
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): Expert in bladder cancer genomics and urology 

The authors report an integrated "-omics" approach to non-muscle invasive bladder cancer. The 

cohort is a multi-institutional collaboration analyzing over 800 samples with subsets of samples 

being analyzed using RNA, DNA and protein methods. Overall the manuscript is well written and 

organized. The comprehensive analysis validates previously published data and with increased 

numbers analyzed starts to suggest how this information can become clinically relevant and used for 

therapeutic options. A few suggestions below: 

-Figure 1 the authors used expression data in 535 patients with only 3 CIS patients to identify 4 

clusters and used those to correlate PFS. we know that a small portion of pTa patients will progress. 

A sub analysis only with the pT1 and CIS patients would be more prudent as those are the patients 

most likely to progress. Being to better delineate the pT1/CIS, which may progress vs those that 

won't would be very clinically significant 

-Similarly can RFS be analyzed for pTa sub-group 

-the authors used used their transcriptomic and genomic findings to try and improve on know risk 

stratifies. They used the EORTC, but would be interesting to see if AUA/SUO or CUETO models would 

have improvement as them may be better then EORTC. 

John Sfakianos 

Reviewer #2 (Remarks to the Author): Expert in bioinformatics and multi-omics analysis 

Lindskrog et al. performed an integrative analysis of a very large number (n=862) of non-muscle-

invasive bladder cancers (NMIBC), including bulk RNASeq (n=535), CNV/LOH by SNP array (n=473), 

spatial proteomics (n=167). From gene expression patterns, all NMIBC cases were classified into four 

distinct subgroups. The previous high-risk class 2 was found to contain two subgroups associated 

with different genes: class 2a with cell cycle & differentiation genes, and 2b with cancer stem cells 

and EMT genes, also with distinct clinical outcomes. This four-class stratification was further 

supported by additional evidence from the analyses of regulons, chromatin remodeling genes, and 

methylation sites. CNV/LOH analyses found chromosomal instability was associated with disease 

aggressiveness, which is interesting. Overall, this is a very large multi-omics study that provides 

novel insights into the disease heterogeneity of NMIBC. The findings are scientific interesting and 

clinically relevant. However, there are a few technical questions that could be better addressed. 

Major: 

1. A major technical issue is the approach of somatic mutation calling. Typically, the most common 

method for characterizing somatic point mutations (SNVs/Indels) is by whole-exome sequencing 

(WES) or whole-genome sequencing of paired tumor and germline samples. In this study, however, 

SNVs were mostly identified from RNASeq data, which also appeared to be unpaired without 



germline. There are multiple potential problems with this type of approach: 1) unable to completely 

exclude germline SNPs. In the validation analysis by WES of 95 mutations, even after the authors 

performed extensive germline filtering, a high fraction (11/95) of remaining mutations still turned 

out to be germline SNPs. Related to this, the currently claimed 87% validation rate may not be 

accurate, as the germline SNPs should not be included with somatic mutations when calculating the 

validation rate. Further, germline SNPs should not be included in the calculation of mutation 

burden/signature. 2) in comparison with WES, it was unclear what % of mutations detected by WES 

were missed by the RNASeq-derived analysis. This is important to know because as the authors 

acknowledged, RNASeq can only detect mutations that are currently expressed (i.e. may miss the 

mutations expressed at different stages of tumor development), and may have poorer performance 

towards the mutations in genes at low expression levels. 3) for the “RNA-specific” or “Uncertain” 

mutations, it was not clear what mechanisms they represent. Are they present in the WES at low 

levels? And there is a lack of description of the method for confirming that these mutations were not 

present in the WES data. One thing they can probably do is to check the number of mutant reads 

and coverage of these RNA-specific mutations in the WES data. That would help determine if the 

absence of mutations were caused by technical issues such as low coverage, or false-negative by the 

caller. 4) it seems the current analysis did not consider Indels, which are common in some cancer 

genes such as TP53. If this is due to the technical difficulty of detecting Indels from RNASeq, then 

that should be discussed. The cited reference #44 to support RNA-derived mutation detection as 

“high-precision”, but it was not immediately clear how this conclusion was drawn. Overall, the 

current RNA-derived mutations could be further refined, and these limitations should be properly 

discussed. 

