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SUMMARY
Viral infections induce a conserved host response distinct frombacterial infections.We hypothesized that the
conserved response is associated with disease severity and is distinct between patients with different out-
comes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years in-
fected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts
from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across
three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and
myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined
distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled
from the protective host response in patients with severe outcomes. These findings were consistent, irre-
spective of age and virus, and provide insights to accelerate the development of diagnostics and host-
directed therapies to improve global pandemic preparedness.
INTRODUCTION

Outbreaks of infectious diseases globally have been

increasing steadily over the last 40 years (Christiansen,

2018). The first two decades of the 21st century have been

marked by seven outbreaks of novel viruses, including severe

acute respiratory syndrome coronavirus (SARS-CoV-1), H1N1

influenza, Middle East Respiratory Syndrome Coronavirus

(MERS-CoV), chikungunya, Ebola, Zika, and severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2). Four of these

outbreaks resulted in pandemics in the last decade (Morens

and Fauci, 2020). With each outbreak, a typical approach

has been to pursue a pathogen-specific strategy. With novel

viruses, when our biological understanding of the causative

agent is poor, the acquisition of sufficient knowledge to

manage the disease is time-consuming and expensive. Adopt-

ing a pathogen-agnostic strategy, such as through the identi-
Immunity 54, 753–768, A
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fication of an underlying conserved host response across pa-

tient populations, could greatly accelerate the development of

diagnostics and therapies to manage future emerging out-

breaks. For instance, most approved antiviral drugs are effec-

tive against a small number of viruses, and highly susceptible

to resistance (Bekerman and Einav, 2015). In contrast, identi-

fying conserved host biology, such as host proteins required

by multiple viruses, could be used to develop broad-spectrum

antivirals. Similarly, a conserved host response to viral infec-

tions could be used to develop diagnostics and prognostics.

Several studies have repeatedly demonstrated the utility of

the host immune response to pathogens to accurately diag-

nose the presence and type of infections (Andres-Terre

et al., 2015; Sweeney et al., 2015; 2016b; Mayhew et al.,

2020). We have previously identified a conserved host

response to distinguish bacterial and viral infections (Andres-

Terre et al., 2015; Sweeney et al., 2015; 2016b). We have
pril 13, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 753
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Figure 1. Conserved host response to viral infection, represented by the MVS, is associated with severity

(A) Datasets used for analysis divided into discovery and validation (left) and criteria for assigning viral infection severity categories to samples (right). ‘‘No

symptoms’’ includes individuals with asymptomatic viral infection or convalescents.

(legend continued on next page)
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also demonstrated that the conserved host immune response

to infection is detected earlier than symptom onset (Andres-

Terre et al., 2015; Sweeney et al., 2016a; Warsinske et al.,

2018; Gupta et al., 2020; Turner et al., 2020).

Here, we hypothesized that our previously described

conserved host response signature to respiratory viral infections,

called theMeta-VirusSignature (MVS) (Andres-Terre et al., 2015),

is also conserved in viral infections that cause severe disease,

including Ebola, SARS-CoV-2, and others, and it could be used

to identify common genes associated with detrimental and pro-

tective host immune responses, irrespective of the virus. We

tested these hypotheses by integrating 34 independent cohorts

comprising 4,780 blood transcriptome profiles and single-cell

RNA-seq profiles of 702,970 immune cells from 289 samples

fromhealthy controls (HCs) andpatientswith acute viral infection.

We found that the MVS is (1) present in SARS-CoV-2, Ebola, chi-

kungunya, influenza, and other viruses, (2) correlated with

severity, and (3) predominantly expressed in myeloid cells. Using

a patient trajectory differentiationmethod, we found that patients

with mild or severe viral infection follow different trajectories

comprised of four gene modules corresponding to protective

and detrimental host immune responses. We defined the se-

vere-or-mild (SoM) score that accurately distinguished patients

with non-severe and severe outcomes. By leveraging the biolog-

ical, clinical, and technical heterogeneity across data, we provide

strong evidence of a conserved host immune response to acute

viral infection, irrespective of the virus. Further analysis of these

conservedhost responsemodulescould lead to thedevelopment

of diagnostics, prognostics, and host-directed therapies for a

broad spectrum of viruses that could facilitate risk stratification

and targeted treatment of patients during the current pandemic

and in novel outbreaks that will inevitably arise in the future.
RESULTS

Data collection, curation, and preprocessing
We searched the public repositories for blood transcriptome pro-

files from patients with viral infection (STAR Methods). After

excluding datasets used todiscover theMVSpreviously, we iden-

tified 26 datasets composed of 4,780 samples from patients

across 18 countries infected with at least one of 16 viruses (Fig-

ure 1A, Table S1, and Data S1). Overall, these datasets included

abroadspectrumofbiological, clinical, and technical heterogene-

ity representedbybloodsamplesprofiled fromchildrenandadults

infected with a virus using either microarray or RNA sequencing.

We assigned a standardized severity category to each of the

4,780 samples (Figure 1A andSTARMethods). Briefly, wedivided

non-hospitalized samples into ‘‘no symptoms’’ or ‘‘mild,’’ and

hospitalized patients into ‘‘moderate,’’ ‘‘serious,’’ ‘‘critical,’’

and ‘‘fatal’’ categories based on the level of care required and
(B) ROC curves for distinguishing patients with viral infection of varying severity

(C) Distribution of theMVS scores across the severity of viral infection (1,674 samp

(JT) trend test was used to assess the significance of the trend of the MVS score

scores in two groups.

(D) Validation of correlation between the MVS score severity of viral infection in 4

or Ebola infection.

(E)Positivecorrelationbetween theMVSscoreand thenumberof viral readsdetecte

represents thenumberof viral reads; the y axis represents theMVSscore for eachsa
outcomes as described in the original publications (Figure 1A

and STAR Methods). We also defined two broader categories:

‘‘non-severe,’’ encompassing patients with mild and moderate

viral infection, and ‘‘severe,’’ encompassing patientswith serious,

critical, and fatal viral infection (Figure 1A). For cohorts that lacked

sample-level severity data, we assigned the same severity cate-

gory to each sample based on the cohort description.

MVS represents a conserved host response to viral
infection and is associated with severity
To test our hypothesis that a conserved host response to viral

infection is associated with severity, we co-normalized 1,674

blood transcriptomes (663 HCs, 167 asymptomatic/convales-

cent, 181 mild, 286 moderate, 286 serious, 80 critical, and 11

fatal) from 19 independent datasets, the majority of which were

infected with adenovirus, influenza, human rhinovirus (HRV), or

respiratory syncytial virus (RSV), using COCONUT (Figure 1A,

Table S1; STAR Methods) (Sweeney et al., 2016b). The MVS

score accurately distinguished patients with viral infection from

HCs across all datasets (Figure 1B, Figure S1A) and correlated

with severity (r = 0.75, p < 2.2e-16; Figure 1C). The MVS score

was higher in all infected patients compared to HCs (p < 2.2e-

16), regardless of symptoms, severity, and virus (Figure 1C). In

asymptomatic or convalescent patients, the MVS score was

marginally higher than in HCs (p = 0.039), but not different be-

tween patients with mild versus moderate severity (p = 0.26).

Across all datasets, the MVS score was correlated with viral

infection severity (0.43% R% 0.93), regardless of virus, geogra-

phy, or age (Figure S1B). In 405 samples from patients infected

with SARS-CoV-2, Ebola, or chikungunya across 4 datasets,

the MVS score was correlated with severity (0.33 % R % 0.78;

p % 1.8e-05; Figure 1D) and distinguished patients with viral

infection from HCs (Figure S1C). In three independent datasets

of blood samples from patients with either chikungunya or Ebola

infection, profiled using RNA-seq, we detected sequencing

reads from the corresponding viral RNA (STAR Methods). In

each of these three datasets, the MVS score significantly corre-

lated with the number of viral reads detected in blood (p% 6.1e-

4; Figure 1E). Further, in each dataset, both the number of viral

reads in blood and the MVS score decreased as patients pro-

gressed from acute infection to convalescence.

Collectively, our results show that a conserved host response

to viral infection, represented by the MVS score, is correlated

with the severity and the number of viral reads detected in blood

samples, irrespective of biological, clinical, or technical hetero-

geneity or the infecting virus.

Myeloid cells are the primary source of the MVS
Next, we investigated whether the MVS score is associated with

specific immune cell types. We integrated three single-cell
from HCs using the MVS score (1,674 samples in 19 datasets).

les in 19 datasets). Each point represents a blood sample. Jonckheere-Terpstra

over severity. p values using Mann–Whitney U test for the comparison of MVS

independent RNA-seq datasets from patients with SARS-CoV-2, chikungunya,

d inbloodsamplesRNA-seqdatasets.Eachpoint representsasample.Thexaxis

mple. p valueswerecomputedusingPearsoncorrelation test.SeealsoFigureS1.
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RNA-seq (scRNA-seq) datasets consisting of 702,970 immune

cells from 289 PBMC samples (258 SARS-CoV-2, 27 healthy, 2

influenza, 2 RSV) from 170 individuals across three independent

cohorts (Seattle, Atlanta, Stanford) (Table S2) (Arunachalam

et al., 2020; Su et al., 2020; Wilk et al., 2020). The Seattle Cohort

profiled 557,240 immune cells from 258 PBMC samples of HCs

and patients with SARS-CoV-2 infection (16 healthy, 94 asymp-

tomatic, 8 mild, 37 moderate, 78 serious, 21 critical, 3 fatal) using

CITE-seq. The patients with SARS-CoV-2 infection in the Seattle

Cohort were profiled at two time points: (1) near the time of a pos-

itive clinical diagnosis and (2) a few days later. The Atlanta Cohort

profiled 76,929 immune cells from 18 PBMC samples of HCs and

patients infectedwithoneof 3 viruses (5 healthy, 1moderate influ-

enza, 1 serious influenza, 2 serious RSV, 2 convalescent SARS-

CoV-2, 3 moderate SARS-CoV-2, 3 serious SARS-CoV-2, 1 fatal

SARS-CoV-2) using CITE-seq. Finally, the Stanford Cohort pro-

filed 68,801 immune cells from13PBMCsamples of HCs and pa-

tients with SARS-CoV-2 infection (6 healthy, 1 moderate, 3

serious, 2 critical, 1 fatal) using Seq-Well. Collectively, these three

cohorts included clinical, biological, and technical heterogeneity

at a single-cell level.

We integrated the three scRNA-seq cohorts using Seurat (Sat-

ija et al., 2015) (Figures 2A–2D, Figures S2A–S2C). Immune cells

across the three cohorts clustered into myeloid cells (mono-

cytes, myeloid dendritic cells, granulocytes, etc.), T andNK cells,

and B cells (Figures 2A and 2B, Figure S2A). The MVS score was

substantially higher in myeloid cells from hospitalized patients

with viral infection (Figures 2C–2E, Figures S2B and S2C) and

positively correlated with the severity of viral infection in myeloid

cells (R = 0.28, p = 2.4e-06), which was driven by CD14+ mono-

cytes (R = 0.45, p = 2.7e-14) compared to CD16+ monocytes

(R = 0.25, p = 2.4e-05) (Figure 2F). Further, proportions of

myeloid cells increased with severity (R = 0.46, p = 2.0e-15),

which was also driven by CD14+ monocytes (R = 0.54, p <

2.2e-16). Proportions of CD16+ monocytes decreased with

increasing severity of viral infection (R =�0.31, p = 2.2e-07) (Fig-

ure 2G). The MVS score in myeloid cells at the single-cell level

and proportions of myeloid cells were positively correlated (R =

0.34, p = 4.8e-09), which was also driven by CD14+ monocytes

(R = 0.47, p < 2.2e-16) (Figure 2H). Together, these results

showed that in response to a viral infection, proportions of and

the conserved host response to viral infection at a single-cell

level in CD14+ monocytes increase with severity.

Next, we performed in silico cellular deconvolution of blood

transcriptome profiles of 4357 patient samples from 32 indepen-

dent cohorts using immunoStates (Bongen et al., 2018; Chowd-

hury et al., 2018; Scott et al., 2019; Vallania et al., 2018) (Table

S3) to investigate if these changes in CD14+ and CD16+ mono-

cytes were also observed at the bulk transcriptome level. We

performed three multi-cohort analyses to compare changes in

estimated immune cell proportions in (1) non-severe viral infec-

tions compared to HCs, (2) severe viral infections compared to

HCs, and (3) severe compared to non-severe viral infections.

Similar to scRNA-seq analysis, proportions of total monocytes

were significantly higher in patients with non-severe viral infec-

tion compared to HCs (ES = 1.10, FDR = 4.33e-13), but not in

those with severe viral infection (Figures 2I–2J, Table S4). The

proportion of CD14+ monocytes increased significantly in pa-

tients with non-severe (ES = 1.12, FDR = 1.30e-21) and severe
756 Immunity 54, 753–768, April 13, 2021
(ES = 0.9, FDR = 6.56e-10) viral infection compared to HCs,

but were not different between patients with non-severe or se-

vere viral infection (Figures 2I–2K, Table S4). In line with the

scRNA-seq data, proportions of CD16+ monocytes were signif-

icantly lower in patients with severe viral infection compared to

HCs (ES = �1.16, FDR = 5.13e-08) and those with non-severe

viral infection (ES = �0.88, FDR = 1.73e-17) (Figures 2J–2K, Ta-

ble S4), but were unchanged in non-severe patients compared to

HCs (Figure 2I, Table S4).

Cellular deconvolution analysis also found that the proportions

of neutrophils were significantly higher in patients with severe

viral infection compared to HCs (ES = 1.24, FDR = 4.12e-16)

and those with non-severe viral infection (ES = 0.99, FDR =

4.33e-07) (Figure S2D, Table S4). These cells are likely low-den-

sity immature granulocytes typically found inpatientswith sepsis.

Collectively, our integrated analyses of 4646 samples across

35 independent cohorts using scRNA-seq and in silico deconvo-

lution of bulk transcriptome profiles showed that the conserved

host response to viral infections is predominantly from myeloid

cells, where proportions of CD14+ monocytes increased and

CD16+ monocytes decreased with increased severity of viral

infection.

MVS identifies distinct clusters of patients with non-
severe and severe viral infection
As expected, low dimensional visualization of 1674 co-normal-

ized samples using UMAP showed that HCs were distinct from

patients with viral infection irrespective of the infecting virus (Fig-

ure 3A). The MVS score increased along the first UMAP compo-

nent (UMAP1; Figure 3B), while patients with mild viral infection

were clustered separately from those with severe viral infection

along the second UMAP component (UMAP2; Figure 3C). We

further validated the robustness of the localization of samples

by severity observed in UMAP by mapping 8 independent co-

horts consisting of 2,604 samples from patients with one of 4

viral infections to the same low dimensional space (Figures 3D

and 3E). All but one of these 8 cohorts were challenge studies,

where 129 healthy individuals were inoculated with influenza

(1,465 samples from 70 subjects), RSV (419 samples from 20

subjects), or HRV (634 samples from 39 subjects). Each of the in-

fected subjects in these challenge studies had asymptomatic or

mild infection. When mapped to the UMAP space created using

the 1,674 samples, samples from the challenge studies clustered

with mild viral infections (Figure 3D). In contrast, patients with

critical and fatal SARS-CoV-2 infection mapped to the region en-

riched for patients with critical and fatal viral infection, whereas

patients with moderate SARS-CoV-2 infection mapped to the re-

gion enriched for patients with non-severe viral infection (Fig-

ure 3E), again demonstrating that the host response to viral

infection is conserved and associated with severity, irrespective

of the virus. Together, this observation suggested that a distinct

subset of genes in the MVSmay be differentially associated with

the severity of viral infection.

