mice.  Values were normalized to Actb
or Hprt mRNAs. (*) Asterisk indicate significance <0.05 by ANOVA unpaired t=test.
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Figure S2. Related to Main Figure 4. 
Chromatin landscape of the human INS locus in human pancreatic islets. ChIP-seq profiles of activating 
histone marks H3K4 trimethylation and H3K27 acetylation12. All scales represent RPKMs. 
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Figure S3. Related to Main Figure 6 
(A) Candidate DNA-binding transcription factor regulators of the INS gene that underlie the deleterious 
effects of the c.-331C>G mutation. Four transcription factors were selected based on differential binding to 
c.-331C vs. c.-331C>G double stranded oligonucleotides in SILAC experiments in MIN6 b cells, while 
others were selected based on in silico predicted differential binding to c.-331C vs. c.-331C>G INS
sequences or published studies from indicated references. The summary table emphasizes that amongst 
these candidates only GLIS3 led to activation of the unmodified episomal insulin promoter plasmid, and 
activated INS mRNA in non-pancreatic cell lines in the presence of islet transcription factors as shown in 
Figure S5. 
(B) Electromobility shift assays (EMSA) from HEK 293T cells transfected with human GLIS3Δ410 cDNA
show binding to CC element oligonucleotides and BS2, another previously reported GLIS3 recognition
sequence in the INS 5’ flanking regions29, but not to the CC element carrying the -331C>G mutation. 
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Figure S4. Related to Main Figure 6 
(A) The three most enriched position weight matrixes (PWMs) at GLIS3-bound regions in human islets included 
a previously identified GLIS3-bound PWM (left panel). Discovery of de novo enriched PWMs identified  
sequence PWMs matching known GLIS3 recognition sequences, including one matching the INS CC element 
(right panel).
(B) Examples of GLIS3-bound regions in human pancreatic islets at selected loci, along with binding profiles of 
other human pancreatic islet transcription factors.
(C) Quantitative reverse-transcription PCR of INS and GLIS3 mRNAs after lentiviral-mediated knockdown of 
GLIS3, using two independent shRNA sequences, in EndoCb-H1 human b-cells. Student’s t-test * p < 0.05 or ** 
p < 0.001. 
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Gene 

Symbol
Gene Title

PNM* vs Unt 

(Fold 

Change)

Glis3+ PNM* 

vs Unt (Fold 

Change)

INS insulin 1.03 4.54
MAP2K5 mitogen-activated protein kinase kinase5 3.78 3.42

DLL1 delta-like 1 (Drosophila) 2.02 3.36

NKX2-2 NK2 homeobox 2 2.03 3.21

ATOH7 atonal homolog 7 (Drosophila) 2.45 3.00

CDKN1C cyclin-dependent kinase inhibitor1C 1.37 2.96

SECTM1 secreted and transmembrane 1 1.32 2.88

C8orf47 chromosome8 open reading frame47 2.36 2.85

EDNRB endothelin receptor type B 1.87 2.83

Figure S5. Related to Main Figure 6 
(A) GLIS3, but not other candidate transcription factors that bind CC, activate INS in a heterologous cell type. 
HEK 293T cells were either left untreated (Unt) or transfected with plasmids overexpressing the indicated 
transcription factors along with NEUROD1 and PDX1. INS mRNA are INS to GAPDH mRNA ratios X 1000. 
Statistical significance was calculated relative to untreated samples (n = 3 independent experiments). * 
Student’s t-test, p < 0.05. Analogous experiments were performed in the presence of MAFA, or NEUROG3 
instead of NEUROD1, yielding similar results. 
(B) Table showing the list of genes most impacted by the overexpression of GLIS3+ PNM (PDX1, NEUROD1, 
MAFA) vs. PNM alone, in HEK 293T cells. Cells were either left untreated or transfected with the indicated 
transcription factors. At 3 days post transfection, RNA was quantified using microarrays. Values indicate fold-
difference in expression relative to control cells. This experiment was performed with a single replicate and 
provides an unbiased confirmation that INS was the single most induced gene when GLIS3 was added to the 
transcription factor cocktail. 
(C) ChIP of FLAG-tagged GLIS3 in HEK 293T cells transfected with the indicated transcription factors. ChIP
DNA was quantified by RT-PCR and expressed as percentage of input DNA and as fold enrichment over 
untreated HEK 293T cells. Statistical significance was calculated relative to untreated (Unt) samples using 
Student’s t-test (n=3 experiments). As expected, NANOG promoter and GAPDH enhancer showed no changes 
between treatments.
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