Minor: 

1. Only mutations of high and moderate functional effects were reported, which probably is 

understandable for identifying the driver mutations. For the calculation of the overall mutation 

burden, it was not clear if all somatic mutations were included. 

2. For the CNV analysis, it is completely optional but might be of interest to also summarize genes 

affected by small focal CNVs and their association with different subtypes. 

3. In figure 3a, it seems the class 1 and 3 have almost identical overlapping with GC1/2/3, despite 

their difference in survival etc, which looks interesting. Is there any possible explanation for that, e.x. 

genome instability happened at an earlier stage? 

4. Figure 3H: it looks there are some patients with both CNV loss and point mutation in TP53. Are 

these mutations homozygous then? If so, is there any difference between patients that are TP53 

homo vs hetero mutated in Figure 3I? 

5. In the mutational signature analysis, only mutations with AF >0.15 and <0.60 were included. What 

was the rationale for excluding high AF mutations? How about homozygous somatic mutations? 

6. There is a typo in Figure 5C: “Recurrene rate”. 

Reviewer #3 (Remarks to the Author): Expert in immunology 

This paper builds on the previous UROMOL transcriptional analysis published in Cancer Cell 2016 by 

adding more samples and reanalysing the old data. Moreover, new multi-omics data have been 



added. Importantly, the previous Class 2 is now subdivided to a and b with different characteristics. 

Specific comment: 

Figure 4a: Please, extend the legend by giving information about the antibody used and the colour it 

gives. Anti-CD8 staining in the low infiltration panel is not very convincing. 

Reviewer #4 (Remarks to the Author): Expert in immunogenomics 

This is an excellent paper that significantly contributes to the understanding of NMIBC. The 

manuscript is well written, the figures are (mostly) clear and the conclusions are appropriately 

stated. The paper also generates relevant data for more in depth studies. 

Of the techniques utilized, proteomic assessment and documentation requires additional effort prior 

to publication such that the community can better understand and replicate the results. 

Below are recommended edits: 

1. Results/Delineation of transcriptomic classes in NMIBC: 

Please further comment on class 3 for the reader as it establishes an early grounding for 

comparisons. 

2. Integration of genomic alterations and transcriptomic classes: please remove "suggesting that 

these tumors present a high level of neoantigens" unless you have data to reference. 

3. Spatial proteomics analysis: please revisit this section and describe with more detail and improved 

clarity: 

- How are you defining "high class I"? what is your normalization modality? 

- Please define your Z-score calculation. 

- Fig. 4a is a poor representation of high vs. low in that it does not appear to represent the extent of 

difference in Fig. 4b. Please resolve as it suggests the data in 4b is not scaled appropriately. CTL and 

Thelper staining appears very weak suggesting technical problems in staining or acquisition thereof. 

Please specify in the legend what the colors refer to (what is yellow in line vs. globular yellow in 

image?). 

- Please include single panel mplex images showing multiplex staining equivalency with DAB and 

adequate stripping of antibodies between cycles such that residual antibody is not causing signal in 

the next cycle of the tyramide assay (suppl). More details of the assay would be helpful as well 

(retrieval times, stripping times) which you may be able to reference. 

- Please include more details for the DAB assays in this paper (a table of the retrieval 

time/conditions, antibodies, dilutions, incubation time etc similar to the mplex would be more 

complete than partial data listed in the methods). 

- The use of overlays for PDL1 and CK is not ideal as the myleloid or TAM cells expression of PDL1 

within or adjacent to tumor can be mis-attributed to tumor and vice versa. This should ideally be a 



separate multiplex panel or caveats to interpretation included in the manuscript. 