Hospitalized patients with viral infection follow a
different trajectory from non-hospitalized patients with
viral infection
Based on the UMAP of samples, we hypothesized that patients

with mild and severe viral infection follow different trajectories.



Figure 2. Single-cell RNA-seq identifies monocytes as the primary source of the MVS

(A–D) UMAP visualization of 702,970 immune cells from 289PBMC samples in three independent scRNA-seq datasets colored by (A) cohort, (B) cell type, (C)MVS

score, and (D) severity of viral infection.

(E) Circle map depicting the average MVS score in each cell type in each severity category, where color represents the average MVS score in each cell type, and

size is proportional to the variability of MVS score in the cell type with larger size representing lower variability. The barplot shows themean proportion of each cell

type in each severity category.

(F) MVS score in in myeloid cells, CD14+, and CD16+ monocytes. p values were computed using JT trend test.

(G) Proportion of myeloid cells, CD14+, and CD16+ monocytes in each sample. p values were computed using JT trend test.

(H) Correlation between the MVS score and proportion of myeloid cells, CD14+ and CD16+ monocytes. p values were computed using Pearson correlation test.

(I–K) Changes in proportions of total, CD14+, and CD16+ monocytes estimated using in silico deconvolution of bulk transcriptome profiles. Forest plots for

change in proportions of total, CD14+, and CD16+ monocytes in (I) non-severe patients versus HCs, (J) severe patients versus HCs, and (K) severe versus non-

severe patients. The x axes represent standardized mean difference between two groups, computed as Hedges’ g, in log2 scale. The size of a rectangle is

proportional to the standard error of mean difference in the study. Whiskers represent the 95% confidence interval. The diamonds represent overall, combined

mean difference for a given cell type in a given comparison. Width of the diamonds represents the 95% confidence interval of overall mean difference. See also

Figure S2.
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Figure 3. The MVS identifies distinct clusters of patients with non-severe and severe viral infection

(A–C) UMAP visualizations of the discovery cohorts (1,674 samples in 19 datasets) colored by (A) virus (B) MVS score, and (C) severity of viral infection.

(D and E) Projection of independent cohorts on the UMAP space obtained from the discovery cohorts: (D) seven challenge studies using influenza, RSV, or HRV in

GSE73072 (2,518 samples) and (E) the SARS-CoV-2 cohort (86 samples).
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Analogous to cellular differentiation analysis using single-cell

profiling data, where each cell represents a snapshot along the

differentiation trajectory, each sample in our analysis represents

a snapshot of the host response to viral infection that spans from

recognizing the presence of a virus to its elimination. To test this

hypothesis, we adapted tSpace (Dermadi et al., 2020), a method

for identifying cellular differentiation trajectories using single-cell

data, to identify disease trajectories using bulk RNA data. We

refer to the modified method as ‘‘disease space’’ (dSpace)

(STAR Methods).

We co-normalized four of the seven randomly selected chal-

lenge studies (1,509 samples across 2 influenza, 1 HRV, and 1

RSV studies) with 1674 samples from 19 datasets using COCO-

NUT to leverage a large number of longitudinal samples that can

aid in a more accurate inference of the host response trajec-

tories. Overall, we applied dSpace to 3,183 COCONUT co-

normalized samples (1,663 HCs, 343 no symptoms, 514 mild,

286 moderate, 286 serious, 80 critical, 11 fatal) from 25 indepen-

dent cohorts. We used these left-out challenge studies for

validation of the inferred trajectories and to avoid possibility of

introducing class imbalance because subjects in the challenge

studies only had mild viral infections.

The first principal component of dSpace (dPC1) correlated

with the severity of viral infection, and the second component

(dPC2) distinguished hospitalized patients with viral infection

from non-hospitalized patients with mild infection (Figure 4A).

Importantly, participants from the influenza, RSV, and HRV chal-

lenge studies clustered almost exclusively with patients withmild

infection (Figure S3A).

Next, we clustered samples using the disease space matrix,

and used the resulting clusters to isolate trajectories associated

with the severity of viral infection (STARMethods). Clustering the

samples using the dSpace matrix identified 20 clusters such that

one category of samples dominated a cluster (Figure 4B): clus-

ters 1–5, in which HCs and asymptomatically infected or conva-

lescent patients accounted for >80% of samples; clusters 6–10,

in which patients with mild viral infection accounted for >68% of

samples, and clusters 13–20, in which hospitalized patients with

moderate, serious, critical, or fatal viral infection accounted

for >77% of samples (Figure 4C). Clusters 11 and 12 were het-

erogeneous as no one group of samples dominated them. Out
758 Immunity 54, 753–768, April 13, 2021
of 1,509 samples, 1,507 (99.9%) from the influenza, RSV, and

HRV challenge studies fell within clusters 1–12 (Figure S3B),

demonstrating the robustness of the clusters defined using

dSpace. We fit a principal trajectory line to the dSpace matrix,

which consisted of healthy patients in the center and two diver-

gent trajectories: one dominated by patients with mild viral infec-

tion and the other dominated by hospitalized patients with viral

infection (Figure 4D, STAR Methods). Hitherto, we refer to these

trajectories as ‘‘mild trajectory’’ and ‘‘severe trajectory,’’ respec-

tively. Together, trajectory analysis using dSpace showed that

hospitalized patients with viral infection follow a different trajec-

tory than those withmild infection compared to HCs, irrespective

of the infecting virus.

Proportions of NK cells and the expression of NK cell-
specific genes negatively correlate with the severity of
viral infection
We identified 96 genes within the MVS that were significantly

different between the two trajectories (Figure 5A). Using the

MetaSignature database (https://metasignature.stanford.edu),

we found the majority of the genes negatively correlated with

the severity of viral infection are preferentially expressed in lym-

phocytes (T cells, B cells, and NK cells), whereas the majority of

the genes positively correlated with severity are preferentially ex-

pressed in myeloid cells (granulocytes, monocytes, mDCs, and

macrophages) (Figure 5B) (Haynes et al., 2017; Vallania

et al., 2018).

Several NK cell-specific genes from the killer cell lectin-like re-

ceptor (KLR) family (KLRB1, KLRG1, KLRD1) and phosphoinosi-

tide-3-Kinase (PI3K) signaling genes (PIK3R1) were negatively

correlated with severity (Figure 5C and Figure S4A). These genes

were also lower in critical and fatal SARS-CoV-2 infections

compared to HCs (Figure 5D, Figure S4B). PI3K signaling in

NK cells and mutations in PIK3R1 have been linked with human

immunodeficiency and viral infections (Mace, 2018). Therefore,

we hypothesized that NK cell proportions decreased with

increased severity of viral infection. Deconvolution of bulk tran-

scriptome showed the proportions of NK cells were significantly

lower in patients with severe viral infections compared to HCs

(ES = �0.85, FDR = 8.97e-05) and non-severe viral infections

(ES = �1.03, FDR = 1.13e-06) (Figure 5E, Table S4). Further,

https://metasignature.stanford.edu


Figure 4. Patients with non-severe and severe viral infection follow divergent disease trajectories

(A) Trajectory analysis using dSpace (3,183 samples in 25 cohorts).

(B) Clustering of samples using dSpace.

(C) Proportion of samples for each severity category in each cluster.

(D) A principal line on dSpace coordinates identified by trajectory analysis. The red and purple colors of the line ends indicate the severe and non-severe tra-

jectories, respectively. See also Figure S3.
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across the three scRNA-seq cohorts, NK cell proportions were

inversely correlatedwith severity (Figure 5F). Together, trajectory

analysis using dSpace, deconvolution using immunoStates, and

scRNA-seq found that the proportions of NK cells and the

expression of NK cell-associated genes reduced with increased

severity of viral infection, irrespective of the infecting virus.

Patients with severe viral infection show reduced
antigen presentation
Trajectory analysis identified HLA-DPB1, a key HLA class II gene

expressed in antigen presenting cells, was negatively correlated

with severity, including in patients with SARS-CoV-2 infection

(Figure 5A, Figures S5A and S5B). Downregulation of HLA class

II in severe COVID-19 patients has been reported previously

(Wilk et al., 2020). Expression of HLA-DPB1 was lower in several

antigenpresentingcells (CD14monocytes, conventionaldendritic

cells (cDCs), andBcells) inpatientswithmoderateandsevereviral

infection in threescRNA-seqcohorts (FiguresS5CandS5D)along

with a reducedproportion of cDCs in severe viral infections inboth

scRNA-seq (Figure S5E) and bulk transcriptome deconvolution

(Table S4). Together, our results showed that expression of HLA

class II genes is negatively correlated with viral infection.
Myeloid-derived immune suppression is higher in
patients with severe viral infection
Several differentially expressed genes between the two trajec-

tories (Figure 5A) were preferentially expressed by immune cells

of the myeloid lineage (Figure 5B). Although a subset of posi-

tively correlated genes with viral infection severity (CAMP,

BCAT1, LCN2, TXN) have known proinflammatory functions in

myeloid cells (Bertini et al., 1999; Bruns et al., 2015; Choi and

Fujii, 2019; Eriksson et al., 2017; Papathanassiu et al., 2017; Ra-

mos-Martı́nez et al., 2018) (Figure S4C), we found strong evi-

dence of increased myeloid cell-derived immune suppression

in patients with severe viral infection. Markers of polymorpho-

nuclear myeloid-derived suppressor cells (PMN-MDSCs), CEA-

CAM8 (CD66B; Figure 5G) and OLR1 (LOX-1; Figure S4C), and

markers of monocytic MDSCs (M-MDSCs), IL-4R (Figure 5G),

ITGAM (CD11B; Figure S4D), including a functional marker of

MDSCs, ARG1 (Figure S4D), were positively correlated with

the severity of viral infection. ORM1, which drives the differen-

tiation of monocytes to anti-inflammatory M2b macrophages

(Nakamura et al., 2015), was significantly different between

the two trajectories. Genes known to reduce the type I inter-

feron (IFN) response, GRN and BCL6 (Wei et al., 2019; Wu
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Figure 5. Immune responses from NK cells, myeloid cell-derived suppression, and hematopoiesis are associated with severity of viral

infection

Violin plots: each dot represents a sample, and the y axis represents expression of the corresponding gene in a sample. p values were computed using Spearman

rank correlation test or Mann–Whitney U test. Boxplots: each dot represents a sample, and the y axis represents proportion of the corresponding cell type in a

sample. p values were computed using JT trend test. Forest plots: change in proportions between two groups for a given immune cell type, obtained by in silico

deconvolution, where the x axis represents standardizedmean difference (Hedges’ g) between two groups in log2 scale. The size of a rectangle is proportional to

the standard error of mean difference in the study. Whiskers represent the 95% confidence interval. The diamonds represent summary mean difference for a

given cell type in a given comparison. Width of a diamond represents the 95% confidence interval of overall mean difference.

(A) Expression heatmap of the 96 trajectory-defining genes. Rows represent genes and columns represent samples, ordered by position along the disease

trajectory. Colors of the dendrograms indicate gene modules.

(B) For each gene, effect size (Hedge’s g) in a given cell type compared to all other cell types and correlation with severity.

(C and D) Expression of NK cell-specific genes in (C) the discovery (3,183 samples in 25 cohorts) and (D) a validation cohort (24 HCs, 62 SARS-CoV-2).

(E) Change in proportions of NK cells in patients with severe (top panel) and non-severe viral infection (bottom panel) compared to HCs.

(F) Proportions of NK cells along the severity of viral infection in three independent scRNA-seq cohorts.

(G and H) Expression of CEACAM8 and IL4R in peripheral blood samples from patients with viral infection in (G) the discovery (3,183 samples in 25 cohorts) and

(H) a validation cohort (24 HCs, 62 SARS-CoV-2).

(I) Change in proportions of pro-inflammatory macrophages (M1) and anti-inflammatory macrophages (M2) in patients with non-severe or severe viral infection

compared to HCs.

(J and K) Expression of HSPC-specific genes in patients with viral infection in (J) the discovery (3,183 samples in 25 cohorts) and (K) a validation cohort (24 HCs, 62

SARS-CoV-2).

(L) Change in proportions of HSPCs patients with severe viral infection compared to HCs (top panel) and non-severe viral infection (bottom panel).

(M) Proportions of HSPCs along the severity of viral infection in three independent scRNA-seq cohorts.

(N and O) Genes with higher expression in patients with mild or moderate viral infection compared to HCs and those with severe viral infection in (N) the discovery

and (O) a validation cohort. See also Figures S4 and S5.
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et al., 2016), were positively correlated with severity (Fig-

ure S4C). All genes but GRN positively correlated with severity

in the independent cohort of patients with SARS-CoV-2 infec-

tion (Figure 5H, Figure S4D). Notably, ORM1 expression was

lower in mild patients but higher in severe patients compared

to HCs, including SARS-CoV-2-infected patients (Figures S4C

and S4D).

Therefore, we hypothesized that proportions of pro- and anti-

inflammatory macrophages would differ between patients with

non-severe versus severe viral infection. Deconvolution analysis

showed proportions of pro-inflammatory (M1) macrophages

were higher in patients with non-severe (ES = 0.88, FDR =

6.16e-15) and severe (ES = 1.36, FDR = 5.12e-11) viral infection

compared to HCs (Table S4), whereas proportions of anti-inflam-

matory (M2) macrophages were lower in non-severe patients

(ES = �0.48, FDR = 3.00e-03), but higher in severe patients

compared to HCs (ES = 0.63, FDR = 7.02e-06) and non-severe

patients (ES = 0.76, FDR = 3.12e-09). Together, we found strong

evidence of increased myeloid-derived immune suppression in

patients with severe viral infection.

Increased hematopoiesis in patients with severe viral
infection
Several differentially expressed genes between the two trajec-

tories (CTSG, PRC1, DEFA4, KIF15, TCEAL9, HMMR, CEP55,

and AZU1) were overexpressed in patients with severe viral

infection, but not in those with non-severe viral infection

compared to HCs (Figures 5J–5K, Figures S4E and S4F). All

but one of these genes (DEFA4) have higher expression in circu-

lating HSPCs (Figure 5B). Therefore, we investigated whether

HSPCs were higher in patients with severe viral infection, but

not in those with non-severe viral infection. Deconvolution anal-

ysis found that HSPCs were significantly higher in patients with

severe viral infection compared to HCs (ES = 0.85, FDR =

7.33e-04) and compared to patients with non-severe viral infec-

tion (ES = 0.43, FDR = 3.38e-02) (Figure 5L, Table S4), but not in

those with non-severe viral infection compared to HCs (Table

S4). Proportions of HSPCs increased with severity in scRNA-

seq across three independent cohorts of SARS-CoV-2-infected

patients (Figure 5M).

