Supplementary Information for

An integrated multi-omics analysis identifies prognostic molecular subtypes of nonmuscle-invasive bladder cancer

Lindskrog and Prip et al.

Supplementary Information

Supplementary Figures	2
Supplementary Figure 1	2
Supplementary Figure 2	3
Supplementary Figure 3	4
Supplementary Figure 4	5
Supplementary Figure 5	6
Supplementary Figure 6	7
Supplementary Figure 7	8
Supplementary Figure 8	9
Supplementary Figure 9	10
Supplementary Tables	11
Supplementary Table 1	11
Supplementary Table 2	12
Supplementary Table 3	15
Supplementary Table 4	16
Supplementary Table 5	17
Supplementary Table 6	18
Supplementary Table 7	19
Supplementary Table 8	20

Supplementary Figure 1. Gene expression, regulons and methylation of transcriptomic classes. a Expression matrix of genes in selected biological processes. Samples are ordered after increasing silhouette score within each transcriptomic class (lowest to highest class correlation). CSC = cancer stem cell; EMT = epithelial-mesenchymal transition. **b** Kaplan-Meier plot of progression-free survival (PFS) for class 2a and 2b patients. **c** Kaplan-Meier plot of PFS for patients stratified by RNA-based immune score (above or below median). **d** Kaplan-Meier plot of recurrence-free survival (RFS) for patients stratified by RNA-based immune score (above or below median). **e** Kaplan-Meier plot of BCG failure-free survival (FFS) for patients stratified by transcriptomic class. **f** Regulon activity profiles for potential regulators associated with chromatin remodeling. **g** Principal component analysis of DNA methylation data from 29 Ta tumors representing the different transcriptomic classes. **h** Volcano plot of the mean promoter methylation difference between class 1 (n=10) and class 3 (n=7) on the site level. The combined *p*-value was computed by combining *p*-values of all sites in the region using the Fisher's method. The comparison is colored according to the combined ranks (mean difference, mean quotient and FDR adjusted *p*-value). Two-sided log-rank tests were used to compare survival curves. Source data are provided as a Supplementary Source Data file.

Supplementary Figure 2. Ta low grade subtypes. a Clinicopathological information and selected gene expression signatures for all Ta low grade (TaLG) tumors (n=286) stratified by TaLG subtype. Samples are ordered after increasing silhouette score within each subtype (lowest to highest subtype correlation). b Kaplan-Meier plot of recurrence-free survival (RFS) for 276 patients stratified by TaLG subtype. A two-sided log-rank test was used to compare survival curves. CIS = carcinoma *in situ*; MIBC = muscle-invasive bladder cancer; EMT = epithelial-mesenchymal transition. Source data are provided as a Supplementary Source Data file.

Supplementary Figure 3. T1 high grade subtypes. a Clinicopathological information and selected gene expression signatures for all T1 high grade (T1HG) tumors (n=101) stratified by T1HG subtype. Samples are ordered after increasing silhouette score within each subtype (lowest to highest subtype correlation). b Kaplan-Meier plot of progression-free survival (PFS) for 100 patients stratified by T1HG subtype. c Clinicopathological information and selected gene expression signatures for all tumors (n=535) stratified by T1HG subtype. d Kaplan-Meier plot of PFS for 530 patients stratified by T1HG subtype. e Genomic classes (GCs) compared to T1HG subtypes (n=52, all T1HG tumors). f Genomic classes (GCs) compared to T1HG subtypes (n=303, all tumors). P-values were calculated using two-sided Fisher's exact test for categorical variables and two-sided log-rank test for comparing survival curves. CIS = carcinoma in situ; MIBC = muscle-invasive bladder cancer; EMT = epithelial-mesenchymal transition. Source data are provided as a Supplementary Source Data file.

Supplementary Figure 4. Copy number alterations in NMIBC. a Genomic landscape of gains, losses and allelic imbalance without copy number change according to high (>6) and low (≤6) EORTC risk scores. b Amount of genomic alterations (Mb) according to genomic classes (GCs). Tumors were stratified into three GCs of equal size with increasing copy number alteration burden to illustrate low, intermediate and high chromosomal instability. EORTC = European Organisation for Research and Treatment of Cancer. Source data are provided as a Supplementary Source Data file.

Supplementary Figure 5. Genomic alterations associated with transcriptomic classes. a Kaplan-Meier plot of progression-free survival (PFS) for patients in genomic class (GC) 3 stratified by transcriptomic class. b RNA-derived mutations (top panels) and DNA-derived hot-spot mutations (bottom panel). Samples are ordered after the combined contribution of the APOBEC-related mutational signatures. Asterisks indicate *p*-values <0.05. Daggers indicate BH-adjusted *p*-values <0.05. c Proportion of DNA mutations calls observed or called in RNA for 38 patients. d Correlation between the number of mutations in DNA (VAF>0.1) and RNA for 38 patients. Only the 791 genes used to calculate the RNA-derived mutational load were considered for the RNA-derived mutations. e Proportion of all C to T/G mutations in a TCW context in DNA vs. RNA (proxy for APOBEC-related mutations). f-j Gene expression of key molecules in the p53 pathway stratified by gene copy number status. k Contribution of each mutation (n=441) were used to infer the seven mutational signatures. I Kaplan-Meier plot of PFS for patients stratified by contribution of the APOBEC-related signatures (above or below median). Statistical significance was assessed using a two-sided Fisher's exact test for categorical variables, a two-sided Wilcoxon rank sum test for continuous variables and a two-sided log-rank test for comparing survival curves. For all boxplots, the center line represents the median, box hinges represent first and third quartiles and whiskers represent for ±1.5 x interquartile range. Source data are provided as a Supplementary Source Data file.