- There seems to be little to no mention of TMA core replicate statistics in the manuscript or of core-

to-core variability in stroma or tumor region areas analyzed or variation of the total area of tumor 

and stroma regions analyzed between subgroups. Please further clarify. 

- Please further clarify how the multiplex images are analyzed to derive single cell data (which 

version of software and modules are being used)? 
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NCOMMS-20-22474  
Lindskrog & Prip et al. 
 
Reviewers’ comments 
 
Reviewer #1 (Remarks to the Author): Expert in bladder cancer genomics and urology 
The authors report an integrated "-omics" approach to non-muscle invasive bladder 
cancer. The cohort is a multi-institutional collaboration analyzing over 800 samples with 
subsets of samples being analyzed using RNA, DNA and protein methods. Overall the 
manuscript is well written and organized. The comprehensive analysis validates 
previously published data and with increased numbers analyzed starts to suggest how 
this information can become clinically relevant and used for therapeutic options. A few 
suggestions below: 
 
Author response: We thank the Reviewer for the positive comments. 
 
-Figure 1 the authors used expression data in 535 patients with only 3 CIS patients to 
identify 4 clusters and used those to correlate PFS. We know that a small portion of pTa 
patients will progress. A sub analysis only with the pT1 and CIS patients would be more 
prudent as those are the patients most likely to progress. Being to better delineate the 
pT1/CIS, which may progress vs those that won't would be very clinically significant 
 
Author response: As pointed out by the reviewer, patients with T1 tumors have a higher 
progression rate than patients with Ta tumors. In our cohort, we see that 7.4% (29/393) of 
the patients with Ta tumors progress, whilst 26.1% (36/138) of the patients with T1/CIS 
tumors progress. However, even though most progression events are restricted to T1 
tumors, some Ta tumors show a molecular profile associated with high progression risk. 
For example, transcriptomic class 2a includes some Ta tumors (Fig. 1d), and nearly half 
of the tumors in the genomic class 3 with high chromosomal instability are Ta tumors (Fig. 
2d). We agree with the reviewer that it is highly important to delineate which T1/CIS 
tumors may progress, but a clinically relevant classifier should be able to identify most or 
all high risk cases - especially as there is a large variation between pathologists in the 
evaluation of tumor stage and grade.       
 
However, the proposed sub-analysis may represent a useful way of eliminating 
interference resulting from stage and grade differences. Hence, we have now undertaken 
a sub-analysis of only T1 high grade (HG) tumors to generate data on a pathologically 
homogeneous tumor series, and this is now included as a new sub-chapter in the Results 
section: “Transcriptomic subtypes in pathologically homogeneous tumors” and in 
Supplementary Fig. 3. We conclude: “The sub-analysis of pathologically homogeneous 
tumors demonstrates that the UROMOL2020 classes are not mainly driven by differences 
in histological and morphological features. The T1HG subtypes overlap partially with 
previously reported biological subtypes and signatures of aggressiveness; however, the 
increase in biological granularity is not directly translated into better prediction of 
outcome, since several progression events are missed using the T1HG classifier (Ta 
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progression sensitivity: T1HG-1+3 subtype, 24% (7/29); UROMOL2020 class 2a+2b, 79% 
(23/29). T1 progression sensitivity: T1HG-1+3 subtype, 69% (25/36); UROMOL2020 
class 2a+2b, 89% (32/36))”.   
 

- Similarly can RFS be analyzed for pTa sub-group 
 
Author response: In order to perform a sub-analysis of a pathologically homogeneous 
group of tumors, we have only focused on Ta low grade tumors. This is also included in 
the Results section under “Transcriptomic subtypes in pathologically homogeneous 
tumors” and in Supplementary Fig. 2. We write: “Analysis of Ta low grade tumors by 
unsupervised consensus clustering of gene-based expression values restricted to the 
2000 genes with highest variation identified four subtypes significantly overlapping with 
the UROMOL2020 classes (p=4.4 x 10-69; chi-square test; Supplementary Fig. 2a). The 
Ta low grade subtypes were, however, not significantly associated with RFS 
(Supplementary Fig. 2b)”. Consequently, the analysis of pathologically homogeneous 
tumors supports the major UROMOL classes identified.  
 