Trajectory analysis identifies a protective host response
associated with mild viral infections
Finally, dSpace analysis identified several genes (CCL2, OASL,

CASP7, TMEM123, MAFB, VRK2, UBE2L6, NAPA) higher in pa-

tients with mild viral infection than those with severe viral infec-

tion or HCs (Figures 5N and 5O, Figures S4G and S4H). CCL2,

a type I IFN receptor-mediated chemoattractant that promotes

monocyte migration to the site of infection, and OASL, a type I

IFN-induced gene, had higher expression in patients with mild

viral infection. CASP7 is cleaved by CASP3 and CASP10 and

is activated upon cell death stimuli and induces apoptosis.

TMEM123 (PORIMIN) is a cell surface receptor that mediates on-

cosis, a type of cell death distinct from apoptosis characterized

by a loss of cell membrane integrity without DNA fragmentation.

Together, these results suggest that patients with a coordinated

immune response involving monocyte recruitment, IFN

response, and higher cell death have a lower risk of severe viral

infection.
Protective and detrimental host response modules are
associated with the severity of viral infection
Unsupervised hierarchical clustering grouped the 96 genes into

four modules (Figure 5A). Module 1 and 2 were composed of

genes preferentially expressed in myeloid and HSPCs and

were higher in patients with severe viral infection (Figure 5B).

Module 4 was composed of genes preferentially expressed in

lymphoid cells (NK, T, and B cells). Genes in module 3 and 4

were higher expressed in patients with mild viral infection

compared to those with severe infection (Figure 5B). These

four modules broadly divided the host response genes differen-

tially expressed between two trajectories into two categories: a

detrimental host response represented by module 1 and 2

(higher in patients with severe viral infection), and a protective

host response represented by module 3 and 4 (higher in patients

with mild viral infection).

We selected 42 out of 96 genes with absolute effect size 31 be-

tween the severe and mild trajectories (Table S5), resulting in 11,

13, 10, and 8 genes in modules 1, 2, 3, and 4, respectively. Mod-

ule scores, defined as the geometricmean of expression of these

reduced sets of genes in a given module, continued to be signif-

icantly positively (module 1, 2, and 3) and negatively (module 4)

correlated with severity of viral infection (|r|30.43, p < 2.23-16;

Figure 6A), which suggested that genes within each module

are correlated with each other. Indeed, we found most pairs of

genes within each module were positively correlated, irrespec-

tive of their infection status (Figure 6B).

We found the correlation structure within each module

changed depending on the presence and severity of infection.

Pairwise correlations between genes in modules 1, 2, and 4

were significantly higher in patients with severe viral infection

than HCs or patients with mild viral infection (p < 5e-05; Fig-

ure 6C). Pairwise correlations in module 2 were significantly

lower in patients with mild infection compared to HCs (p =

3.6e-07; Figure 6C). In contrast, pairwise correlations between

genes in module 3, which included genes involved in the protec-

tive host response, were significantly higher in patients with mild

infection compared to HCs and those with severe infection (p =

5.7e-14; Figure 6C). Together, these results show that the genes

within each module are expressed in a coordinated manner de-

pending on the infection status and severity of infection.

The protective host response modules are associated
with IFN concentration in plasma proteome but
decoupled from the IFN response in patientswith severe
viral infection
Recent reports have described higher expression of IFN-stimu-

lated genes (ISGs) in patients with moderate SARS-CoV-2 infec-

tion than those with severe infection (Arunachalam et al., 2020).

Therefore, we investigated whether this observation is generaliz-

able to other viruses. Indeed, module 3 included three IFN-

induced transmembrane (IFITM) genes (IFITM1, IFITM2, IFITM3),

involved in the restriction of multiple viruses (Bailey et al., 2014),

that were overexpressed in patients with viral infection and posi-

tively correlatedwith severity (Figure S6A).We also found several

type I and II IFN receptors overexpressed during viral infection

that positively correlated with severity, irrespective of the infect-

ing virus (Figure S6A). In patients with mild viral infection, the dis-

tribution of correlations between IFITMs and genes in the
Immunity 54, 753–768, April 13, 2021 761



Figure 6. Coordinated protective and deleterious host response modules associated with severity of viral infection

(A) Module scores, defined as the geometric mean of expression of genes in each module in the sample, for the discovery cohorts (3,183 samples in 25 cohorts).

(B) Pairwise Spearman’s rank correlation coefficient between genes in each module in HCs and patients with mild or severe viral infection. The width of the line

indicates strength of correlation; red and blue color indicate positive and negative correlation, respectively.

(C) Each dot in the violin plots represents the correlation between a pair of genes. p values computed using Wilcoxon signed-rank test.

(D) Number of proteins correlated with detrimental and protective module scores in each immune cell type in the Seattle cohort.

(E) Heatmap of correlation between proteins in plasma samples and module 3 score in the Seattle cohort in immune cell types. See also Figure S6.
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protective responsemodule 3was significantly higher than in pa-

tients with severe viral infection or HCs (p% 1e-06; Figure S6B).

Further, the distribution of correlations between the type I and II

IFN receptors and the protective responsemodule 3was not sta-

tistically different between HCs and patients with severe viral

infection, but was significantly higher in patients with mild viral

infection (p % 0.03; Figure S6C).

We used 242 samples in the Seattle cohort for which both

scRNA-seq and proteomic data were available to investigate

whether detrimental or protective module scores are associated

with IFN concentrations in plasma samples. Module 2 scores

were not associated with any protein in any immune cell types,

presumably because the majority of the genes in module 2 are

specifically expressed in neutrophils, which are not included in

PBMCs (Figure 6D). Scores for module 1, 3, and 4 were associ-

ated with several proteins in CD14+ monocytes. Module 3 score

was associated with the several proteins in each immune cell

type (Figures 6D and 6E) and had statistically significant positive

correlation with IFN-gamma (IFNG) concentration across all cell
762 Immunity 54, 753–768, April 13, 2021
types except CD16+ monocytes and proliferating T/NK cells,

further suggesting that patients with higher module 3 scores

may have better outcomes. Together, we found that expression

of the ISGs increase with the severity of viral infection, but their

correlation with the protective host response does not increase

in patients with severe viral infection as much as those with

mild viral infection. These results also show that higher module

3 score in several immune cell types is correlated with increased

IFNG. Collectively, these results show a decoupling of the pro-

tective host response from the IFN response in patients with se-

vere viral infection, irrespective of the virus.

Host response-based module score improves
classification of patients with severe and non-severe
viral infection
Despite significant correlation with the severity, the MVS score

cannot adequately distinguish severe and non-severe patients

(Figures S7A and S7B). We hypothesized that incorporating the

protective and detrimental host responses in a score would



Figure 7. Host response modules improve classification of patients with severe and non-severe viral infection

(A) Module scores and (B) the SoM score across the 3,183 dSpace samples.

(C and D) The SoM score distinguishes mild and severe viral infection in the (C) discovery cohort and (D) validation cohort. Each point represents a sample. p

values computed using Mann–Whitney U test. See also Figure S7.
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improve discrimination between severe and non-severe viral

infection. Therefore, we defined the Severe-or-Mild (SoM) score

of a sample as the sum of the scores for module 1 and 2 divided

by the sum of the scores for module 3 and 4 (STAR Methods).

The SoM score showed a more pronounced gradient between

the severe andmild trajectories than any of the individual module

scores (Figure 7B). The SoM score distinguished patients

with mild infection from those with severe infection with

AUROC30.929 in the 3,183 samples from the discovery cohorts

(Figure 7C, Figure S7C) andwith AUROC > 0.98 in 5 independent

validation cohorts comprised of 1,154 samples from patients in-

fectedwith 4 different viruses (SARS-CoV-2, influenza, HRV, chi-

kungunya) (Figure 7D, Figure S7D). In patients with non-severe

viral infection, the SoM score distinguished thosewithmild infec-

tion from those with moderate infection with AUROC > 0.75 in

discovery and validation datasets compared to the MVS score

(AUROC < 0.63) (Figures S7A–S7D). In hospitalized patients

with a viral infection, the SoM score also distinguished those

with moderate infection from those with critical or fatal infection
with higher accuracy than the MVS score (Figures S7A–S7D).

Together, our results show that the protective and detrimental

host response modules identified by trajectory analysis improve

discrimination accuracy between patients with mild, moderate,

and severe viral infection. Suppressing the detrimental host

response modules or enhancing the protective host response

modules could be therapeutic targets for host-directed broad-

spectrum intervention in patients with severe viral infection.

DISCUSSION

The four viral pandemics since 2009 have underscored an urgent

unmet need for creating generalizable diagnostic and therapeu-

tic tools to enable faster deployment during infectious

outbreaks. There is a strong impetus to develop virus-agnostic

strategies that can be applied across multiple viruses. Here,

we tested hypotheses that our previously described conserved

host response to respiratory viral infections (Andres-Terre

et al., 2015) represents biological mechanisms associated with
Immunity 54, 753–768, April 13, 2021 763
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severity that are distinct between patients with non-severe and

severe outcomes, irrespective of infecting virus.

Although we had identified the MVS by analyzing respiratory

viruses, it is generalizable across novel viruses, including

SARS-CoV-2, chikungunya, and Ebola and across ages. Out of

37 cohorts, 12 cohorts consisted of 931 samples from children

(<18 years), of which 643 were from children younger than 2

years. Our results demonstrate a conserved similarity in the dys-

regulation of the host immune response in patients with severe

outcomes, which presents several opportunities the develop-

ment of diagnostic and prognostic tests, identification of drug

targets for host-directed broad-spectrum antiviral therapies,

and drug repurposing to improve global pandemic preparedness

for the pandemics that will invariably come in the future.

The SoM score using the 42-gene signature distinguished pa-

tients with a severe outcome from those with a non-severe

outcome with very high accuracy. Arguably, the 42-gene signa-

ture is not optimal for clinical translation. However, given the high

pairwise correlation between genes within each module, only a

small subset of genes within each module could provide the

same discriminatory power, allowing identification of a parsimo-

nious gene signature. Trajectory analysis also suggests that the

SoM score has the potential to predict the severity of outcome in

patients with viral infection, though it needs to be tested in addi-

tional cohorts.

High pairwise correlations between genes in module 3 in pa-

tients with mild viral infection, irrespective of virus, suggest

that a highly coordinated immune response between monocyte

recruitment, interferon response, and cell death is associated

with protection. Our results are consistent with recent observa-

tions that ISGs are strongly induced in patients with moderate

SARS-CoV-2 infection compared to those with severe SARS-

CoV-2 infection (Arunachalam et al., 2020; Hadjadj et al.,

2020), and generalize to patients with non-severe versus severe

infection, irrespective of the virus.

The genes in module 3 were more correlated with interferon-

induced transmembrane proteins (IFITMs) in patients with mild

infection compared to those with severe viral infection. IFITMs

are involved in restricting viruses at various stages of the life cy-

cle, including (1) blocking host cell entry by trapping virions in en-

dosomal vesicles, (2) inhibiting viral gene expression and protein

synthesis, and (3) disrupting viral assembly (Liao et al., 2019;

Zhao et al., 2019). The lower correlations between the IFITMs

and the genes in module 3 suggest that the IFN-induced

response is ‘‘decoupled’’ from the protective response in during

severe viral infection. Understanding themechanisms underlying

this decoupling could lead to targets for host-directed antiviral

therapy.

Analysis of scRNA-seq in 3 independent cohorts and in silico

deconvolution across 32 cohorts found increased HSPCs in pa-

tients with severe viral infection, irrespective of the virus, sug-

gesting that emergency hematopoiesis is associated with

increased risk of severity, possibly as the immune response fails

to adequately respond to the virus. In contrast, we have previ-

ously shown reduced proportions of HSPCs inmild viral infection

(Bongen et al., 2018), which may reflect the production of

myeloid cells at the expense of the lymphoid compartment to

replenish myeloid cells during infection (Takizawa et al., 2012).

We found increased myeloid cells and reduced lymphoid cells
764 Immunity 54, 753–768, April 13, 2021
in both scRNA-seq and deconvolution analysis, supporting a

model where human HSPCs take an active role in the immune

response by differentiating into myeloid cells, in line with our pre-

vious observation (Bongen et al., 2018).

In line with recent studies (Gatti et al., 2020; Hadjadj et al.,

2020; Silvin et al., 2020; Zhou et al., 2020), we found decrease

in CD16+ monocytes with increased severity. This suggests

that reduced CD16+ monocytes in peripheral blood, possibly

due to efflux to the site of infection in response to ongoing tissue

damage or dysregulated cytokine sensing, is a conserved

feature of the host response in severe viral infection across vi-

ruses and may have prognostic significance.

The mechanisms underlying the differential influence of

CD14+ versus CD16+ monocytes and decoupling between the

IFN-response and protective response remain unknown, though

mounting evidence suggests dysfunctional myeloid cells in pa-

tients with severe viral infection. Dysfunctional CD14+ mono-

cytes characterized by low expression of HLA-DR and high

expression of alarmins are associated with severe COVID-19

infection (Schulte-Schrepping et al., 2020). However, our results

show that it is a generalizable feature of severe outcome in other

viral infections. Low HLA-DR expression in monocytes is a well-

describedmarker of worse outcomes in sepsis and trauma (Hoff-

mann et al., 2017; Monneret et al., 2006; Venet et al., 2020). We

found expression of HLA-DPB1, a MHC class II gene, in CD14+

monocytes was inversely correlated with severity of infection,

whereas expression of alarmins (e.g., S100A9) in CD14+ mono-

cytes was positively correlated with severity. Although overpro-

duction of IL-6 mediates the low HLA-DR expression on CD14+

monocytes of patients with severe COVID-19 (Giamarellos-

Bourboulis et al., 2020; Silvin et al., 2020), anti-IL6 therapy has

been unsuccessful in showing improved outcomes in COVID-

19 (Stone et al., 2020), highlighting the urgent need for eluci-

dating the underlying mechanisms.

Our correlation analysis of protective module scores with

plasma proteomic data in the patients with SARS-CoV-2 infec-

tion suggest dysfunctional myeloid cells in patients with severe

outcome. Protective modules were significantly correlated with

IFNG in antigen-presenting cells (CD14+ monocytes, cDCs,

pDCs, B cells) and cytotoxic cells (NK cells, T cells). Combined

with the observation that several class II HLA genes are downre-

gulated in patients with severe outcome, it is possible that

dysfunctional antigen-presenting cells are unable to orchestrate

a subsequent adaptive immune response.

It is possible that factors such as genetics, comorbidities, and

initial viral load, together or individually, cause an initial overacti-

vation of monocytes, which leads to a sequence of CD14+ over-

activation and secretion of inhibitors of HLA genes, further lead-

ing to a cascade of defective antigen presentation and T cell

differentiation that fail to control ongoing infection. This may

ultimately lead to the characteristic profile of severe disease:

overactive dysfunctional myeloid and deficient lymphoid com-

partments amidst immunosuppression and a cytokine storm.

We found increased proportions of PMN- and M-MDSCs, and

anti-inflammatory macrophages along with higher expression of

their phenotypic and functional markers in patients with severe

viral infection, but not in those with mild viral infection, irrespec-

tive of the virus. These results suggest that lower MDSCs in the

early phase of infection is protective and provide strong
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evidence that, although increased PMN- and M-MDSCs may

limit hyperinflammation during active viral infection, they may

lead to a detrimental amplification of immunosuppression, irre-

spective of the virus. The modulation of monocyte responses,

as reflected by gene expression, is compatible with the

detrimental role of monocytes/macrophages in severe SARS-

CoV-2 infection associated with respiratory dysfunction (Gia-

marellos-Bourboulis et al., 2020).