Supplementary Figure 6. Assessment of intra-tumoral heterogeneity using Weighted In-Silico Pathology (WISP) class weights. a Semi-supervised visualization of WISP class weights. Samples are ordered by decreasing WISP class weights within the respective classes assigned by consensus clustering. Panels: Proportion of WISP class weights; silhouette scores; clinical and histopathological features; RNA-based mutations; DNA-based mutations and ploidy; MCPcounter immune and stromal population scores. b Correlation between silhouette scores from consensus clustering and WISP class weights for each class. Correlation coefficients with *p*-values were calculated from Pearson's correlation tests. Shaded areas indicate 95% confidence intervals for the fitted linear regression curves. c Association between WISP class weights and mutations (top) and clinical features (bottom). *P*-values were calculated using two-sided Wilcoxon rank sum test. d Spearman's correlation of WISP class weights and MCPcounter immune and stromal scores. CIS = carcinoma *in situ*; EORTC = European Organisation for Research and Treatment of Cancer. Source data are provided as a Supplementary Source Data file.

Supplementary Figure 7. Spatial proteomics analysis of the tumor immune contexture. a The digital pathology workflow. Step 1: Alignment of the pan-cytokeratin staining with the multiplex immunofluorescence staining. Step 2: Automated detection of the tumor parenchyma and stroma. Step 3: Automated detection of immune cells based on co-expression. All protein measurements were performed once for each distinct sample. b Immune cell infiltration according to transcriptomic class. Immune infiltration is defined as the percentage of cells in the parenchyma classified as the different immune cells. B cells were quantified in the stroma due to a low infiltration. *P*-values were calculated using a two-sided Wilcoxon rank sum test. c Immune cell infiltration according to recurrence rate. *P*-values were calculated by the one-sided Jonckheere-Terpstra test for trend. d Illustration of a tumor with both luminal (GATA3) and basal (CK5/6) characteristics. All protein measurements were performed once for each distinct sample. For all boxplots, the center line represents the median, box hinges represent first and third quartiles and whiskers represent ±1.5 x interquartile range. CTLs = cytotoxic T lymphocytes; Tregs = regulatory T cells. Source **8** data are provided as a Supplementary Source Data file.

Supplementary Figure 8. Prediction models. a Receiver operating characteristic (ROC) curves for predicting progression within 5 years using logistic regression models with continuous (conti) variables (n=395, events=24). **b** ROC curves for predicting progression within 5 years using logistic regression models including EAU risk score, genomic class and transcriptomic class (n=280, events=18). **c** ROC curves for predicting progression within 5 years using logistic regression models including EORTC risk score, genomic class and T1HG subtype (n=301, events=19). **d** ROC curves for predicting progression within 5 years using logistic regression models including EAU risk score, genomic class and T1HG subtype (n=280, events=18). Asterisks indicate significant improvement compared to the EORTC/EAU model (Likelihood ratio test, BH-adjusted *p*-value below 0.05). EORTC = European Organisation for Research and Treatment of Cancer; EAU = European Association of Urology; AUC = area under the curve; CI = confidence interval. Source data are provided as a Supplementary Source Data file.

Supplementary Figure 9. Validation of transcriptomic classes in independent cohorts. a Mean expression of selected gene expression signatures and proportion of transcriptomic UROMOL2021 and MIBC consensus classifications for T1HG classifications of T1 tumors (n=663) and all tumors (n=1226) in the independent cohorts. Asterisks indicate significant association between gene expression signature and subtype (one subtype vs. all other subtypes, two-sided Wilcoxon rank sum test, BH-adjusted *p*-value below 0.05). EMT = epithelial-mesenchymal transition; MIBC = muscle-invasive bladder cancer. **b** Kaplan-Meier plot of progression-free survival (PFS) for 512 patients from independent cohorts stratified by T1HG subtype. **c** Kaplan-Meier plot of PFS for 276 patients with T1 tumors from independent cohorts stratified by T1HG subtype. **d** Association of epigenetic-driven regulon activities (active vs. repressed status) with transcriptomic UROMOL2021 classes in the UROMOL cohort (including samples with positive silhouette scores) and in the independent cohorts (pooled). The heatmap illustrates BH-adjusted *p*-values from two-sided Fisher's exact tests. Two-sided log-rank tests were used to compare survival curves.Source data are provided as a Supplementary Source Data file.

	Copy number	RNA-	12-dene	Multiplex	
	analysis	Sequencing		IF and IHC	Total
	anarysis	Ocquerienty	qi ort		Total
	(n=473)	(n=535)	(n=735)	(n=167)	(n=834)
Median follow up (years)	3.51	4.55	3.62	4.89	3.89
Median follow up for non-	3.62	4.76	3.87	5.01	4.12
progressors (years)					
Median age (years)	70	69	70	69	70
Gender					
Male	354	414	568	138	644
Female	119	121	167	29	190
Smoking status					
Current	162	169	221	76	238
Former	150	167	242	68	257
Never	70	62	96	19	101
Unknown	91	137	176	4	238
Stage					
Та	335	397	523	117	592
T1	131	135	201	50	231
CIS	7	3	11	0	11
Grade					
High	199	215	305	77	353
Low	274	320	430	90	481
Concomitant CIS					
No	408	458	630	145	723
Yes	65	77	105	22	111
Growth pattern					
Papillary	422	480	627	161	710
Mixed	7	10	16	1	21
Solid	7	13	16	1	23
Unknown	37	32	76	4	80
Size					
< 3 cm	294	346	441	107	510
≥ 3 cm	67	90	113	46	131
Unknown	112	99	181	14	193
Incident tumor					
Yes	247	287	393	91	457
No	226	248	342	76	377
Progression to MIBC					
Yes	35	65	54	14	78
No	391	465	606	146	677
No follow-up	47	5	75	7	79
Recurrence					
Yes	239	348	339	104	410
No	160	163	198	56	219
No follow-up	74	24	198	7	205
Median recurrence rate per year	0.24	0.33	0.33	0.33	0.30
EORTC risk score					
High (>6)	179	211	284	76	326
Low (≤6)	294	324	451	91	508