We would like to thank the reviewer for the suggestion to include these sub-analyses, as 
it strengthens the understanding of tumor biology and underlines the importance of the 
major classes.  
 

- The authors used used their transcriptomic and genomic findings to try and 
improve on known risk stratifiers. They used the EORTC, but would be interesting 
to see if AUA/SUO or CUETO models would have improvement as them may be 
better then EORTC. 

 
Author response: We have now included comparisons to EAU risk scores - we also tried 
AUA, but as the difference between EAU and AUA is negligible in this work, we continued 
with EAU because of the European origin of the UROMOL consortium. In Supplementary 
Table 2, we compare our genomic and transcriptomic classes to both EORTC and EAU. 
Overall, the EORTC score is a stronger predictor than the EAU risk model, when stratified 
for molecular features (EAU low and intermediate risk were combined as no significant 
difference in progression-free survival was found in a univariate Cox regression analysis: 
intermediate vs. low, HR=3.00 (95%CI: 0.68-13.24), p=0.15). We also included the 
comparison to EAU risk scores in Supplementary Fig. 8b+d, where we observe that the 
AUC for EORTC is higher than for EAU. This is now discussed in the manuscript where 
we write: “Logistic regression models including continuous variables (EORTC, genome 
altered and 12-gene progression score), EAU risk scores and T1HG subtypes showed no 
increased predictive value (Supplementary Fig. 8a-d).” 
  
 
Reviewer #2 (Remarks to the Author): Expert in bioinformatics and multi-omics analysis 
 
Lindskrog et al. performed an integrative analysis of a very large number (n=862) of non-
muscle-invasive bladder cancers (NMIBC), including bulk RNASeq (n=535), CNV/LOH by 
SNP array (n=473), spatial proteomics (n=167). From gene expression patterns, all 
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NMIBC cases were classified into four distinct subgroups. The previous high-risk class 2 
was found to contain two subgroups associated with different genes: class 2a with cell 
cycle & differentiation genes, and 2b with cancer stem cells and EMT genes, also with 
distinct clinical outcomes. This four-class stratification was further supported by additional 
evidence from the analyses of regulons, chromatin remodeling genes, and methylation 
sites. CNV/LOH analyses found chromosomal instability was associated with disease 
aggressiveness, which is interesting. Overall, this is a very large multi-omics study that 
provides novel insights into the disease heterogeneity of NMIBC. The findings are 
scientific interesting and clinically relevant. However, there are a few technical questions 
that could be better addressed. 
 
Author response: We thank the Reviewer for the positive comments. 
 
Major: 
1. A major technical issue is the approach of somatic mutation calling. Typically, the most 
common method for characterizing somatic point mutations (SNVs/Indels) is by whole-
exome sequencing (WES) or whole-genome sequencing of paired tumor and germline 
samples. In this study, however, SNVs were mostly identified from RNASeq data, which 
also appeared to be unpaired without germline. There are multiple potential problems with 
this type of approach:  
1) unable to completely exclude germline SNPs. In the validation analysis by WES of 95 
mutations, even after the authors performed extensive germline filtering, a high fraction 
(11/95) of remaining mutations still turned out to be germline SNPs. Related to this, the 
currently claimed 87% validation rate may not be accurate, as the germline SNPs should 
not be included with somatic mutations when calculating the validation rate. Further, 
germline SNPs should not be included in the calculation of mutation burden/signature.  
 