Among their immunosuppressive roles, MDSCs are known to

suppress NK cell activity through arginase and ROS/RNS

(Schrijver et al., 2019). Our trajectory and in silico deconvolution

analyses, and scRNA-seq data found several NK cell-specific

genes and the proportions of NK cells were negatively correlated

with the severity of viral infection. We have previously shown that

healthy individuals with lower expression of KLRD1 are more

likely to be infected when challenged (Bongen et al., 2018). A

negative correlation between expression of KLRD1 and the

severity of viral infection, including SARS-CoV-2, further empha-

sizes that KLRD1-expressing NK cells may play a protective role

following infection, irrespective of the infecting virus.

Taken together, our analyses offer a systems view of the im-

mune state during viral infection and factors that mediate and

predict progression to mild or severe outcomes, despite the het-

erogeneity and regardless of the infecting virus. We identified

host response modules that could lead to new intervention stra-

tegies, including diagnostics for predicting patients at higher risk

of severe outcomes, and broad-spectrum host-directed thera-

pies for improved pandemic preparedness.

Limitations of Study
Our analysis has two potential limitations. First, COCONUT co-

normalization may have removed variability in immune re-

sponses of HCs of different ages and from different geographic

regions. However, our results demonstrate that the effect of

acute viral infection on the host immune response is substantially

larger to overcome this heterogeneity. Second, it is possible that

the MVS may be biased toward respiratory viral infections

because it was discovered using respiratory viruses. However,

the MVS score is also higher in patients with chikungunya or

Ebola infection, suggesting that the MVS may be conserved

across non-respiratory viruses too. It is also possible that the

MVS only represents conserved host response to acute viral

infection, and that chronic viruses such as hepatitis B or C,

HIV, CMV, EBV, etc. may not evoke the same host response,

which should be a focus of future studies.
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Sámano, G. (2018). Reduction of respiratory infections in asthma patients sup-

plemented with vitamin D is related to increased serum IL-10 and IFNg levels

and cathelicidin expression. Cytokine 108, 239–246.

Chowdhury, R., Vallania, F., Yang, Q., Lopez Angel, C.J., Darboe, F., Penn-

Nicholson, A., Rozot, V., Nemes, E., Malherbe, S.T., Ronacher, K., et al.

(2018). A multi-cohort study of the immune factors associated with M. tuber-

culosis infection outcomes. Nature 560, 644–648.

Rodriguez-Fernandez, R., Tapia, L.I., Yang, C.-F., Torres, J.P., Chavez-Bueno,

S., Garcia, C., Jaramillo, L.M., Moore-Clingenpeel, M., Jafri, H.S., Peeples,
M.E., et al. (2017). Respiratory Syncytial Virus Genotypes, Host Immune

Profiles, and Disease Severity in Young Children Hospitalized With

Bronchiolitis. Journal of Infectious Diseases 217, 24–34.

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial

reconstruction of single-cell gene expression data. Nat. Biotechnol. 33,

495–502.

Schrijver, I.T., Théroude, C., and Roger, T. (2019). Myeloid-Derived

Suppressor Cells in Sepsis. Front. Immunol. 10, 327.

Schulte-Schrepping, J., Reusch, N., Paclik, D., Baßler, K., Schlickeiser, S.,

Zhang, B., Kr€amer, B., Krammer, T., Brumhard, S., Bonaguro, L., et al.;

Deutsche COVID-19 OMICS Initiative (DeCOI) (2020). Severe COVID-19 is

marked by a dysregulated myeloid cell compartment. Cell 182, 1419–

1440.e23.

Scott, M.K.D., Quinn, K., Li, Q., Carroll, R., Warsinske, H., Vallania, F., Chen,

S., Carns, M.A., Aren, K., Sun, J., et al. (2019). Increased monocyte count as

a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective,

multicentre cohort study. The Lancet Resp Med, 1–12.

Silvin, A., Chapuis, N., Dunsmore, G., Goubet, A.-G., Dubuisson, A., Derosa,
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Cunha, M.D.P., et al. (2019). Systems analysis of subjects acutely infectedwith

the Chikungunya virus. PLoS Pathogen 15, e1007880.

Soneson, C., and Robinson, M.D. (2018). Bias, robustness and scalability in

single-cell differential expression analysis. Nature Publishing Group, 1–15.

Srivastava, A., Malik, L., Smith, T., Sudbery, I., and Patro, R. (2019). Alevin effi-

ciently estimates accurate gene abundances from dscRNA-seq data. Genome

Biol. 20, 65.

Stone, J.H., Frigault, M.J., Serling-Boyd, N.J., Fernandes, A.D., Harvey, L.,

Foulkes, A.S., Horick, N.K., Healy, B.C., Shah, R., Bensaci, A.M., et al.

(2020). Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. New

Engl J Med 383, 2333–2344.

Su, Y., Chen, D., Lausted, C., Yuan, D., Choi, J., Dai, C., Voillet, V., Scherler, K.,

Troisch, P., Duvvuri, V.R., et al. (2020). Multiomic Immunophenotyping of

COVID-19 Patients Reveals Early Infection Trajectories. bioRxiv,

2020.07.27.224063.

Sweeney, T.E., Shidham, A., Wong, H.R., and Khatri, P. (2015). A comprehen-

sive time-course–based multicohort analysis of sepsis and sterile inflamma-

tion reveals a robust diagnostic gene set. Science Translational Medicine 7,

287ra71–287ra71.

Sweeney, T.E., Braviak, L., Tato, C.M., and Khatri, P. (2016a). Genome-wide

expression for diagnosis of pulmonary tuberculosis: a multicohort analysis.

Lancet Respir. Med. 4, 213–224.

Sweeney, T.E., Wong, H.R., and Khatri, P. (2016b). Robust classification of

bacterial and viral infections via integrated host gene expression diagnostics.

Science Translational Medicine 8, 346ra91–346ra91.

Takizawa, H., Boettcher, S., and Manz, M.G. (2012). Demand-adapted regula-

tion of early hematopoiesis in infection and inflammation. Blood 119,

2991–3002.

Tang, B.M., Shojaei, M., Meyers, A., Ho, J., Ball, T.B., Keynan, Y., Pisipati, A.,

Kumar, A., Eisen, D.P., et al. (2019). Neutrophils-related host factors associ-

ated with severe disease and fatality in patients with influenza infection.

Nature Communications 10, 3422.

Thair, S.A., He, Y.D., Hasin-Brumshtein, Y., Sakaram, S., Pandya, R., Toh, J.,

Rawling, D., Remmel, M., Coyle, S., Dalekos, G.N., et al. (2020).

Transcriptomic similarities and differences in host response between SARS-

CoV-2 and other viral infections. iScience 24, 101947.
Immunity 54, 753–768, April 13, 2021 767

http://refhub.elsevier.com/S1074-7613(21)00114-X/sref26
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref26
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref26
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref27
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref27
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref27
http://refhub.elsevier.com/S1074-7613(21)00114-X/optjMGqtZN9TM
http://refhub.elsevier.com/S1074-7613(21)00114-X/optjMGqtZN9TM
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref28
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref28
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref28
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref28
http://refhub.elsevier.com/S1074-7613(21)00114-X/optYs2cE3Bwgu
http://refhub.elsevier.com/S1074-7613(21)00114-X/optYs2cE3Bwgu
http://refhub.elsevier.com/S1074-7613(21)00114-X/optYs2cE3Bwgu
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt715LJrQEJe
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt715LJrQEJe
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt715LJrQEJe
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt715LJrQEJe
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt715LJrQEJe
http://refhub.elsevier.com/S1074-7613(21)00114-X/optsyps5GxOoq
http://refhub.elsevier.com/S1074-7613(21)00114-X/optsyps5GxOoq
http://refhub.elsevier.com/S1074-7613(21)00114-X/optsyps5GxOoq
http://refhub.elsevier.com/S1074-7613(21)00114-X/optsyps5GxOoq
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref29
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref29
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref29
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref29
http://refhub.elsevier.com/S1074-7613(21)00114-X/opteGYTsmJJY2
http://refhub.elsevier.com/S1074-7613(21)00114-X/opteGYTsmJJY2
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref30
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref30
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref30
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref32
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref32
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref32
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref32
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref32
http://refhub.elsevier.com/S1074-7613(21)00114-X/opth1xHxGURr4
http://refhub.elsevier.com/S1074-7613(21)00114-X/opth1xHxGURr4
http://refhub.elsevier.com/S1074-7613(21)00114-X/opth1xHxGURr4
http://refhub.elsevier.com/S1074-7613(21)00114-X/opth1xHxGURr4
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt72bfctITQT
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt72bfctITQT
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt72bfctITQT
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt72bfctITQT
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref33
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref33
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref33
http://refhub.elsevier.com/S1074-7613(21)00114-X/optf9SsIeC4b1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optf9SsIeC4b1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optf9SsIeC4b1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optf9SsIeC4b1
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref34
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref34
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref34
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref34
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref34
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref36
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref36
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref36
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref36
http://refhub.elsevier.com/S1074-7613(21)00114-X/optVbakR1YIvD
http://refhub.elsevier.com/S1074-7613(21)00114-X/optVbakR1YIvD
http://refhub.elsevier.com/S1074-7613(21)00114-X/optVbakR1YIvD
http://refhub.elsevier.com/S1074-7613(21)00114-X/optVbakR1YIvD
http://refhub.elsevier.com/S1074-7613(21)00114-X/optVbakR1YIvD
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref37
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref37
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref37
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref38
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref38
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref39
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref39
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref39
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref39
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref39
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref39
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref40
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref40
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref40
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref40
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref41
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref41
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref41
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref41
http://refhub.elsevier.com/S1074-7613(21)00114-X/optrz1yU0g5LU
http://refhub.elsevier.com/S1074-7613(21)00114-X/optrz1yU0g5LU
http://refhub.elsevier.com/S1074-7613(21)00114-X/optrz1yU0g5LU
http://refhub.elsevier.com/S1074-7613(21)00114-X/optrz1yU0g5LU
http://refhub.elsevier.com/S1074-7613(21)00114-X/optgNdaxzqbZT
http://refhub.elsevier.com/S1074-7613(21)00114-X/optgNdaxzqbZT
http://refhub.elsevier.com/S1074-7613(21)00114-X/optgNdaxzqbZT
http://refhub.elsevier.com/S1074-7613(21)00114-X/optgNdaxzqbZT
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref43
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref43
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref44
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref44
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref44
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref45
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref45
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref45
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref45
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref46
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref46
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref46
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref46
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref47
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref47
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref47
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref47
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref48
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref48
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref48
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref49
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref49
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref49
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref50
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref50
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref50
http://refhub.elsevier.com/S1074-7613(21)00114-X/optj1aq6eKKQv
http://refhub.elsevier.com/S1074-7613(21)00114-X/optj1aq6eKKQv
http://refhub.elsevier.com/S1074-7613(21)00114-X/optj1aq6eKKQv
http://refhub.elsevier.com/S1074-7613(21)00114-X/optj1aq6eKKQv
http://refhub.elsevier.com/S1074-7613(21)00114-X/optUfYPxB70lR
http://refhub.elsevier.com/S1074-7613(21)00114-X/optUfYPxB70lR
http://refhub.elsevier.com/S1074-7613(21)00114-X/optUfYPxB70lR
http://refhub.elsevier.com/S1074-7613(21)00114-X/optUfYPxB70lR


ll
OPEN ACCESS Article
Turner, C.T., Gupta, R.K., Tsaliki, E., Roe, J.K., Mondal, P., Nyawo, G.R.,

Palmer, Z., Miller, R.F., Reeve, B.W., Theron, G., and Noursadeghi, M.

(2020). Blood transcriptional biomarkers for active pulmonary tuberculosis in

a high-burden setting: a prospective, observational, diagnostic accuracy

study. Lancet Respir. Med. 8, 407–419.

Vallania, F., Tam, A., Lofgren, S., Schaffert, S., Azad, T.D., Bongen, E., Haynes,

W., Alsup, M., Alonso, M., Davis, M., et al. (2018). Leveraging heterogeneity

across multiple datasets increases cell-mixture deconvolution accuracy and

reduces biological and technical biases. Nat. Commun. 9, 4735.

Venet, F., Demaret, J., Gossez, M., and Monneret, G. (2020). Myeloid cells in

sepsis-acquired immunodeficiency. Ann. N Y Acad. Sci.

Wang, Y., Dennehy, P.H., Keyserling, H.L., Tang, K., Gentsch, J.R., Glass, R.I.,

and Jiang, B. (2007). Rotavirus infection alters peripheral T-cell homeostasis in

children with acute diarrhea. Jornal of Virology 81, 3904–3912.

Warsinske, H.C., Rao, A.M., Moreira, F.M.F., Santos, P.C.P., Liu, A.B., Scott,

M., Malherbe, S.T., Ronacher, K., Walzl, G., Winter, J., et al. (2018).

Assessment of Validity of a Blood-Based 3-Gene Signature Score for

Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment

Response. JAMA Netw. Open 1, e183779–e13.

Wei, F., Jiang, Z., Sun, H., Pu, J., Sun, Y., Wang, M., Tong, Q., Bi, Y., Ma, X.,

Gao, G.F., and Liu, J. (2019). Induction of PGRN by influenza virus inhibits the

antiviral immune responses through downregulation of type I interferons

signaling. PLoS Pathog. 15, e1008062.

Wilk, A.J., Rustagi, A., Zhao, N.Q., Roque, J., Martı́nez-Colón, G.J.,

McKechnie, J.L., Ivison, G.T., Ranganath, T., Vergara, R., Hollis, T., et al.

(2020). A single-cell atlas of the peripheral immune response in patients with

severe COVID-19. Nat. Med. 26, 1070–1076.

Wong, H.R., Cvijanovich, N.Z., Hall, M., Allen, G.L., Thomas, N.J., Freishtat,

R.J., Anas, N., Meyer, K., Checchia, P.A., Lin, R., et al. (2012). Interleukin-27

is a novel candidate diagnostic biomarker for bacterial infection in critically ill

children. Critical Care 16, R213–R218.

Wong, H.R., Cvijanovich, N., Wheeler, D.S., Bigham, M.T., Monaco, M.,

Odoms, K., Macias, W.L., and Williams, M.D. (2008). Interleukin-8 as a strati-
768 Immunity 54, 753–768, April 13, 2021
fication tool for interventional trials involving pediatric septic shock. American

Journal of Respiratory and Critical Care Medicine 178, 276–282.

Wong, H.R., Shanley, T.P., Sakthivel, B., Cvijanovich, N., Lin, R., Allen, G.L.,

Thomas, N.J., Doctor, A., Kalyanaraman, M., Tofil, N.M., et al. (2007).

Genome-level expression profiles in pediatric septic shock indicate a role for

altered zinc homeostasis in poor outcome. Physiological Genomics 30,

146–155.

Wu, J., and Irizarry, R. (2020). gcrma: Background Adjustment Using

Sequence Information. (Bioconductor).