Supplementary Table 1. Clinical characteristics and multi-omics platforms

IF = immunofluorescence; IHC = immunohistochemistry; CIS = carcinoma in situ; EORTC = European Organisation for Research and Treatment of Cancer. Source data are provided as a Supplementary Source Data file.

Supplementary Table 2. Cox regression analysis

Progression-free survival		
	HR (95% CI)	<i>p</i> -value
Univariate analysis		
Clinical features (n=755, 78 events)		
Age (n=747, 78 events)	1.24 (1.11-1.39)	0.0001
Gender (male vs female)	1.31 (0.75-2.31)	0.35
Stage (T1/CIS vs Ta)	4.09 (2.59-6.42)	1.1 x 10 ⁻⁹
Grade (high vs low)	3.37 (2.10-5.41)	4.4 x 10 ⁻⁶
Concomitant CIS (yes vs no)	1.04 (0.55-1.96)	0.91
EORTC risk score (>6 vs ≤6)	4.12 (2.55-6.67)	8.4 x 10 ⁻⁹
EAU risk score (High vs. intermediate/low; n=708, 74 events)	3.34 (1.92-5.83)	2.2 x 10 ⁻⁵
Smoking history (Current/former vs never;	0.90 (0.45-1.79)	0.77
$\frac{11=550, 50 \text{ events}}{20, 65 \text{ events}}$		
Transcriptomic class 2a vs 1	6 02 (2 11 22 72)	0.001
Transcriptomic class 24 VS 1		0.001
Transcriptomic class 20 VS 1	4.29 (1.29-14.31)	0.010
	7.20 (2.52.45.45)	0.50
	7.30 (3.52-15.15)	9.6 X 10°
	2.51 (1.75-3.60)	0.5 X 10 ⁷
	4.71 (2.76-8.04)	1.4 X 10°
11HG subtype 3 vs 2	2.64 (1.22-5.73)	0.014
Immune score (continuous)	1.00 (0.98-1.02)	0.98
Mutational signatures (n=436, 52 events)	0.04 (0.47.4.40)	0.40
Signature 1 (above vs below median)	0.81 (0.47-1.40)	0.46
Signature 2 (above vs below median)	1.48 (0.85-2.58)	0.16
Signature 5 (above vs below median)	0.05 (0.63-1.86)	0.79
Signature 13 (above vs below median)	2.12 (1.20-3.76)	0.01
qPCR features (n=660, 54 events)		
Progression signature (high vs low)	3.97 (2.13-7.42)	1.5 x 10 ⁻⁵
Progression signature (continuous)	2.10 (1.68-2.61)	3.2 x 10 ⁻¹¹
Copy number features (n=426, 35 events)		
Genomic classes (GC3 vs GC1/2)	4.26 (2.17-8.59)	5.0 x 10 ⁻⁵
Genome altered in Mb (continuous)	3.05 (2.01-4.62)	1.4 x 10 ⁻⁷
Multivariable model 1 (n=426, 35 events)		
EORTC risk score (>6 vs ≤6)	2.73 (1.24-6.00)	0.0127
Genomic classes (GC3 vs GC1/2)	2.76 (1.28-5.97)	0.0098
Multivariable model 2 (n=393, 31 events)		
EAU risk score (High vs intermediate/low)	3.33 (1.12-9.92)	0.031
Genomic classes (GC3 vs GC1/2)	4.14 (1.79-9.54)	0.0009
Multivariable model 3 (n=426, 35 events)		
Stage (T1/CIS vs Ta)	3.39 (1.59-7.24)	0.002
Grade (high vs low)	0.79 (0.35-1.78)	0.57
Genomic classes (GC3 vs GC1/2)	3 44 (1 57-7 51)	0.002
	0.11(1.07 1.01)	0.002
Multivariable model 4 (n=530, 65 events)		
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	3 57 (2 06-6 18)	5 9 x 10 ⁻⁶
Transcriptomic class (29/2b vs 1/3)	2.55 (1.27-5.10)	0.008
	2.00 (1.27-0.10)	0.000
Multivariable model 5 (n=502, 62 events)		
FALL risk score (High vs intermediate/low)	2 38 (1 32-1 31)	0.004
Transcriptomic class (2a/2b vs 1/2)	2.00 (1.02-4.01)	0.004
Tansonpionilo diass (2a/20 vs 1/3)	3.31 (1.05-7.40)	0.001
Multivariable model 6 (n-530, 65 events)		
	2 88 (1 65 5 02)	0.0002
Slaye (11/010 VS Ta)	2.00 (1.03-5.02)	0.0002