Author response: Overall, we completely agree that calling somatic variants based on 
RNA-Seq data is not optimal when compared to DNA-based methods like WES or WGS. 
We apply several filtering steps to avoid including too many germline SNPs and, in 
particular, the size of the dataset makes it also possible for us to filter across samples. 
We acknowledge that there are issues with this approach and discuss this in the 
manuscript. Furthermore, it is important to stress that we mostly focus on already known 
mutated genes in bladder cancer (Fig. 3e) and known mutational signatures.  
   
We agree with the reviewer that it is not possible to completely exclude germline SNPs 
but we have included many filters to remove most of them: 

- we remove any mutations annotated with a rs ID 
- we remove any mutations common to more than 10 samples in our 535 patients 

cohorts except for a few hotspots positions in FGFR3 and PIK3CA. 
In addition, we only reported genes that are known in bladder cancer in Figure 3, and 
genes with significantly different mutation patterns across classes in Supplementary Fig. 
5. We do not expect to see those genes to be differentially affected between the classes 
by germline SNPs. 
Notwithstanding, we have now included additional validatory analyses by investigating all 
of the mutations (hotspot mutations were not included) called from the RNA-sequencing 
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data in 38 samples where we have both DNA and RNA sequencing data available (n = 
11.016 mutations). We observed that:  
32.5% were observed with a frequency above 2% only in the tumor DNA 
0.8% only in the germline DNA (with very low VAF but above 2%) 
20.6% in both tumor and germline (VAF > 2%; probably germline SNPs)  
46% were unique to RNA (VAF < 2% in both germline and tumor DNA; RNA specific 
events). 
 
Importantly, when we restrain our analysis to the genes shown in Fig. 3e or to 
Supplementary Fig. 5b genes, the proportion of true somatic SNVs rose to 79.8% for Fig. 
3e (74 / 93 mutations) and 68.8% for Supplementary Fig. 5 (190 / 280 mutations).  
These results are now displayed in Fig. 3f in the manuscript and we specifically write: 
“We compared RNA-Seq and whole exome sequencing (WES) of tumors and germline 
for 38 patients, and found that the filtering approach applied per sample and across 
samples enriched significantly for somatic SNVs in our presented gene lists (Fig. 3f).” 
Consequently, the process of filtering for frequently mutated and significantly differentially 
mutated genes enrich for somatic variants. We have listed these numbers in Fig. 3f as 
indicated, and have now emphasized that only the frequency of somatic variants is 
considered as validated.    
 
Concerning the mutational burden, we also agree that germline SNPs should not be 
included in the calculation; but since it is not possible to remove them in the absence of 
germline DNA sequencing for all the samples, then we cannot achieve this. However, we 
have now compared the number of mutations called from RNA (using the 791 genes used 
for calculating the RNA-derived tumor mutational burden) and the number of mutations 
called from DNA (with VAF > 10%), and have obtained a correlation of 0.74. We feel that 
these data demonstrate that the RNA-based TMB we present represents a good proxy for 
DNA-based TMB. A supplementary figure (see below) that shows the correlation between 
the two measures is now added to Supplementary Fig. 5. 
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For the mutational signatures, we restricted our analysis to the APOBEC signature by 
looking at the proportion of C to G/T mutations in a TCW context in both RNA and DNA 
from the 38 matched samples. Here we obtained a correlation of 0.75, demonstrating that 
APOBEC contribution can be inferred from RNA mutation calling despite the presence of 
germline SNPs and RNA-specific mutations. The figure has also been added to 
Supplementary Fig. 5. 

 
 
2) in comparison with WES, it was unclear what % of mutations detected by WES were 
missed by the RNASeq-derived analysis. This is important to know because as the 
authors acknowledged, RNASeq can only detect mutations that are currently expressed 
(i.e. may miss the mutations expressed at different stages of tumor development), and 
may have poorer performance towards the mutations in genes at low expression levels.  
 



6 

Author response: We thank the Reviewer for the comment and have now added an 
analysis addressing these concerns. First, we looked at the proportion of WES calls with 
an allele frequency above 10% that are called in the RNA analysis or observed with 1, 2 
or 3 reads. We restricted the analysis to positions with at least 10 reads. 