Wu, T., Ji, Y., Moseman, E.A., Xu, H.C., Manglani, M., Kirby, M., Anderson,

S.M., Handon, R., Kenyon, E., Elkahloun, A., et al. (2016). The TCF1-Bcl6

axis counteracts type I interferon to repress exhaustion and maintain T cell

stemness. Science Immunology 1, eaai8593–eaai8593.

Yu, J., Peterson, D.R., Baran, A.M., Bhattacharya, S., Wylie, T.N., Falsey, A.R.,

Mariani, T.J., and Storch, G.A. (2019). Host Gene Expression in Nose and

Blood for the Diagnosis of Viral Respiratory Infection. Journal of Infectious

Diseases 219, 1151–1161.

Zaas, A.K., Chen, M., Varkey, J., Veldman, T., Hero, A.O., Lucas, J., Huang, Y.,

Turner, R., Gilbert, A., Lambkin-WIlliams, R., et al. (2009). Gene expression sig-

natures diagnose influenza and other symptomatic respiratory viral infections

in humans. Cell Host & Microbe 6, 207–217.

Zhai, Y., Franco, L.M., Atmar, R.L., Quarles, J.M., Arden, N., Bucasas, K.L.,

Wells, J.M., Nino, D., Wang, X., Zapata, G.E., et al. (2015). Host transcriptional

response to influenza and other acute respiratory viral infections - a prospec-

tive cohort study. PLoS Pathogen 11, e1004869.

Zhao, X., Li, J., Winkler, C.A., An, P., and Guo, J.-T. (2019). IFITM Genes,

Variants, and Their Roles in the Control and Pathogenesis of Viral Infections.

Front. Microbiol. 9, 3228.

Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Guo, L., Yang, J.,

Wang, C., Jiang, S., et al. (2020). Heightened Innate Immune Responses in

the Respiratory Tract of COVID-19 Patients. Cell Host Microbe 27,

883–890.e2.

http://refhub.elsevier.com/S1074-7613(21)00114-X/sref51
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref51
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref51
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref51
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref51
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref52
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref52
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref52
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref52
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref53
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref53
http://refhub.elsevier.com/S1074-7613(21)00114-X/optb5DkTkbKM1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optb5DkTkbKM1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optb5DkTkbKM1
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref54
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref54
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref54
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref54
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref54
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref55
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref55
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref55
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref55
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref56
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref56
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref56
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref56
http://refhub.elsevier.com/S1074-7613(21)00114-X/optLxPBLyLf5j
http://refhub.elsevier.com/S1074-7613(21)00114-X/optLxPBLyLf5j
http://refhub.elsevier.com/S1074-7613(21)00114-X/optLxPBLyLf5j
http://refhub.elsevier.com/S1074-7613(21)00114-X/optLxPBLyLf5j
http://refhub.elsevier.com/S1074-7613(21)00114-X/optId5AYRhVv1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optId5AYRhVv1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optId5AYRhVv1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optId5AYRhVv1
http://refhub.elsevier.com/S1074-7613(21)00114-X/optF9Q2KctOq7
http://refhub.elsevier.com/S1074-7613(21)00114-X/optF9Q2KctOq7
http://refhub.elsevier.com/S1074-7613(21)00114-X/optF9Q2KctOq7
http://refhub.elsevier.com/S1074-7613(21)00114-X/optF9Q2KctOq7
http://refhub.elsevier.com/S1074-7613(21)00114-X/optF9Q2KctOq7
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref58
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref58
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref58
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref58
http://refhub.elsevier.com/S1074-7613(21)00114-X/optkAfJzsegWL
http://refhub.elsevier.com/S1074-7613(21)00114-X/optkAfJzsegWL
http://refhub.elsevier.com/S1074-7613(21)00114-X/optkAfJzsegWL
http://refhub.elsevier.com/S1074-7613(21)00114-X/optkAfJzsegWL
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt7L6wymTbbP
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt7L6wymTbbP
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt7L6wymTbbP
http://refhub.elsevier.com/S1074-7613(21)00114-X/opt7L6wymTbbP
http://refhub.elsevier.com/S1074-7613(21)00114-X/optH65IvtKEMJ
http://refhub.elsevier.com/S1074-7613(21)00114-X/optH65IvtKEMJ
http://refhub.elsevier.com/S1074-7613(21)00114-X/optH65IvtKEMJ
http://refhub.elsevier.com/S1074-7613(21)00114-X/optH65IvtKEMJ
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref59
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref59
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref59
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref61
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref61
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref61
http://refhub.elsevier.com/S1074-7613(21)00114-X/sref61


ll
OPEN ACCESSArticle
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq dataset Liu et al., 2017 accession# PRJNA352396

RNA-seq dataset Soares-Schanoski et al., 2019 accession# PRJNA507472

RNA-seq dataset Michlmayr et al., 2018 accession# PRJNA390289

RNA-seq dataset Thair et al., 2020 accession# GSE152641

Microarray dataset de Steenhuijsen Piters et al., 2016 accession# GSE77087

Microarray dataset Liu et al., 2016 accession# GSE73072

Microarray dataset Zhai et al., 2015 accession# GSE68310

Microarray dataset Jaggi et al., 2018 accession# GSE68004

Microarray dataset Heinonen et al., 2016 accession# GSE67059

Microarray dataset Sweeney et al., 2015 accession# GSE66099

Microarray dataset Wong et al., 2007, 2008, 2012 accession# GSE4607

Microarray dataset Ramilo et al., 2007 accession# GSE6269

Microarray dataset Hoang et al., 2014 accession# GSE61821

Microarray dataset Davenport et al., 2014 accession# GSE61754

Microarray dataset Parnell et al., 2012 accession# GSE40012

Microarray dataset Mejias et al., 2013 accession# GSE38900

Microarray dataset Wang et al., 2007 accession# GSE2729

Microarray dataset Berdal et al., 2011 accession# GSE27131

Microarray dataset Smith et al., 2014 accession# GSE25504

Microarray dataset Bermejo-Martin et al., 2010 accession# GSE21802

Microarray dataset Parnell et al., 2011 accession# GSE20346

Microarray dataset Zaas et al., 2009 accession# GSE17156

Microarray dataset Yu et al., 2019 accession# GSE117827

Microarray dataset Dunning et al., 2018 accession# GSE111368

Microarray dataset Rodriguez-Fernandez et al., 2017 accession# GSE103842

Microarray dataset Tang et al., 2019 accession# GSE101702

Microarray dataset Jong et al., 2016 accession# E-MTAB-5195

scRNA-seq dataset Su et al., 2020 accession# E-MTAB-9357

scRNA-seq dataset Arunachalam et al., 2020 accession# GSE155673

scRNA-seq dataset Wilk et al., 2020 accession# GSE150728

Software and Algorithms

R R Core Team (2020) www.r-project.org

gcRMA Wu and Irizarry, 2020 https://www.bioconductor.org/packages/

release/bioc/html/gcrma.html

MetaIntegrator Haynes et al., 2017 https://cran.r-project.org/web/packages/

MetaIntegrator/index.html

COCONUT Sweeney et al., 2016b https://cran.r-project.org/web/packages/

COCONUT/index.html

Qualimap Garcı́a-Alcalde et al., 2012 http://qualimap.conesalab.org/

Salmon Patro et al., 2017 https://combine-lab.github.io/salmon/

Tximport Soneson and Robinson, 2018 https://bioconductor.org/packages/

release/bioc/html/tximport.html

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Alevin Srivastava et al., 2019 https://combine-lab.github.io/salmon/
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REAGENT or RESOURCE SOURCE IDENTIFIER

UMAP McInnes et al., 2018 https://cran.r-project.org/web/packages/

umap/index.html

Seurat Satija et al., 2015 https://satijalab.org/seurat/

Trim Galore Martiin, 2011 https://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/

SingleR Aran et al., 2019 https://bioconductor.org/packages/

release/bioc/html/SingleR.html

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

immunoStates Vallania et al., 2018 https://cran.r-project.org/web/packages/

MetaIntegrator/index.html

tSpace Dermadi et al., 2020 https://github.com/hylasD/tSpace
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources, software, and data should be directed to and will be fulfilled by the Lead Contact,

Purvesh Khatri (pkhatri@stanford.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
This study did not generate any unique datasets or code. All datasets, software, and algorithms used in this study are publicly avail-

able and listed in the Key Resource table.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dataset collection and preprocessing
We downloaded 26 gene expression datasets from the National Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO), Sequence Read Archive (SRA), ArrayExpress, and European Nucleotide Archive (ENA), consisting of 4,780 samples

from 34 independent cohorts derived from whole blood or peripheral blood mononuclear cells (PBMCs) (Table S1). We excluded all

datasets used to discover the MVS previously to ensure all cohorts analyzed in the current study were independent. We defined a

cohort as a comparable group of individuals within a dataset, where each dataset has a unique GEO identifier and may contain mul-

tiple cohorts. For example, the dataset GSE73072 contains seven cohorts of individuals challenged with one of three viruses. The

samples in these datasets represented the biological and clinical heterogeneity observed in the real-world patient population,

including HCs and patients infected with 16 different viruses with severity ranging from asymptomatic to fatal viral infection over a

broad age range (0-90 years) (Figure 1A and Table S1). The samples were from patients enrolled across 18 different countries rep-

resenting diverse genetic backgrounds of patients and viruses.We included technical heterogeneity in our analysis as these datasets

were profiled using microarray and RNA sequencing (RNA-seq) from different manufacturers.

We renormalized all microarray datasets using standard methods when raw data were available from the GEO. We applied GC

robust multiarray average (gcRMA) to arrays with mismatch probes for Affymetrix arrays. We used normal-exponential background

correction and quantile normalization for Illumina, Agilent, GE, and other commercial arrays. We did not renormalize custom arrays

and used preprocessed data as made publicly available by the study authors. We mapped microarray probes in each dataset to En-

trez Gene identifiers (IDs) to facilitate integrated analysis. If a probe matched more than one gene, we expanded the expression data

for that probe to add one record for each gene. Whenmultiple probes mapped to the same gene within a dataset, we applied a fixed-

effect model. Within a dataset, cohorts assayed with different microarray types were treated as independent.

Standardized severity assignment
For each dataset, we used the sample phenotypes as defined in the original publication. Wemanually assigned a severity category to

each sample based on the cohort description for each dataset in the original publication as follows: (1) HCs – asymptomatic, unin-

fected healthy individuals, (2) asymptomatic or convalescents – afebrile asymptomatic individuals who tested positive for a virus or

those fully recovered from a viral infection with completely resolved symptoms, (3) mild – symptomatic individuals with viral infection

that were either managed as outpatient or discharged from the emergency department (ED), (4) moderate – symptomatic individuals

with viral infection who were admitted to the general wards and did not require supplemental oxygen, (5) serious - symptomatic in-

dividuals with viral infection who were described as ‘severe’ by original authors, admitted to general wards with supplemental
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oxygen, or admitted to the intensive care unit (ICU) without requiring mechanical ventilation or inotropic support, (6) critical - symp-

tomatic individuals with viral infection who were on mechanical ventilation in the ICU or were diagnosed with acute respiratory

distress syndrome (ARDS), septic shock, or multiorgan dysfunction syndrome (MODS), and (7) fatal – patients with viral infection

who died in the ICU.

For datasets that did not provide sample-level severity data (GSE101702, GSE38900, GSE103842, GSE66099, GSE77087), we

assigned severity categories as follows. We categorized all samples in a dataset as ‘‘moderate’’ when either (1) > 70% of patients

were admitted to the general wards as opposed to discharged from the ED, (2) < 20% of patients admitted to the general wards

required supplemental oxygen, or (3) patients were admitted to the general wards and categorized as ‘mild’ or ‘moderate’ by the

original authors. We categorized all samples in a dataset as ‘‘severe’’ when > 20% of patients had either (1) been admitted to the

general wards and categorized as ‘severe’ by original authors, (2) required supplemental oxygen, or (3) required ICU admission

without mechanical ventilation.

Viral challenge studies
GSE73072 included seven viral challenge studies that determined the infection status of a subject through reverse transcription PCR

(RT-PCR) for a given virus (H1N1, H3N2, RSV, HRV) in longitudinally collected nasopharyngeal samples. In these studies, we as-

signed all baseline pre-challenge samples and subjects who never shed virus, as determined by RT-PCR, to the ‘healthy’ category.

We assigned samples from infected subjects, defined as those who had virus detected in any of their nasopharyngeal samples, to

one of three categories: (1) before infection - blood samples collected after challenge but before a virus was detected in a nasopha-

ryngeal sample, (2) after infection - blood samples collected after the last nasopharyngeal sample in which a virus was detected, and

(3) during infection - blood samples collected between the first and last nasopharyngeal sample in which a virus was detected.

COCONUT co-normalization
We used Combat CONormalization Using conTrols (COCONUT) for between-dataset normalization (Sweeney et al., 2016b).

COCONUT allows for co-normalization of gene expression data without bias toward sample diagnosis by applying amodified version

of the ComBat empirical Bayes normalization method (Johnson et al., 2007), which assumes a similar distribution between control

samples. Briefly, healthy samples from each cohort undergo ComBat co-normalization without covariates, and the ComBat esti-

mated parameters are computed for the healthy samples in each dataset. By applying these parameters to the non-healthy samples,

all datasets keep the same background distribution while retaining the same relative distance between healthy and disease samples,

which preserves the biological variability between the two groups within a dataset. We have previously shown that when COCONUT

co-normalization is applied, housekeeping genes remain invariant across both conditions and cohorts, and each gene retains the

same distribution across conditions within each dataset (Sweeney et al., 2016b).

MVS genes and score
We did not derive a de novo gene signature to represent the conserved host response to viral infection. Instead, we used our pre-

viously described 396-gene signature from peripheral blood (Andres-Terre et al., 2015). As previously described, we defined the

MVS score of a sample as the difference between the geometric mean of the overexpressed genes and the geometric mean of

the under-expressed genes in the MVS (Andres-Terre et al., 2015). Out of 396 genes in the MVS, 251 genes (111 over- and 140 un-

der-expressed) weremeasured across all datasets. We used the 251 gene subset of theMVS in our analyses as theMVS score using

either 251-gene or 396-gene signatures were highly correlated (data not shown).

We measured the correlation of the MVS score with viral infection severity using Spearman’s rank correlation coefficient. We used

the Mann–Whitney U test (Wilcoxon rank-sum test) to compare MVS scores between two groups. We tested the trend of the MVS

score along viral infection severity categories using the Jonckheere-Terpstra trend test.

RNA sequencing analysis
We obtained the raw reads for the Ebola (PRJNA352396) and chikungunya (PRJNA507472 and PRJNA390289) cohorts from the Eu-

ropean Nucleotide Archive (ENA). We obtained the raw reads of the SARS-CoV-2 cohort from Inflammatix. We assessed trimmed

Illumina adaptors and removed reads that were too short after adaptor trimming (less than 20 nt) with Trim Galore (v0.6.5). We

then mapped the cleaned reads to the human genome (hg38) using STAR (v2.7.3) (Dobin et al., 2013). We performed additional qual-

ity control by checking the mapped reads with Qualimap (v.2.2.2) (Garcı́a-Alcalde et al., 2012). To quantify gene expression, we ob-

tained human transcriptome sequences from GENCODE site (v32), processed the cleaned reads with Salmon (1.2.1) (Patro et al.,

2017) to get transcript-level expression, and summarized to gene-level expression using Tximport (v1.16.0) (Soneson and Robinson,

2018). Finally, we applied the variance stabilizing transformation from DESeq2 (v1.26.0) (Love et al., 2014) to normalize gene expres-

sion for downstream analysis and visualization.