Grade (high vs low)	1 7/ (0 97-3 13)	0.07
Transcriptomic class (22/2h vs 1/3)	232(114-71)	0.07
	2.52 (1.14-4.71)	0.02
Multivariable model 7 (n=520, 65 events)		
	2.24 (4.92 5.77)	0.0 × 40-5
$\frac{1}{10000000000000000000000000000000000$	3.24 (1.82-5.77)	0.0 X 10 °
	2.45 (1.45-4.14)	0.008
Multivariable model 8 (n=502, 62 events)		
EAU risk score (high vs intermediate/low)	2.12 (1.14-3.96)	0.018
T1HG subtype (1/3 vs 2)	3.27 (1.93-5.54)	1.14 x 10⁻⁵
Multivariable model 9 (n=530, 65 events)		
Stage (T1/CIS vs Ta)	2.74 (1.55-4.82)	0.0004
Grade (high vs low)	1.63 (0.89-3.01)	0.11
T1HG subtype (1 vs 2+3)	2.27 (1.32-3.92)	0.003
Multivariable model 10 (n=660, 54 events)		
EORTC risk score (>6 vs ≤6)	3.55 (1.90-6.64)	7.5 x 10 ⁻⁵
Progression signature, gPCR (high vs low)	2.57 (1.34-4.96)	0.005
Multivariable model 11 (n=619, 51 events)		
EAU risk score (high vs intermediate/low)	2 87 (1 37-6 02)	0.005
Progression signature gPCR (high vs low)	3 18 (1 60-6 32)	0.000
	3.10 (1.00-0.32)	0.001
Multivariable model 12 (n=660, 54 events)		
	2.27 (1.72, 6.17)	0.0002
	3.27 (1.73-0.17)	0.0003
Grade (high vs low)	1.43 (0.75-2.72)	0.27
Progression signature, qPCR (high vs low)	2.33 (1.19-4.58)	0.014
Recurrence-free survival		
Recurrence-free survival	HR (95% CI)	p-value
Recurrence-free survival Univariate analysis	HR (95% CI)	p-value
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events)	HR (95% CI)	p-value
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age	HR (95% CI) 1.02 (0.98-1.07)	p-value 0.35
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01)	p-value 0.35 0.06
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32)	p-value 0.35 0.06 0.64
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38)	p-value 0.35 0.06 0.64 0.23
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23)	p-value 0.35 0.06 0.64 0.23 0.00001
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low:	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never;	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seg features(n=511, 348 events)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.57 (1.13-2.18)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 2h vs 1	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.57 (1.13-2.18) 1.48 (1.08-2.02)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.007 0.007 0.02
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 2b vs 1 Transcriptomic class 3 vs 1	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.57 (1.13-2.18) 1.48 (1.08-2.02) 1.35 (0.95-1.92)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.007 0.007 0.02 0.1
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.57 (1.13-2.18) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.007 0.02 0.1 0.004
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 2b vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS eignature (continuous)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.07 0.02 0.1 0.004 0.73
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.46 (0.84.4.60)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.07 0.02 0.1 0.004 0.73 0.26
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.07 (0.64.1.46)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.99
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.90 4.04)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.88 0.09
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2 Immune score (continuous)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.99-1.01)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.88 0.9
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 2b vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2 Immune score (continuous) Mutational signatures (n=420, 283 events)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.99-1.01)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.88 0.9 0.42
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 2b vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2 Immune score (continuous) Mutational signatures (n=420, 283 events) Signature 1 (above vs below median)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.48 (1.08-2.02) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.99-1.01) 1.18 (0.94-1.49) 2.09 (0.21.14)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.88 0.9 0.16 0.64
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2 Immune score (continuous) Mutational signatures (n=420, 283 events) Signature 1 (above vs below median) Signature 2 (above vs below median)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.99-1.01) 1.18 (0.94-1.49) 0.88 (0.69-1.11)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.88 0.9 0.16 0.28 0.28
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2 Immune score (continuous) Mutational signatures (n=420, 283 events) Signature 1 (above vs below median) Signature 2 (above vs below median) Signature 5 (above vs below median)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.99-1.01) 1.18 (0.94-1.49) 0.88 (0.69-1.11) 1.14 (0.90-1.44)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.88 0.9 0.16 0.28 0.28
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2 Immune score (continuous) Mutational signatures (n=420, 283 events) Signature 1 (above vs below median) Signature 2 (above vs below median) Signature 13 (above vs below median)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.99-1.01) 1.18 (0.94-1.49) 0.88 (0.69-1.11) 1.14 (0.90-1.44) 1.03 (0.81-1.30)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.07 0.02 0.1 0.004 0.73 0.36 0.88 0.9 0.16 0.28 0.28 0.28 0.28 0.83
Recurrence-free survival Univariate analysis Clinical features (n=629, 410 events) Age Gender (male vs female) Stage (T1/CIS vs Ta) Grade (high vs low) Concomitant CIS (yes vs no) EORTC risk score (>6 vs ≤6) EAU risk score (High vs. intermediate/low; n=597, 396 events) Smoking history (current/former vs never; n=483, 317 events) RNA-Seq features(n=511, 348 events) Transcriptomic class 2a vs 1 Transcriptomic class 2b vs 1 Transcriptomic class 3 vs 1 Progression signature (continuous) CIS signature (continuous) T1HG subtype 1 vs 2 T1HG subtype 3 vs 2 Immune score (continuous) Mutational signatures (n=420, 283 events) Signature 1 (above vs below median) Signature 2 (above vs below median) Signature 13 (above vs below median) Glabove vs below median) Glabove vs below median)	HR (95% CI) 1.02 (0.98-1.07) 0.81 (0.64-1.01) 1.05 (0.84-1.32) 1.13 (0.93-1.38) 1.74 (1.36-2.23) 1.19 (0.98-1.46) 1.19 (0.97-1.45) 1.33 (0.97-1.82) 1.33 (0.97-1.82) 1.35 (0.95-1.92) 1.35 (0.95-1.92) 1.69 (1.18-2.43) 0.95 (0.71-1.28) 1.16 (0.84-1.60) 0.97 (0.64-1.46) 1.00 (0.99-1.01) 1.18 (0.94-1.49) 0.88 (0.69-1.11) 1.14 (0.90-1.44) 1.03 (0.81-1.30)	p-value 0.35 0.06 0.64 0.23 0.00001 0.08 0.09 0.07 0.007 0.02 0.1 0.004 0.73 0.36 0.88 0.9 0.16 0.28 0.83