 
 
This plot shows that more than 81% of the WES calls are called in the RNA analysis 
when the VAF in the DNA is above 20% (black). It also shows that we can observe one 
read (red) for only 96% of them, 2 reads (green) for about 95% and 3 reads (blue) for 
about 94% of them. 
 
To address the problem of low expression, we considered all of the WES calls with a 
frequency above 20% and calculated the proportion of calls in the RNA analysis or the 
number of reads showing the alternate allele as a function of the number of reads at the 
given position. 
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This shows that there is an increase in accuracy for calling a WES mutation from 1 read 
to 20 reads followed by a stable and good level of recall. As a Reviewer suggested, this 
means that we have a poorer performance when looking at genes with lower expression 
which can be improved by deeper sequencing. 
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Finally, this plot shows that in order to get a near optimal performance, only RNA regions 
with more than 20 reads should be taken into account. From ~81% at 10 reads or more, 
we to achieve ~86% at 20 reads or more. However, with our filter, we cannot get above 
90% (at 100 reads or more), probably because of allelic specific expression. 
 
The  plots presented here regarding the recall of DNA muts in RNA, mutational burden 
and APOBEC-related mutations have been added to Supplementary Fig. 5 and we now 
write: “We compared RNA-Seq and whole exome sequencing (WES) of tumors and 
germline for 38 patients, and found that the filtering approach applied per sample and 
across samples enriched significantly for somatic SNVs in our presented gene lists (Fig. 
3f). Additional comparative analysis of mutations observed in DNA documented a high 
correlation between observation in DNA and RNA (Supplementary Fig. 5c-e), 
suggesting that potential included germline variants have limited impact on subsequent 
analyses.” 
 
3) for the “RNA-specific” or “Uncertain” mutations, it was not clear what mechanisms they 
represent. Are they present in the WES at low levels? And there is a lack of description of 
the method for confirming that these mutations were not present in the WES data. One 
thing they can probably do is to check the number of mutant reads and coverage of these 
RNA-specific mutations in the WES data. That would help determine if the absence of 
mutations were caused by technical issues such as low coverage, or false-negative by 
the caller.  
 
Author response: We thank the Reviewer for the comment. We have now changed Fig. 
3f and added a better description of the method. To summarize, in order to validate RNA 
calls in the DNA, we required a minimum of 20 reads in both the tumor and the germline 
DNA sequencing data. A mutation was denoted as RNA-specific if, and only if, the VAF of 
the alternate allele in the tumor and in the germline DNA sequencing data was below 2%.  
 
4) it seems the current analysis did not consider Indels, which are common in some 
cancer genes such as TP53. If this is due to the technical difficulty of detecting Indels 
from RNASeq, then that should be discussed. The cited reference #44 to support RNA-
derived mutation detection as “high-precision”, but it was not immediately clear how this 
conclusion was drawn. Overall, the current RNA-derived mutations could be further 
refined, and these limitations should be properly discussed. 
 
Author response: Indels are a bit more difficult to call in the RNA and we decided not to 
include it in this work. Different technical issues are arising when considering indels. First, 
mid-size insertions and deletions in RNA-seq short reads can be seen by the aligner as 
splicing events. On the other hand, some non-canonical splicing events could be falsely 
considered as indels in the RNA-seq. Second, there are no tools to really separate 
somatic and germline indels in the same proportion as for SNVs. Finally, indels may have 
a strong impact in the RNA-sequence deriving from it making it very difficult to validate. 
All those reasons made us decide not to look at indels calling from RNA-seq data. We 
have now underlined this in the method section where we write: “Single base mutations 



9 

were called from the RNA-seq data using the GATK pipeline. Indels were not considered 
here due to technical issues that may arise from calling this from RNA-Seq data”.  
 