Detection of viral reads in RNA-seq data
Weobtained genome sequences of 501 human viruses from the NCBI virus database (accessed on April 19, 2020). We concatenated

viral sequences with the list human transcriptome sequences and built a decoy-aware index using Salmon. Wemapped the reads to

the concatenated index using Salmon with the selective-alignment algorithm, which, together with the decoy-aware index, mitigates

potential spurious mapping of reads arising from unannotated human genomic loci and reduces false positives. We extracted reads
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mapped to viral genomes and filtered them to remove secondary alignments and paired-end reads with only one mate mapped. We

also checked the reads with NCBI Nucleotide BLAST to ensure viral origin. We normalized the viral read counts by the total number of

sequencing reads of each sample. We measured the correlation between the MVS score and viral read counts using Pearson cor-

relation coefficient.

Analysis of single-cell RNA-seq data
We downloaded scRNA-seq data of the Stanford cohort from NCBI GEO (Wilk et al., 2020). We also obtained the scRNA-seq data for

the Atlanta cohort (Arunachalam et al., 2020) and the Seattle cohort (Su et al., 2020). We processed raw scRNA-seq data with Alevin

(v1.2.1) (Srivastava et al., 2019) to get the read count matrices. We performed quality control, normalization, dimension reduction,

UMAP projection, and Shared Nearest Neighbors clustering on the three datasets with Seurat (Satija et al., 2015). Then we applied

the Seurat integration workflow to integrate the three datasets using Reciprocal PCA analysis. Cell type was annotated with SingleR

inference (Aran et al., 2019), cell type markers, and annotations from the original publications.

In silico cellular deconvolution using immunoStates and multi-cohort analysis of estimated cellular proportions
We performed in silico cellular deconvolution using immunoStates as a basis matrix with support vector regression to estimate pro-

portions of 25 immune cell subsets in each sample (Vallania et al., 2018). To investigate changes in the immune cell proportions be-

tween patients with different severity of viral infection, we conducted three multi-cohort analyses using MetaIntegrator R package

(Haynes et al., 2017) between samples from the following categories: 1) subjects with non-severe viral infection (severity categories

‘mild’ and ‘moderate’) versus HCs, 2) subjects with severe viral infection (severity categories ‘serious’, ‘critical’, and ‘fatal’) versus

HCs, and 3) subjects with severe viral infection versus subjects with non-severe viral infection. We combined effect sizes across

studies using a random-effects inverse variance model. For each meta-analysis, we calculated the change in proportions for each

immune cell type between groups in each cohort as the Hedges’ g effect size (ES). We corrected p values for multiple hypotheses

testing using the Benjamini-Hochberg correction to obtain the false discovery rate (FDR). We used a threshold of FDR < 20% and

representation in a minimum of 5 studies in conjunction with leave-one-out analysis to identify immune cell types with increased

or decreased proportions between groups. Individual samples that met the following criteria were excluded: non-viral infection,

non- HCs, and one sample from PRJNA252396 (SRR4888654) which had the same expression value for all 317 genes. Datasets

with less than two samples in each of the compared groups were excluded from meta-analysis. Individual samples that met the

following criteria were excluded: non-viral infection, non-healthy control, and one sample from PRJNA252396 (SRR4888654) which

had the same expression value for all 317 genes. Datasets with less than two samples in each of the compared groups were excluded

from meta-analysis.

Trajectory inference analysis
We co-normalized 1674 samples from 21 cohorts in 19 datasets with 1509 samples from four independent challenge studies using

COCONUT. Each challenge study inoculated healthy volunteers with one of four viruses (HRV, RSV, H1N1, and H3N2). We adapted

tSpace, a method for identifying cellular differentiation trajectories using scRNA-seq data (Dermadi et al., 2020), to identify disease

trajectories using bulk transcriptome profiles. We refer to the adaption to bulk transcriptome data as disease space (dSpace),

although the core method remains identical to tSpace. The tSpace algorithm has three steps: (1) calculation of a set of sub-graphs,

(2) calculation of the trajectory space matrix across the sub-graphs, and (3) visualization. In the first step, we calculated a set of sub-

graphs keeping L out of K nearest neighbors in a KNN graph. The user defines the number of sub-graphs (G), neighborhood size (K),

and howmany nearest neighbors are preserved in the sub-graphs (L). The second step computes a trajectory space distance matrix

using a modified Dijkstra algorithm that implements waypoints (WP) to exponentially weigh and refine distances. The final trajectory

space matrix is a dense matrix in which each sample is a row, and calculated trajectories are columns. The number of trajectories

(T > 150) is user-defined and very robust across a wide dynamic range. Finally, we visualize the samples and their relationships in

trajectory space using PCA or UMAP.

We used the following parameters for the dSpace analysis: G = 5, K = 65, L = 49, T = 500,WP = 20.We used Pearson correlation as

themetric for computing distance between two samples.We fitted a principal line through data visualized in the first two components

of tSpace (tPC1, tPC2) using the princurve R package. Princurve calculates lambda, an arc length distance for each data point, which

we used to align subjects along the isolated trajectory. Furthermore, the covariancematrix of the transposed trajectorymatrix (covari-

ance mapping) coupled with the hierarchical clustering identified clusters of patients with shared trajectory space. The covariance

matrix of the transposed trajectory matrix allows identification of patients that belong to diverging trajectories, and hierarchical clus-

tering of covariance matrix allowed us to group patients that are in severe and non-severe branches, thus enabling isolation of both

branches. Each of the determined clusters is a reflection of the position of patients in the trajectory space. Hierarchical clustering was

calculated using hclust and Dist R functions with ‘‘euclidean’’ and ‘‘complete’’ parameters.

Severe and non-severe trajectories shared 1020 samples from the healthy and no symptoms categories. Therefore, we aligned

them using dynamic time warping (dtw R package) and split them into 4 stages. All 251 genes and the fitted trajectory (lambda value)

were used for alignment. We applied a permutation test (Efron and Tibshirani, 2002) for each of the 4 stages and identified 96 genes

that were differentially expressed within the same stage between the two severity branches.
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Statistical analysis of trajectories identified with dSpace
We applied a permutation test (Efron and Tibshirani, 2002) for each of the 4 stages and identified 96 genes that were differentially

expressed within the same stage between the two severity branches. In our testing we used 1000 permutations, and for significance

FDR < 0.001 and |effects size| > 0.3. We performed data analysis using R.

Calculation of the SoM score
The Severe or Mild (SoM) score is a 42-gene model that utilizes the expression of genes from the 4 gene modules to distinguish be-

tween severe and mild viral infection. For each sample, we compute the geometric mean of the expression of genes from each mod-

ule. Then, we calculate a score by taking the sum of the geometric means of modules 1 and 2 and dividing that by the sum of the

geometric means of modules 3 and 4, as shown in the following equation:

SoM score =

�Q
gene ε Module1 xiðgeneÞ

�
1

jjModule1jj +
�Q

gene ε Module2 xiðgeneÞ
�

1
jjModule2jj

�Q
gene ε Module3 xiðgeneÞ

�
1

jjModule3jj +
�Q

gene ε Module4 xiðgeneÞ
�

1
jjModule4jj

(Equation1)

Correlation of cell proportions, MVS score, and SoM score with severity
We measured the correlation of the cell proportions or the score with viral infection severity using Spearman’s rank correlation co-

efficient. We used the Mann–Whitney U test (Wilcoxon rank-sum test) to compare the cell proportions or the score between two

groups. We tested the trend of the cell proportions or the score along viral infection severity categories using the Jonckheere-Terp-

stra trend test. We measured the correlation between the 251 and 396 gene versions of the MVS using Pearson’s correlation coef-

ficient. Data analysis was performed using R.

Module score association with plasma proteomics
The association between modules scores and plasma proteomics data from the Seattle cohort were calculated using multivariate

generalized estimating equations to account for repeated samples per patient and adjust for covariates (age, sex, BMI, race/

ethnicity). The p values were adjusted using Bonferroni correction. Data analysis was performed using R.
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Supplementary figure legends 

Figure S1, refers to Figure 1: MVS score is associated with severity of viral infection in each dataset in 
discovery and validation cohorts. a) ROC curves for the MVS score in each dataset in the discovery cohorts. 
AUROC values varied from 0.859 (95% CI 0.69-1) to 1 (95% CI 1-1). b) ROC curves for the MVS score in 4 
independent cohorts profiled using RNAseq. AUROC values varied from 0.84 (95% CI 0.76-0.92) to 0.972 (95% 
CI 0.932-1). c) Violin plots of the MVS score for all samples across 19 datasets. 

Figure S2, refers to Figure 2: MVS score is predominantly from the myeloid cells and Neutrophil proportion 
is higher in patients with severe viral infection. a-c) UMAP visualization of cell types, severity and MVS score 
in each of the three scRNA-seq cohorts. d-f) Forest plots for the changes in proportions of neutrophils estimated 
from bulk transcriptomic profiles using deconvolution between d) patients with non-severe viral infection and 
healthy controls, e) patients with severe viral infection and healthy controls, and f) patients with severe and non-
severe viral infection. 

Figure S3, refers to Figure 4: Samples from viral challenge studies almost exclusively cluster with samples 
from non-severe viral infection within dSpace. a) dSpace trajectory analysis of 3,183 samples from 25 cohorts, 
including 1,509 samples from 4 viral challenge studies (2 influenza, 1 HRV, 1 RSV). Each point represents a 
sample; viral challenge study samples are demarcated as triangles. b) Proportion of samples for each severity 
category or challenge study group within each cluster.  

Figure S4, refers to Figure 5: Expression of genes associated with NK cells, myeloid cell-derived suppression, 
HSPCs, and an overall protective host response correlate with severity of viral infection. a-b) KLRD1 and 
PIK3R1 expression in a) the discovery cohort and b) SARS-CoV-2 infection. c-d) Expression of myeloid cell-
associated genes, including MDSC markers and ORM1 in c) the discovery cohort and d) SARS-CoV-2 infection. 
e-f) Expression of genes over-expressed in patients with severe viral infection but not in those with non-severe 
viral infections compared to healthy controls, and preferentially expressed in circulating HSPCs in e) the 
discovery cohort and f) SARS-CoV-2 infection. g-h) Expression of genes identified to be significantly higher in 
patients with mild viral infection compared to those with serious, critical, or fatal viral infection, or healthy 
controls, in g) the discovery cohort and h) SARS-CoV-2 infection. 

Figure S5, refers to Figure 5: Expression of HLA-DPB1 in bulk transcriptome and sc-RNAseq. a) Expression 
of HLA-DPB1 in 3,183 bulk transcriptome samples in the discovery cohort. b)  Expression of HLA-DPB1 in SARS-
CoV-2 cohort. c) UMAP visualization of the expression of HLA-DPB1 in three sc-RNAseq cohorts. UMAP of cell 
type and severity are shown in Figure 2b and 2d. d) Expression of HLA-DPB1 in CD14 monocyte, cDCs, and B 
cells in the three sc-RNAseq cohorts. 

Figure S6, refers to Figure 6: The interferon-induced genes (IFITM1, IFITM2, IFITM3) and type I and II 
interferon receptors are highly correlated with protective response genes in mild but not severe viral 
infection. a) Expression of IFITM1, IFITM2, IFITM3, and type I and II interferon receptors across severity 
categories in patients with different viral infections including SARS-CoV-2. Each point in the violin plots 
represents a sample. b) Boxplots representing the correlation between IFITMs and type I and II interferon 
receptors, and the genes belonging to the protective response module. Each point represents a correlation 
between a gene pair, and lines connect the same pair across severity categories. P-values for the comparison 
between severity categories were computed using Wilcoxon signed-rank test.  

Figure S7, refers to Figure 7: SoM score distinguishes mild and severe viral infection in discovery and 
validation cohorts with higher accuracy than the MVS score. a-b) The ROC curves of the MVS score for 
differentiating between severity categories of viral infection in a) discovery and b) validation cohorts. c-d) The 
ROC curves of the SoM score for differentiating between severity categories of viral infection in c) discovery 
and d) validation cohorts. 
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Data S1: Study Summaries (related to Figure 1) 

This section describes each of the datasets used in the analyses. In order to provide the most accurate 
information, their descriptions have been used verbatim from the original corresponding manuscripts as much 
as possible.  

PRJNA352396: Liu et al. (Liu et al., 2017) collected peripheral blood from infected and convalescent, recovering 
Ebola virus (EBOV) patients located in Guinea during the 2013-2016 outbreak. They first used deep sequencing 
to define the transcriptomic profile of blood taken from acute patients who either went on to survive or die from 
EBOV. These transcriptional signatures from acutely ill patients were compared to profiles obtained from former 
patients who had recovered from EBOV and were EBOV-negative by qRT-PCR and also to data obtained from 
healthy volunteers mined from historical datasets. 

PRJNA507472: Soares et al. (Soares-Schanoski et al., 2019) collected blood samples from adult subjects reporting 
arbovirus-like symptoms and controls in Sergipe and São Paulo Brazil. A subset of the patients returned for 
clinical follow-up, and these Chikungunya (CHIKV) infected patients were under treatment and their joint 
manifestations were monitored quarterly. Patients who presented joint pain associated or not with joint or 
periarticular edema at the onset or significant worsening (in cases of previous joint disease) of the acute febrile 
syndrome after three months were considered chronic. Real-time RT-PCR was performed to test for CHIKV, 
Zika virus, and Dengue (DENV). 

PRJNA390289: Michlmayr et al. (Michlmayr et al., 2018) selected children (aged 6 months to 14 years) with 
Chikungunya (CHIKV) infection who were enrolled in the ongoing study at the National Pediatric Reference 
Hospital (Hospital Infantil Manuel de Jesús Rivera; HIMJR) in Nicaragua. CHIKV cases were laboratory-
confirmed by detection of CHIKV using real-time RT–PCR in some cases followed by virus isolation, in acute-
phase samples. In addition, seroconversion by IgM capture ELISA and/or a >4-fold increase in antibody titer by 
Inhibition ELISA in paired acute and convalescent sera were evaluated. Participants were also screened for 
dengue virus (DENV) infection, and CHIKV/DENV co-infections were excluded. Children with severe 
symptoms were excluded. All selected cases had an acute-phase sample collected on days 1–2 of illness and a 
convalescent sample collected on days 15–17 post-illness for serum, whole blood in PAXgene solution, and 
PBMCs; these were subject to transcriptomic analysis via RNAseq, CHIKV viral titer assays, multiplex ELISA 
for cytokines, and mass cytometry for cellular phenotyping. Follow-up samples were collected at 3, 6, 
and 12 months post-infection to study long-term outcomes of CHIKV infection. Sampling times closely adhered 
to the targeted acute (standard deviation [SD] = 0.5 days) and convalescent (SD = 0.6 days) timepoints. Clinical 
information was collected every 12 h, and after systematic monitoring by a clinical supervisor was digitized by 
double-data entry with quality control checks performed daily and weekly. 