Progression signature (continuous)	1.17 (1.08-1.27)	0.0002
Copy number features (n=399, 239 events)		
Genomic classes (GC3 vs GC1/2)	1.57 (1.21-2.04)	0.0007
Genome altered in Mb (continuous)	1.45 (1.19-1.77)	0.0002
Multivariable model 1 (n=399, 239 events)		
EORTC risk score (>6 vs ≤6)	1.06 (0.79-1.41)	0.69
Genomic classes (GC3 vs GC1/2)	1.53 (1.14-2.05)	0.004
Multivariable model 2 (n=511, 348 events)		
EORTC risk score (>6 vs ≤6)	1.11 (0.88-1.39)	0.35
Transcriptomic class (2a/2b vs 1/3)	1.26 (1.00-1.59)	0.046
Multivariable model 3 (n=511, 348 events)		
EORTC risk score (>6 vs ≤6)	1.09 (0.87-1.38)	0.44
Transcriptomic class 2a vs 1	1.51 (1.07-2.13)	0.02
Transcriptomic class 2b vs 1	1.45 (1.05-1.99)	0.02
Transcriptomic class 3 vs 1	1.34 (0.94-1.91)	0.10
Multivariable model 4 (n=537, 339 events)		
EORTC risk score (>6 vs ≤6)	1.23 (0.98-1.55)	0.07
Progression signature, qPCR (high vs low)	1.37 (1.09-1.71)	0.007

HR = hazard ratio; CI = confidence interval; CIS = carcinoma in situ; EORTC = European Organisation for Research and Treatment of Cancer; EAU = European Association of Urology. Source data are provided as a Supplementary Source Data file.

	Class 1	Class 2a	Class 2b	Class 3	n (%)	<i>p</i> -value
Patients	n (%) 102 (19)	n (%) 142 (27)	n (%) 181 (34)	n (%) 110 (21)	535	-
Median age (vears)	65	71	70	68	000	0.002
Gondor	00	7.1	70	00		0.002
Male	79 (78)	112 (79)	136 (75)	87 (79)	<i>A</i> 1 <i>A</i> (77)	0.04
Female	23 (23)	30 (21)	45 (25)	23 (21)	121 (23)	
Smoking status	()					0.07
Current	38 (37)	25 (18)	55 (30)	51 (46)	169 (32)	
Former	34 (33)	39 (28)	63 (35)	31 (28)	167 (31)	
Never	16 (16)	16 (11)	18 (10)	12 (11)	62 (12)	
Unknown	14 (14)	62 (44)	45 (25)	16 (15)	137 (26)	
Stage						1.9 x 10 ^{-10 a}
Ta	93 (91)	79 (56)	132 (73)	93 (85)	397 (74)	
11	9 (9)	61 (43)	48 (27)	17 (16)	135 (25)	
	0	2 (1)	1 (1)	0	3 (1)	7.0 × 4.0-14
Grade	25 (25)	02 (65)	75 (41)	22 (21)	215 (40)	7.2 X 10 14
	25 (25)	92 (05) 50 (35)	106 (59)	23 (21) 87 (79)	215 (40)	
	11 (10)	30 (33)	100 (39)	07 (79)	320 (00)	9.2 x 10 ⁻⁷
Yes	4 (4)	39 (28)	24 (13)	10 (9)	77 (14)	3.2 X 10
No	98 (96)	103 (73)	157 (87)	100 (91)	458 (86)	
Growth pattern						0.003
Papillary	100 (98)	123 (87)	150 (83)	107 (97)	480 (90)	
Mixed	0`´	5 (4)	5 (3)	0	10 (2)	
Solid	0	6 (4)	7 (4)	0	13 (2)	
Unknown	2 (2)	8 (6)	19 (11)	3 (3)	31 (6)	
Tumor Size						0.047
< 3 cm	73 (72)	97 (68)	109 (60)	67 (61)	346 (65)	
≥ 3 cm	8 (8)	30 (21)	34 (19)	18 (16)	90 (17)	
	21 (21)	15 (11)	38 (21)	25 (23)	99 (19)	0.000
	62 (64)	00 (60)	77 (42)		207 (54)	0.002
No	02 (01) 40 (30)	00 (02) 54 (38)	104 (58)	50 (35)	207 (34)	
BCG treatment after TLIRB	40 (33)	54 (50)	104 (30)	30 (40)	240 (40)	15 x 10 ⁻¹⁵
Yes	12 (12)	81 (57)	48 (27)	22 (20)	163 (30)	4.0 X 10
No	90 (88)	61 (43)	133 (73)	88 (80)	372 (70)	
BCG/MMC/Chemo ever in disease						
course						9.4 x 10 ⁻⁹
Yes	53 (52)	100 (70)	92 (51)	34 (31)	279 (52)	
No	47 (46)	33 (23)	78 (43)	65 (59)	223 (42)	
Unknown	2 (2)	9 (6)	11 (6)	11 (10)	33 (6)	
Progression to MIBC						8.4 x 10 ⁻⁶
Yes	3 (3)	32 (23)	23 (13)	7 (6)	65 (12)	
No	97 (95)	109 (77)	156 (86)	103 (94)	465 (87)	
Unknown	2 (2)	1 (1)	2 (1)	0	5 (1)	
Mean recurrence rate per year	0.40	1.11	0.67	0.70	0.74	0.0001
EORTC risk score						5.2 x 10 ⁻¹⁵
High (>6)	20 (20)	93 (66)	72 (40)	26 (24)	211 (39)	
Low (≤6)	82 (80)	49 (35)	109 (60)	84 (76)	324 (61)	0.4 10.40
EAU risk score	00 (01)	404 (70)	00 (55)	40 (00)	077 (50)	6.1 x 10 ⁻¹⁰
Hign	32 (31)	104 (73)	99 (55)	42 (38)	277 (52)	
	35 (34) 24 (24)	27 (19)	58 (32)	38 (35) 24 (22)	158 (30)	
	24 (24) 11 (11)	9 (3) 2 (1)	0 (6)	24 (ZZ) 6 (5)	12(13) 28(5)	
UTIKITOWIT	11(11)	∠ (I)	9 (0)	0(0)	∠o (3)	

Supplementary Table 3. Clinical characteristics for patients stratified by trans	nscriptomic class
--	-------------------

P-values were calculated using a Kruskal-Wallis rank sum test for continuous variables and two-sided Fisher's exact test or chi-square test for categorical variables. CIS = carcinoma *in situ*; BCG = Bacillus Calmette-Guérin; EORTC = European Organisation for Research and Treatment of Cancer; EAU = European Association of Urology. ^aComparison between Ta and T1+CIS tumors. Source data are provided as a Supplementary Source Data file.

Supplementary Table 4. Clinical cha	racteristics for	patients strat	ified by geno	mic class	
	GC1 n (%)	GC2 n (%)	GC3 n (%)	n (%)	<i>p</i> -value
Patients	158 (33)	158 (33)	157 (33)	473	
Median age (years)	67	70	72		2.3 x 10 ⁻⁵
Gender					0.64
Male	114 (72)	120 (76)	120 (76)	354 (75)	
Female	44 (28)	38 (24)	37 (24)	119 (25)	
Smoking status					0.03
Current	59 (37)	58 (37)	45 (29)	162 (34)	
Former	42 (27)	42 (27)	66 (42)	150 (32)	
Never	27 (17)	25 (16)	18 (12)	70 (15)	
Unknown	30 (19)	33 (21)	28 (18)	91 (19)	0.0
Stage	407 (07)	404 (77)	77 (40)	225 (74)	3.8 x 10 ^{-13 a}
	137 (87)	121(77)	77 (49)	335 (71)	
	10(11)	30 (23)	2 (2)	7 (1)	
Grade	5 (2)	1 (1)	5 (2)	7 (1)	2.5 x 10 ⁻²¹
High	32 (20)	54 (34)	113 (72)	199 (42)	2.5 × 10
Low	126 (80)	104 (66)	44 (28)	274 (58)	
Concomitant CIS	(00)		(=0)		1.3 x 10 ⁻⁹
Yes	10 (6)	10 (6)	45 (29)	65 (14)	
No	148 (94)	148 (94)	112 (71)	408 (86)	
Growth pattern		× 7	× 7		0.60
Papillary	150 (95)	140 (89)	132 (84)	422 (89)	
Mixed	1 (1)	2 (1)	4 (3)	7 (1)	
Solid	2 (1)	2 (1)	3 (2)	7 (1)	
Unknown	5 (3)	14 (9)	18 (12)	37 (8)	
Size	(- ()				0.16
< 3 cm	96 (61)	102 (65)	96 (61)	294 (62)	
≥ 3 cm	15 (9)	23 (15)	29 (19)	67 (14)	
	47 (30)	33 (21)	32 (20)	112 (24)	0.000
	07 (61)	70 (44)	80 (51)	247 (52)	0.009
No	61 (39)	88 (56)	77 (49)	226 (48)	
BCG treatment after TURB	01 (00)	00 (00)	11 (40)	220 (40)	8.6 x 10 ⁻⁶
Yes	13 (8)	21 (13)	44 (28)	78 (16)	0.0 x 10
No	145 (92)	137 (87)	113 (72)	395 (84)	
BCG/MMC/Chemo ever in disease					
course					0.038
Yes	56 (35)	68 (43)	78 (50)	202 (43)	
No	102 (65)	90 (57)	79 (50)	271 (57)	
Progression to MIBC					0.0005
Yes	6 (4)	6 (4)	23 (15)	35 (7)	
No	132 (84)	136 (86)	123 (78)	391 (83)	
Unknown	20 (13)	16 (10)	11 (7)	47 (10)	
Mean recurrence rate per year	0.41	0.54	0.99	0.65	2.04 x 10 ⁻⁵
EORTC risk score					1.2 x 10 ⁻²⁴
High (>6)	25 (16)	44 (28)	110 (70)	179 (38)	
Low (≤6)	133 (84)	114 (72)	47 (30)	294 (62)	
EAU risk score					7.7 x 10 ⁻¹⁷
High	47 (30)	76 (48)	128 (82)	251 (53)	
Intermediate	55 (35)	53 (34)	18 (12)	126 (27)	
Low	36 (23)	21 (13)	6 (4)	63 (13)	
Unknown	20 (13)	8 (5)	5 (3)	33(7)	

P-values were calculated using a Kruskal-Wallis rank sum test for continuous variables and two-sided Fisher's exact test or chi-square test for categorical variables. GC = genomic class; CIS = carcinoma in situ; BCG = Bacillus Calmette-Guérin; EORTC = European Organisation for Research and Treatment of Cancer; EAU = European Association of Urology. ^aComparison between Ta and T1+CIS tumors. Source data are provided as a Supplementary Source Data file.