SARS-CoV-2: Giamarellos-Bourboulis et al. (Giamarellos-Bourboulis et al., 2020) collected samples from adult 
patients with community-acquired pneumonia (CAP) and sepsis and CAP by SARS-CoV-2 of either gender 
within the first 24 h of hospital admission. CAP was defined as the presence of new infiltrate in chest X-ray in a 
patient without any contact with any health- care facility the last 90 days; sepsis was defined by the Sepsis-3 
criteria. COVID was diagnosed for patients with CAP confirmed by chest X-ray or chest computed tomography 
and positive molecular testing of respiratory secretions. For patients who required mechanical ventilation (MV), 
blood sampling was performed within the first 24 h from MV and results were used for this analysis. Exclusion 
criteria were infection by the human immunodeficiency virus; neutropenia; and any previous intake of 
immunosuppressive medication (corticosteroids, anti-cytokine biologicals, and biological response modifiers). 
Severe respiratory failure (SRF) was defined as a severe decrease of the respiratory ratio necessitating intubation 
and MV. All data of patients with bacterial CAP screened for participation in the randomized clinical trial with 
the acronym PROVIDE (ClinicalTrials.gov NCT03332225) were used. All patients admitted for CAP by SARS-
CoV-2 from March 3 until March 30, 2020 participated in the study. RNAseq was performed on PBMCs. 



GSE77087: De Steenhuijsen Piters et al. (de Steenhuijsen Piters et al., 2016) prospectively enrolled previously 
healthy children (<2 years) with a first episode of RSV infection during four consecutive RSV seasons at 
Nationwide Children’s Hospital, Columbus, Ohio either at the outpatient clinics or within a median of 24 hours 
(interquartile range 17–39 h) of admission in the pediatric ward or the pediatric intensive care unit (PICU). 
Asymptomatic healthy control subjects were enrolled during routine primary care visits or elective surgery not 
involving the respiratory tract. In addition to the need for hospitalization, RSV disease severity was assessed 
using a clinical disease severity score and by the need for supplemental oxygen, PICU admission, and length of 
stay. At enrollment, they obtained a blood sample from patients and controls for white blood cell count and 
transcriptome analysis, a nasopharyngeal bacterial swab for bacterial quantitative polymerase chain reaction 
(PCR) and microbiome analysis, and a nasal wash for RSV quantitation. RNA was extracted from whole-blood 
samples and hybridized onto Illumina HT12-V4 beadchips.  

GSE73072: Liu et al. (Liu et al., 2016) quantified the diagnostic advantage of pairing a person's baseline reference 
with his or her target sample using gene microarray data collected in a large-scale serially sampled respiratory 
virus challenge study. The data was collected over 7 challenge studies performed by Duke University under a 
contract awarded by the DARPA Predicting Health and Disease program. These 7 challenge studies are referred 
to as RSV DEE1, H3N2 DEE2, H1N1 DEE3, H1N1 DEE4, H3N2 DEE5, HRV UVA, and HRV DUKE. These studies 
consist of 2886 microarray chips assaying 12,023 genes of 148 human volunteer subjects under 4 different 
inoculation regimes (HRV, RSV, H1N1, H3N2). During each challenge study, subjects had peripheral blood 
taken prior to inoculation with virus (baseline), immediately prior to inoculation (pre-challenge) and at set 
intervals following challenge. RNA was extracted at Expression Analysis (Durham, NC) from whole blood using 
the PAXgene™ 96 Blood RNA Kit (PreAnalytiX, Valencia, CA) employing the manufacturer's protocol. 
Hybridization and microarray data collection were performed using the Human Genome U133A 2.0 Array 
(Affymetrix, Santa Clara, CA).  

GSE68310: Zhai et al. (Zhai et al.) enrolled healthy adults aged 18 to 49 to be followed for acute respiratory illness 
(ARI) through two consecutive influenza seasons 2009-2010 and 2010-2011. Baseline blood specimens were 
obtained during enrollment and subjects were given thermometers and instructions to call and report for 
evaluation within 48 hours of ARI onset. Those persons who had a new ARI were seen within 48 hours of onset 
(day 0) and 2, 4, and 6 days later for repeat evaluation, blood specimen collections, and medical care (including 
the antiviral zanamivir if indicated) and 21 days later for collection of convalescent specimens. Nasal wash 
samples were collected for virus detection by RT-PCR on day 0 and day 2. Surveillance for influenza was 
terminated after 5.5 months; all subjects were asked to return for specimen collection and to provide a medical 
and ARI history in spring of next year. Serum specimens obtained at baseline, day 0 and day 21 visits for 
illnesses, and the terminal visit were tested simultaneously using hemagglutination-inhibition (HAI) antibody 
assay for Influenza H1N1, H3N2, and Influenza B strains. Peripheral blood RNA (PaxGene) obtained from blood 
specimens at each visit were analyzed using Illumina Human HT-12 v4. The study was repeated 2010-2011.  

GSE68004: Jaggi et al. (Jaggi et al., 2018) prospectively enrolled and obtained blood samples in a total of 162 
children < 18 years of age at three hospitals (Nationwide Children’s Hospital in Columbus, OH, Children’s 
Medical Center in Dallas, TX and Rady Children’s Hospital in San Diego, CA) hospitalized with Kawasaki 
Disease or other febrile illnesses and 37 healthy, asymptomatic children as controls who were age-, gender- and 
race-matched. Of the 125 hospitalized children, 19 patients had confirmed adenovirus infection and only these 
samples and the controls were used for our analysis. Healthy controls were enrolled when undergoing elective 
surgery for non-infectious related causes, or at routine outpatient visits. 

GSE67059: Heinonen et al. (Heinonen et al., 2016) prospectively enrolled previously healthy children <2 years 
old recruited over six respiratory seasons (2007–2011 and 2013–2015) from four study sites (Columbus, OH; 
Dallas, TX; Turku, Finland; and Malaga, Spain). Children with respiratory symptoms were enrolled at the 
emergency department (outpatients) or within 48 hours of hospitalization (inpatients) and were classified into: 



HRV- healthy controls (HC; n=37); HRV+ asymptomatic (n=14); HRV+ outpatients (n=30); and HRV+ inpatients 
(n=70). Exclusion criteria: documented bacterial or viral coinfections, systemic corticosteroid treatment in the 
preceding 2 weeks, prematurity (<36 wk of gestation), immunodeficiency, or chronic medical conditions. Whole 
blood RNA samples were hybridized into Illumina arrays. Healthy control subjects were enrolled during well-
child visits or minor elective surgical procedures not involving the respiratory tract who did not have a history 
of a respiratory tract infection within 2 weeks of enrollment. Blood and nasopharyngeal (NP) samples were 
collected at enrollment from all subjects and analyzed for transcriptional profiles and respiratory viruses. 
Disease severity was assessed according to the need for hospitalization (inpatients [moderate or severe disease] 
vs. outpatients [mild disease]) and using a standardized clinical disease severity score (CDSS).  

GSE66099: Sweeney et al. (Sweeney et al., 2015) created this dataset which is composed of unique patients 
present in the six other GEO datasets published by the Genomics of Pediatric SIRS and Septic Shock 
Investigators, which includes all unique patients from GSE4607 (described below), GSE8121 (Shanley et al., 
2007), GSE9692 (Cvijanovich et al., 2008), GSE13904 (Wong et al., 2009a), GSE26378 (Wynn et al., 2011), and 
GSE26440 (Wong et al., 2009b). Only unique patients from the Day 1 timepoint are included. The original studies 
examined pediatric patients admitted to the ICU, who were later classified as either SIRS (non-infectious) or 
Sepsis or Septic Shock (infectious). There is also a group of healthy controls. Although the original studies 
examine patients at both ICU day 1 and ICU day 3, patients here are only aggregated ICU day 1 patients. All 
samples were downloaded as CEL files and re-normalized with gcRMA using R package 'affy'.  

GSE4607: Wong et al. (Wong et al., 2012; 2008; 2007) enrolled children < 10 years of age admitted to the pediatric 
intensive care unit (PICU) who met criteria for pediatric-specific septic shock as defined by the 2005 International 
pediatric sepsis consensus conference. Control patients were recruited from the participating institutions using 
the following exclusion criteria: any acute illness, a recent febrile illness (within 2 weeks), recent use of anti-
inflammatory medications (within 2 weeks), or any history of chronic or acute disease associated with 
inflammation. Whole blood samples were obtained within 24 hours of admission to the PICU, referred to as 
“Day 1” of septic shock, for microarray analysis with Affymetrix Human Genome U133 Plus 2.0 GeneChip. All 
study patients were followed for 28 days to determine survival. A subset of patients with influenza, rotavirus, 
and varicella, and controls were used in our analysis, and we excluded samples that overlapped with those in 
GSE66099. 

GSE6269: Ramilo et al. (Ramilo et al., 2007) profiled PBMCs from patients (age ≤ 18 years) with acute infections 
caused by: (1) an RNA virus (influenza A); (2) two gram-positive bacteria (Staphylococcus aureus and Streptococcus 
pneumoniae); and (4) a Gram- negative bacterium (Escherichia coli). Patients were treated according to standard 
hospital protocols, and antimicrobial therapy was promptly initiated in the emergency department. The patients 
were treated with up to three different drugs from an overall set of 13 drugs. The study profiled these samples 
using three types of microarrays from two manufacturers, Affymetrix (HG U133A and HG U133 plus 2.0) and 
Illumina, representing technical variability.  

GSE61821: Hoang et al. (Hoang et al., 2014) recruited patients from two cohorts 1) Mild influenza and other 
febrile illness (OFI) samples, and 2) moderate and severe samples as described below.  

Mild and OFI cohort: Patients were recruited between January 2008 and January 2010 from an 
undifferentiated fever inclusion study (EDEN) in Singapore, who were ≥18 years of age and presented ≤72 h 
from onset of fever ≥38°C. Patients were tested by PCR for influenza A and B, RSV, parainfluenza 1–3, 
coronavirus, metapneumovirus, enterovirus and adenovirus in nasal swabs and for dengue virus 1–4, 
human parvovirus B19, Cytomegalovirus, and Epstein Barr virus in EDTA blood. They performed whole-
blood transcriptional profiling on all samples from both groups at 72 hours after fever onset, at 3–8 days and 
3–4 weeks after self-reported fever onset.  

Moderate and severe cohort: Samples of moderate and severe influenza patients were collected from a multi-
center, double-blinded, randomized control trial of different doses of oseltamivir for the treatment of 



hospitalized patients with influenza (Registered ClinicalTrials.gov: NCT00298233). The study took place 
across 13 hospitals in the Southeast Asia Infectious Disease Clinical Research Network (SEAICRN). Whole-
blood samples collected before oseltamivir treatment (study day 0) and at follow up (day 28) were used. The 
inclusion criteria were: (i) age ≥1 year, (ii) duration of illness ≤10 (non-H5N1) or ≤14 (H5N1) days, (iii) 
positive result for influenza virus A or B using a rapid antigen test or qualitative RT-PCR in a respiratory 
specimen, (iv) presence of at least one respiratory symptom (cough, dyspnea or sore throat), (v) disease 
requiring hospital admission, and (vi) one of the following signs of severe influenza: (a) new infiltrate on a 
chest X-ray, (b) tachypnea (respiratory rate ≥30 for ages ≥12 years, rate ≥40 for ages 6 to 12 years, rate ≥45 for 
ages 3 to 6 years, rate ≥50 for ages 1– to 3 years), (c) dyspnea (unable to speak full sentences, or use of 
accessory respiratory muscles), or (d) hypoxia (arterial oxygen saturation ≤92% on room air by a 
transcutaneous method). Subjects infected with avian influenza virus A/H5N1 were enrolled with any 
degree of severity. The exclusion criteria were: (i) pregnancy or urine β-hCG positivity, (ii) breast feeding, 
(iii) prior oseltamivir therapy for >72 hours duration or double dose (any duration) within the past 14 days, 
(iv) allergy or severe intolerance of oseltamivir, (v) creatinine clearance (CrCl) <10 mL/min. Severe influenza 
was defined as: i) requiring mechanical ventilation or ii) presenting with severe tachypnea (respiratory rate 
≥30 for ages ≥12 years, rate ≥40 for ages 6 to 12 years, rate ≥45 for ages 3 to 6 years, rate ≥50 for ages 1–to 3 
years) and hypoxia (arterial oxygen saturation ≤92% on room air by a transcutaneous method. Gene 
expression microarray was performed using one-color array technology on the Illumina platform (Illumina 
Inc, San Diego, CA, USA).  

GSE61754: Davenport et al. (Davenport et al., 2014) recruited 22 healthy volunteers aged 18–45 years, and 11 
were vaccinated with 1.5×108 plaque forming units (pfu) of MVA-NP+M1. Thirty days after vaccination, all 
volunteers underwent intranasal challenge with H3N2 influenza (A/Wisconsin/67/2005) at a dose of 1 ml of 
105.25 TCID50/ml in a quarantine facility. Volunteers were all challenged within a 2-h period. All subjects had 
hemagglutination inhibition (HI) titers of <1:10 to the challenge virus on admission to the quarantine unit. After 
viral challenge, volunteers had a physical examination by a trial physician daily and self-reported their 
symptoms using a modified Jackson scoring system (Zaas et al., 2009) twice daily, from 12-h post-challenge, for 
6 days. This system lists upper respiratory and systemic symptoms on a scale of 0–3: ‘no symptoms’, ‘just 
noticeable’, ‘bothersome but can still do activities’ and ‘bothersome and cannot do daily activities.’ Scores were 
summed over the duration of the challenge period to give a total symptom score. Those volunteers with scores 
of ≥4 and positive viral culture from nasal wash samples were categorized as having laboratory-confirmed 
influenza (LCI). Severity of infection was graded as mild if the summed symptom score was 4–28, with scores 
of ≥29 classified as moderate/severe. Volunteers were kept in quarantine until day 6 post-challenge, and all had 
a negative rapid antigen test on nasal wash sample prior to discharge. Whole blood was collected in PAXgene 
tubes prior to influenza challenge (day 30) and then at three further time points (12, 24 and 48 h post-challenge) 
for genome-wide gene expression analysis using the Illumina HumanHT-12 v4 Expression BeadChip. All nasal 
washing and blood collections for viral shedding and gene expression analysis were taken in the same order 
that the volunteers were challenged in. 

GSE40012: Parnell et al. (Parnell et al., 2012) recruited patients with severe community-acquired pneumonia 
requiring ICU admission, patients with noninfective systemic inflammatory response syndrome (SIRS), and 
healthy controls. They defined SIRS as the presence of at least two of the following four clinical criteria: (a) fever 
or hypothermia (temperature > 100.4°F (38°C) or < 96.8°F (36°C)); (b) tachycardia (> 90 beats/min), (c) tachypnea 
(> 20 breaths/min or PaCO2 < 4.3 kPa (32 mm Hg)), or the need for mechanical ventilation; (d) an altered white 
blood cell count of > 12,000 cells/µl, < 4,000 cells/µl, or the presence of > 10% band forms. Pneumonia was defined 
as a microbiologically confirmed infection of the lungs in a patient fulfilling the SIRS criteria. Patients were 
between ages 22 to 75 years. Influenza A H1N1 2009 was confirmed by PCR, and bacterial pneumonia by 
microbiological cultures. The first blood sample from each patient was collected within 24 hours of ICU 



admission. Patients were monitored for up to 5 days for microarray analysis of longitudinal gene-expression 
profiles.  

GSE38900: Mejias et al (Mejias et al., 2013) prospectively enrolled children over six respiratory seasons including 
a cohort of hospitalized infants (age <2 years) with RSV, HRV, and influenza infections from three centers: (1) 
Nationwide Children’s hospital, Columbus, Ohio, (2) Turku University (Turku, Finland), and (3) Children’s 
Medical Center, Dallas, Texas and blood samples were collected for microarray analysis. Children with 
documented viral or bacterial co-infections (bacteremia, urinary tract infection, meningitis, acute gastroenteritis, 
or any bacterial pathogen isolated from a sterile site) were excluded. Children with congenital heart disease, 
chronic lung disease, immunodeficiency, prematurity (<36 weeks), and systemic steroid treatment within 2 
weeks prior to presentation were also excluded. Control samples were obtained from healthy children without 
comorbidities, use of systemic steroids, or presence of any illness within 2 weeks prior to enrollment who were 
either undergoing elective surgery not involving the respiratory tract, or at outpatient visits for routine care. To 
exclude viral co-infections, respiratory samples were tested by viral culture or PCR in 94% of patients and 
controls.  

GSE2729: Wang et al. (Wang et al., 2007) collected blood and fecal specimens from children < 3 years of age who 
were hospitalized for treatment of acute rotavirus gastroenteritis, who were otherwise generally in good health 
with no prior history of rotavirus diarrhea and had not received rotavirus vaccines. All patients had symptoms 
typical of rotavirus infection (fever, vomiting, diarrhea, or dehydration), and all were confirmed positive by the 
testing of fecal specimens by using enzyme immunoassay and PCR. Blood samples were drawn at the time of 
hospital admission, within 72 hours of enrollment, and 3 weeks later from some children. PBMCs were isolated 
for microarray analysis using Affymetrix Human U95Av2 high density oligonucleotide arrays. Controls were 
age-matched healthy children admitted for elective surgery with no symptoms of gastroenteritis and fecal 
specimens that tested negative for rotavirus by enzyme immunoassay. 

GSE27131: Berdal et al. (Berdal et al., 2011) prospectively recruited ICU patients over a four week period who 
were > 18 years of age diagnosed with pandemic H1N1 influenza by upper airway PCR with bilateral chest X-
rays infiltrates requiring mechanical ventilator support. Patients with significant comorbidity (malignancy and 
severe systemic inflammatory diseases) were excluded. Age and gender-matched healthy individuals served as 
controls. Peripheral venous blood was collected for microarray analysis at inclusion and after 3 and 6 days. Blood 
was centrifuged at 2500× g for 20 min to obtain platelet-poor plasma (EDTA) or allowed to clot before 
centrifugation, after which RNA from blood leukocytes was obtained by PAXgene Blood RNA System for 
microarray analysis.  

GSE25504: Smith et al. (Smith et al., 2014) and Dickinson et al. (Dickinson et al., 2015) enrolled infants from the 
Neonatal Unit, Royal Infirmary of Edinburgh, and the Division of Pathway Medicine, University of Edinburgh 
having blood cultures taken for suspected infection. They obtained whole blood for expression profiling at the 
time of first clinical signs of suspected and microbiological blood culture. The infected group was defined as 
patients with suspected clinical infection that proved to have microbiological evidence of infection from a 
usually sterile body site, and samples were only included as positive if both clinicians agreed that infection was 
present. Exclusion criteria were: infants of mothers known to be positive for hepatitis B, HIV or hepatitis C 
viruses, mothers with known history of drug misuse, and mothers that had no antenatal screening for blood-
borne viruses. Other exclusion criteria were infants who did not require clinical blood samples and infants for 
whom extra blood sampling might be of particular risk (such as anemia). Controls were defined as ‘well’ infants 
having blood taken for other clinical reasons, which included screening tests for maternal thyroid disease, 
routine neonatal screening, pigmented scrotum, electrolyte check for previously deranged sodium, bilirubin 
check due to jaundice, and neonatal encephalopathy, all of which were normal. Samples were divided into four 
cohorts which were each run on different microarray platforms, three of which were excluded from our meta-
analysis (Affymetrix Human Genome U133 Plus 2.0, Illumina HumanHT-12 V3.0 expression beadchip, and 



Codelink 55K Human Array) because they did not have at least 2 samples present in each category (viral 
infection vs control). Patient samples with bacterial or fungal infection were also excluded from our analysis. 
We therefore only analyzed samples from 9 infants with corrected gestational age ranges of 275 to 396 weeks and 
ran on Affymetrix Human Genome U219 Array from this dataset, which included 6 controls and 3 patients with 
viral infections (2 Rhinovirus, 1 CMV).  

GSE21802: Bermejo-Martin et al. (Bermejo-Martin et al., 2010) recruited critically ill patients aged 18 to 65 years 
with influenza pneumonia during the acute phase of illness with acute respiratory distress and unequivocal 
alveolar opacification involving two or more lobes with negative respiratory and blood bacterial cultures on 
admission to the ICU. Only patients with confirmed H1N1 infection by RT-PCR were included in the study. 
Age-matched healthy volunteers were also recruited between workers of the University of Valladolid, Spain. 
Treatment decisions for all patients, including corticosteroid therapy, were not standardized and were used at 
the discretion of the attending physician.  

GSE20346: Parnell et al. (Parnell et al., 2011) recruited hospitalized patients aged 21-75 years with severe 
infection, defined as the presence of at least one major organ failure requiring critical care intervention. These 
patients had either viral (seasonal H3N2 or pandemic H1N1/09 influenza virus) or bacterial infections and were 
followed for four days. Healthy volunteers were enrolled from a local influenza vaccination program. 

GSE17156: Zaas et al. (Zaas et al., 2009) inoculated healthy volunteers (HV) with one of the following viruses 
(HRV, RSV, influenza) as described below.  

HRV cohort: The HRV challenge subjects were recruited through an active screening protocol at the 
University of Virginia (Charlottesville, VA). On the day of inoculation, 106TCID50 GMP HRV serotype 39 
was administered intranasally. Subjects were admitted to a quarantine facility for 48 hours post-inoculation. 
Nasopharyngeal (NP) lavage samples were obtained from each subject daily for titers to accurately gauge 
the success and timing of inoculation. After 48 hours post-inoculation, subjects were released from 
quarantine and returned for 3 consecutive days for further sample acquisition.  

RSV cohort: The RSV challenge was performed by Retroscreen Virology, Ltd. (London). On the day of 
inoculation, a dose of 104 TCID50 RSV (serotype A) was administered intranasally. Blood and NP lavage 
samples were collected as in the HRV cohort, but continued throughout quarantine. Due to the incubation 
period of RSV A, subjects were not released from quarantine until they were 288 hours post-inoculation and 
negative for rapid RSV antigen detection.  

Influenza cohort: The influenza challenge A/Wisconsin/67/2005 (H3N2) was performed at Retroscreen 
Virology, Ltd. (Brentwood, UK). On the day of inoculation, a 106 dose of TCID50 influenza A was diluted 
and administered intranasally per standard methods at different doses: (1:10, 1:100, 1:1000, 1:10000) with 4-
5 subjects receiving each dose. Due to the incubation period, subjects were not released from quarantine until 
168th hours post-inoculation. Blood and NP lavage samples were collected throughout the duration of 
quarantine. All subjects received oral oseltamivir (Roche Pharmaceuticals) (75 mg) by mouth twice daily at 
day 6 post-inoculation and were negative by rapid antigen detection at the time of discharge.  

GSE117827: Yu et al. (Yu et al., 2019) profiled children age 3 months to 18 years hospitalized for acute respiratory 
illness with positive results only for a single virus (Rhinovirus, RSV, Enterovirus, Coxsackievirus) on a multiplex 
nasopharyngeal swab obtained as part of the child’s routine care (BioFire FilmArray Respiratory Panel, Salt Lake 
City, UT). Exclusion criteria included any underlying medical condition that required regular medical care, 
receipt of immunosuppressive medications, corticosteroids within the preceding 30 days, and receipt of 
antibiotics within 7 days. Controls were age-matched children having ambulatory surgery for non-acute 
conditions. Exclusion criteria were the same as for symptomatic subjects plus fever within the preceding 48 
hours. Blood samples were profiled using microarray with Affymetrix.  



GSE111368: Dunning et al. (Dunning et al., 2018) and the Mechanisms of Severe Acute Influenza Consortium 
(MOSAIC) profiled whole blood for microarray analysis from patients aged ≥ 16 years during two successive 
winters (2009–2010 and 2010–2011) with pandemic H1N1 and seasonal H3N2 (determined by RT-PCR) admitted 
to general wards or ICU. They included patients with prior or concurrent comorbidities: (most commonly 
asthma, pregnancy, immunocompromising conditions or co-infection with other respiratory pathogens), to 
reflect the populations known to be at greatest risk of severe influenza. Adult healthy age, sex and ethnicity-
matched control subjects screened to exclude known illnesses or current use of medications were also included 
(Registered Clinical Trial NCT00965354). Samples were obtained at three time points: T1 (recruitment), T2 
(approximately 48 h after T1) and T3 (at least 4 weeks after T1). Severity of illness was graded as: 1, no substantial 
respiratory compromise, with blood oxygen saturation of > 93% while the patient was breathing room air; 2, 
oxygen saturation of ≤ 93% while the patient was breathing room air, justifying or requiring supplemental 
oxygen by face mask or nasal cannulae (with or without continuous positive airway pressure support or non-
invasive mechanical ventilation); 3, respiratory compromise requiring invasive mechanical ventilation with or 
without ECMO (extracorporeal membrane oxygenation). Nasopharyngeal aspirates and swabs collected at T1 
underwent microscopy and culture for bacteria, and multiplex PCR was performed to detect S. aureus, C. 
pneumoniae, H. influenzae, S. pneumoniae, Pneumocystis pneumoniae, Legionella species, Klebsiella 
pneumoniae, Salmonella species, Moraxella catarrhalis, Mycoplasma pneumoniae and Bordetella pertussis. 
Throat swab samples obtained at T1 also underwent culture and microscopy. Where available, urine samples 
collected between T1 and T2 underwent pneumococcal antigen testing (BinaxNow, Alere). An independent 
microbiologist assessed the significance and validity of positive blood-culture results, in an attempt to exclude 
cases of pseudobacteremia.  

GSE103842: Rodriguez-Fernandez et al. (Rodriguez-Fernandez et al., 2017) prospectively recruited previously 
healthy infants (age < 2 years) hospitalized to general wards or Pediatric ICU over 5 nonconsecutive respiratory 
seasons with RSV bronchiolitis. Patients were excluded if they were premature (gestational age ≤36 weeks), had 
a previous episode of documented RSV infection, chronic medical conditions, immunodeficiency, or had 
received systemic steroids or immunomodulatory drugs within 2 weeks of hospitalization. Healthy 
asymptomatic controls were enrolled during well-child visits or minor elective surgical procedures not 
involving the respiratory tract. Bronchiolitis was defined as the presence of rhinitis, tachypnea, wheezing, cough, 
crackles, use of accessory muscles, and/or nasal flaring with or without fever. Children who met the inclusion 
criteria and had a positive RSV test per standard of care, were enrolled within 24 hours of hospitalization, and 
a nasal wash sample was obtained for RSV typing and viral load quantitation. Nasal wash samples were also 
tested for other respiratory viruses in 75% of patients; 97% using a multiplex assay targeting 17 pathogens and 
3% by viral culture. In a subset of infants, blood samples (1–3 mL) were collected and blood RNA was processed 
and hybridized into Illumina Human HT12 V4 beadchips and scanned on the Illumina Beadstation 500. 

GSE101702: Tang et al. (Tang et al., 2019) profiled blood samples from hospitalized patients with varying severity 
of influenza infection. The eligibility criteria included (1) age > 18 years and (2) World Health Organization 
definition of influenza-like illness (fever of 38 C° or higher, cough and illness onset within the last ten days), and 
patients with a high likelihood of infection, based on history and clinical features. Airway samples 
(nasopharyngeal swab, throat sample or sputum) and a 2.5ml peripheral blood sample (into PAXgene tubes) 
were obtained in each participant within 24 hours of their presentation to the hospital. Airway samples were 
tested for bacterial pathogens and common respiratory viruses. Blood samples in PAXgene tubes were later 
processed for microarray analysis (Agilent 8× 60k Human V3) of participants and healthy control subjects 
without any medical illnesses. In patients admitted to the intensive care unit (ICU), additional respiratory 
samples were obtained from bronchoalveolar lavage or tracheal aspirates. Standard microbiological testing was 
performed in these samples, including sputum Gram stain and culture. Testing for atypical respiratory 
pathogens (Chlamydophila pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila) was 
performed in selected patients at the discretion of treating physicians. All patients were tested for respiratory 



viruses using nucleic acid PCR. The PCR panel included primers for influenza A, influenza B, respiratory 
syncytial virus, rhinovirus, parainfluenza virus, and human metapneumovirus. Patients infected with other 
viruses than influenza were excluded.  

E-MTAB-5195: Jong et al. (Jong et al., 2016) studied respiratory syncytial virus (RSV) infection in 39 hospitalized 
young children (age < 2 years) using early blood microarray transcriptome profiles followed until recovery and 
of which the level of disease severity was determined retrospectively. Patients were recruited from three 
hospitals, and nasopharyngeal wash and blood samples were prospectively obtained from patients with a viral 
bronchiolitis. Samples were taken within 24 hours after first contact with the hospital, and only patients with an 
RSV infection, as retrospectively determined by PCR were included in the study. Exclusion criteria were: 
immunodeficiency, systemic steroid treatment in the previous 2 weeks, blood transfusion, congenital heart and 
chronic lung disease. Patients were followed until recovery and were retrospectively classified as: mild for 
children without hypoxia, moderate for patients requiring supplemental oxygen (oxygen saturations < 90%, ≥ 
10 minutes) and severe for children requiring mechanical ventilation due to apnea, exhaustion and/ or 
respiratory failure. Recovery samples were obtained after 4–6 weeks, during home visits. Blood samples were 
obtained from healthy controls without underlying diseases or medication subjected to elective surgery. 

scRNAseq Datasets: The Seattle Cohort profiled 557,240 immune cells from 258 PBMC samples of HC and 
patients with SARS-CoV-2 infection (16 healthy, 94 asymptomatic, 8 mild, 37 moderate, 78 serious, 21 critical, 3 
fatal) using CITE-seq. The patients with SARS-CoV-2 infection in the Seattle Cohort were profiled at two time 
points: (1) near the time of a positive clinical diagnosis and (2) a few days later. The Atlanta Cohort profiled 
76,929 immune cells from 18 PBMC samples of HC and patients infected with one of 3 viruses (5 healthy, 1 
moderate influenza, 1 serious influenza, 2 serious RSV, 2 convalescent SARS-CoV-2, 3 moderate SARS-CoV-2, 3 
serious SARS-CoV-2, 1 fatal SARS-CoV-2) using CITE-seq. Finally, the Stanford Cohort profiled 68,801 immune 
cells from 13 PBMC samples of HC and patients with SARS-CoV-2 infection (6 healthy, 1 moderate, 3 serious, 2 
critical, 1 fatal) using Seq-Well. 
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