Supplementary Table 5. Cox regression analysis in independent cohorts

Progression-free survival

	HR (95% CI)	<i>p</i> -value
Univariate analysis		
Clinical features (n=521, 96 events)		
Stage (T1/CIS vs Ta)	2.00 (1.29-3.08)	0.002
UROMOL2021 classes (n=511, 94 events)		
Transcriptomic class 2a vs 1	3.27 (1.91-5.59)	1.6 x 10 ⁻⁵
Transcriptomic class 2b vs 1	2.39 (1.22-4.07)	0.011
Transcriptomic class 3 vs 1	2.28 (0.99-5.26)	0.052
T1HG subtype (n=512, 95 events)	· · ·	
T1HG subtype 1 vs 2	1.30 (0.69-2.43)	0.42
T1HG subtype 3 vs 2	2.37 (1.51-3.71)	0.0002
	· · ·	
Multivariable model 1 (n=510, 94 events)		
Stage (T1/CIS vs Ta)	1.27 (0.76-2.13)	0.36
Transcriptomic class 2a vs 1	2.84 (1.53-5.27)	0.0009
Transcriptomic class 2b vs 1	2.10 (1.01-4.36)	0.046
Transcriptomic class 3 vs 1	2.23 (0.96-5.14)	0.061
Multivariable model 2 (n=511, 95 events)		
Stage (T1/CIS vs Ta)	1.78 (1.11-2.86)	0.017
T1HG subtype 1 vs 2	0.98 (0.51-1.90)	0.95
T1HG subtype 3 vs 2	1.91 (1.19-3.08)	0.008
	/	

HR = hazard ratio; CI = confidence interval; CIS = carcinoma in situ; EORTC = European Organisation for Research and Treatment of Cancer; EAU = European Association of Urology. Source data are provided as a Supplementary Source Data file.

Supplementary Table 6. Gene expression signatures

	Gene list
Early cell cycle	CCND1, CCND2, CCND3, RBL2, ID1, ID2, ID3, WEE1
Late cell cycle	CDK1, CDK4, CDK2, CCNE1, CDC20, CCNB2, CCNB1, CCNA2, BUB1,
	CDC25A, CCNE2, MYBL2, FOXM1, PLK1
Uroplakins	UPK1B, UPK3A, UPK1A, UPK2, UPK3B
Cancer stem cell markers	PROM1, ALDH2, ALDH1A1, ALDH1A3, CD47, ALDH1A2, NES, THY1, RPSA,
	SHH, ITGA6, CD44
Epithelial-mesenchymal	SOX9. TWIST1. FOXF1. ZEB1. ZEB2. GATA6
transition	
Differentiation	TMEM163, GATA3, BAMBI, PPARG, GRHL3, SNX31, DHRS2, HPGD, SPINK1,
	FOXA1, FOXQ1, BHMT, SCNN1G
FGFR3-coexpressed genes	C3orf54, CAPNS2, SEMA4B, WN17B, DUOXA1, C16orf74, ZNF385A, SMAD3,
	SLC2A9, D4S234E, TP63, CLCA4, IRS1, SYTL1, PLCH2, SSH3, FGFR3,
	PTPN13, DUOX1, TMPRSS4
EGER ligands	EGFR, AREG, AREGB, EREG, HBEGF, TGFA
Нурохіа	CAV1, COL5A1, ITGA5, P4HA2, SLC16A1, TGFBI, DPYSL2, SRPX, TRAM2,
	SYDE1, LRP1, PDLIM2, SAV1, AHNAK2, CAD, CYP1B1, DAAM1, DSC2,
	SLC2A3, FUT11, GLG1, GULP1, LDLR, THBS4
DNA replication	DNA2, FEN1, LIG1, MCM2, MCM3, MCM4, MCM5, MCM6, MCM7, PCNA,
	POLA1, POLA2, POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3,
	POLE4, PRIM1, PRIM2, RFC1, RFC2, RFC3, RFC4, RFC5, RNASEH1,
	RNASEH2A, RNASEH2B, RNASEH2C, RPA1, RPA2, RPA3, RPA4, SSBP1
Immune checkpoint	CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT
Antigen presenting machinery	B2M, HLA-A, HLA-B, HLA-C, TAP1, TAP2
IFN-γ	TIGIT, CD27, CD8A, PDCD1LG2, LAG3, CD274, CXCR6, CMKLR1, NKG7,
	CCL5, PSMB10, IDO1, CXCL9, HLA-DQA1, CD276, STAT1, HLA-DRB1, HLA-E
CD8 ⁺ T cells	CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX21
Pan-fibroblast TGF-β	ACTA2, ACTG2, ADAM12, ADAM19, CNN1, COL4A1, CTGF, CTPS1,
	FAM101B, FSTL3, HSPB1, IGFBP3, PXDC1, SEMA7A, SH3PXD2A, TAGLN,
	TGFBI, TNS1, TPM1
12-gene progression signature	KPNA2, BIRC5, UBE2C, CDC25B, MSN, COL4A1, COL18A1, COL4A3BP,
	NEK1, MBNL2, SKAP2, FABP4
CIS signature	IL13RA1, FBXL5, ARL5A, CXCR4, F13B, SHOC2, IL6ST, HLA-DQA1, SPOP,
	EFEMP1, DCN, COL15A1, LYZ, SPARC, IGKC, TCF4, KRAS, SDCBP,
	COL3A1, FBXW2, PDGFC, SGCE, BIRC2, GAPVD1, FLNA, PPP2R5C, LUM,
	MBD4, UAP1, TOP2A, RARRES1, CLIC4, KPNA2, FGFR3, LAMB3, ANXA10,
	CRTAC1, TMPRSS4, CTSE, MST1R, FABP4, CA12, ITGB4, TNNI2, ST3GAL4,
	PKP1, BCAM, NDUFA4L2, TRIM29, SH3BP1, LTBP3, LYPD3, CDH11, BST2,
	EEF1A2, CLCA4, BMP7, AKR1B10, KCTD12, KYNU, UPK2, CFD, TMEM45A

Immune cell population ^a	Gene list
B cells	BLK, CD19, FCRL2, MS4A1, TNFRSF17, TCL1A, SPIB, PNOC
Cytotoxic cells	PRF1, GZMA, GZMB, NKG7, GZMH, KLRK1, KLRB1, KLRD1, CTSW, GNLY
Dendritic cells	CCL13, CD209, HSD11B1
Exhausted T cells	LAG3, CD244, EOMES, PTGER4
Macrophages	CD68, CD84, CD163, MS4A4A
Mast cells	TPSB2, TPSAB1, CPA3, MS4A2, HDC
Neutrophils	FPR1, SIGLEC5, CSF3R, FCAR, FCGR3B, CEACAM3, S100A12
NK CD56 ⁻ cells	KIR3DL1, IL21R
NK cells	XCL1, XCL2, NCR1
T cells	CD68, CD3D, CD3E, SH2D1A, TRAT1, CD3G
T _H 1 cells	TBX21
Tregs	FOXP3
CD8 ⁺ T cells	CD8A, CD8B
CD4 ⁺ T cells	IGFBP4, ITM2A, AMIGO2, TRAT1, CD40LG, ICOS

Supplementary Table 7. Gene lists used for the RNA-based estimation of immune cell infiltration

^a Gene lists were obtained from ⁷⁶, except CD4⁺T cells which was obtained from ⁷⁷.

	Gene list
Transcription factors previously associated with	AR, PGR, ESR1, ESR2, PPARG, RARA, RARB,
bladder cancer (obtained from ³³)	RARG, RXRA, RXRG, ERBB2, ERBB3, FGFR1,
	FGFR3, EGFR, FOXA1, FOXM1, GATA3, GATA6,
	HIF1A, KLF4, STAT3, TP63
Candidate regulators associated with chromatin	EGR1, HNF4A, YAP1, FLI1, KDM5B, CREB1, IRF3,
remodeling in cancer (obtained from ³⁴)	DNMT1, DNMT3A, DNMT3B, KAT5, KAT7, KAT6A,
	KAT6B, KAT2A, KAT2B, EP300, CREBBP, NCOA1,
	NCOA3, HDAC1, HDAC2, HDAC3, HDAC4, HDAC5,
	HDAC6, HDAC7, HDAC8, HDAC9, HDAC10,
	HDAC11, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5,
	SIRT6, SIRT7, SUV39H1, EHMT2, SETDB2, KMT2A,
	KMT2B, KMT2C, KMT2D, KMT2E, SETD2, NSD1,
	SMYD2, SMYD3, NSD3, NSD2, DOT1L, KMT5A,
	EZH2, PRDM14, CARM1, PRMT5, PRMT6, KDM1A,
	KDM1B, KDM2A, KDM2B, KDM3A, KDM3B, KDM4A,
	KDM4B, KDM4C, KDM4D, KDM4E, KDM5A,
	KDM5C, KDM5D, KDM6A, KDM6B, KDM7A, KDM8,
	ARID1A

Supplementary Table 8. Gene lists used for regulon analysis

Gene	Upstream primer sequence 5'–3'	Downstream primer sequence 5′–3′
BIRC5	5'-CTGAAGTCTGGCGTAAGATGATG-3'	5'-GAAGCTGTAACAATCCACCCTG-3'
CDC25B	5'-GATGGAAGGTTGGATGGATG-3'	5'-ACCTGGTTTGGGTATGCAAG-3'
COL4A1	5'-CTGCCTGGAGGAGTTTAGAAGTG-3'	5'-CTGTAAGCGTTTGCGTAGTAATTG-3'
FABP4	5'-AGAGAAAACGAGAGGATGATAAACTG-3'	5'-CTTATGCTCTCTCATAAACTCTCGTG-3'
KPNA2	5'-GCAGATTTTAAGACACAAAAGGAAG-3'	5'-AAGGTACACAATCTGTTCAACTGTTC-3'
MBNL2	5'-ACTTCATCCAGTGCCCACTTTC-3'	5'-GGGGTTACAGGTGCTAGGTAAGG-3'
MSN	5'-CCTGACCTTGAGGAGTCTTGTG-3'	5'-AATATAGGACATATCACCAAGTGAGC-3'
COL18A1	5'-GGGCTGGTTCTGTAATTGTGTG-3'	5'-AAAAGGTCACTTTTATTTGCCTGTC-3'
COL4A3BP	5'-TTTCTGTGGATCATGACAGTGC-3'	5'-CAAGGTTTGACAAATCATAGCAAC-3'
NEK1	5'-CTAAAAGACCAGCTTCAGGACAAAAC-3'	5'-CTAAAGGTATTCCATATTTAGCGGC-3'
SKAP2	5'-TGGAGATGTATGATATTTGAGAGTCC-3'	5'-CTAAATCCAAAGCATTTGCAGAC-3'
UBE2C	5'-TCTAGGAGAACCCAACATTGATAGTC-3'	5'-TCTTGCAGGTACTTCTTAAAAGCTG-3'

Supplementary Table 9. Primer sequences for genes in the 12-gene progression signature