Minor: 
1. Only mutations of high and moderate functional effects were reported, which probably 
is understandable for identifying the driver mutations. For the calculation of the overall 
mutation burden, it was not clear if all somatic mutations were included. 
 
Author response: Please see response to major point 1. 
 
2. For the CNV analysis, it is completely optional but might be of interest to also 
summarize genes affected by small focal CNVs and their association with different 
subtypes. 
 
Author response: Copy number alterations in specific known bladder cancer genes are 
included in Fig. 3e. 
 
3. In figure 3a, it seems the class 1 and 3 have almost identical overlapping with GC1/2/3, 
despite their difference in survival etc, which looks interesting. Is there any possible 
explanation for that, e.x. genome instability happened at an earlier stage? 
 
Author response: Class 1 and 3 tumors have very similar outcomes (Fig. 1b, 
Supplementary Table 2), but the biology is different, as highlighted in the Results section 
and in the overview Fig. 5c. We have not observed any differences in genomic instability 
between the groups.   
 
4. Figure 3H: it looks there are some patients with both CNV loss and point mutation in 
TP53. Are these mutations homozygous then? If so, is there any difference between 
patients that are TP53 homo vs hetero mutated in Figure 3I? 
 
Author response: Yes, the majority of TP53 mutations in tumors with both copy number 
(CN) change and point mutation in TP53 are in fact homozygous (mean VAF for samples 
with CN change = 0.89, mean VAF for samples with no CN change = 0.65), and there is a 
significant correlation between the RNA-derived VAF and the amount of genome 
altered(see Figure below). We now comment on this in the manuscript and specifically 
write: “TP53 was affected by both copy number change and point mutation in 17 tumors 
(Fig. 3h), and the majority of these mutations were homozygous (mean variant allele 
frequency was 0.89 in tumors with copy number change and 0.65 in tumors without). 
Furthermore, we found a positive correlation between TP53 variant allele frequency and 
genomic changes (R=0.44, p-value=0.027; Pearson’s correlation)”  
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5. In the mutational signature analysis, only mutations with AF >0.15 and <0.60 were 
included. What was the rationale for excluding high AF mutations? How about 
homozygous somatic mutations? 
 
Author response: We believe that when including all synonymous mutations in the 
mutational signature analysis, then the probability of a high VAF mutation to be a 
germline SNP is much higher than for it to be a true homozygous somatic mutation. 
Therefore, we discarded them to minimise the risk of inclusion of germline SNPs. Our 
APOBEC sub-analysis shows a very good correlation between RNA and DNA APOBEC 
contribution (see answer to major point 1).  
 
6. There is a typo in Figure 5C: “Recurrene rate”. 
 
Author response: Thank you - this is now corrected.  
 
 
Reviewer #3 (Remarks to the Author): Expert in immunology 
 
This paper builds on the previous UROMOL transcriptional analysis published in Cancer 
Cell 2016 by adding more samples and reanalysing the old data. Moreover, new multi-
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omics data have been added. Importantly, the previous Class 2 is now subdivided to a 
and b with different characteristics. 
 
Author response: We thank the Reviewer for the comment. 
 
Specific comment: 
 
Figure 4a: Please, extend the legend by giving information about the antibody used and 
the colour it gives. Anti-CD8 staining in the low infiltration panel is not very convincing. 
 
Author response: We have extended the legend to include information on the antibodies 
and fluorophores used. Furthermore, a full list of antibodies and fluorophores can be 
found in Supplementary Data 1. We have now fully replaced and redesigned the 
illustrations in Fig. 4a with more representative examples of tumors with high- and low 
infiltration, respectively. In addition, we have added a scale-bar to ease interpretation.     
 
Reviewer #4 (Remarks to the Author): Expert in immunogenomics 
 
This is an excellent paper that significantly contributes to the understanding of NMIBC. 
The manuscript is well written, the figures are (mostly) clear and the conclusions are 
appropriately stated. The paper also generates relevant data for more in depth studies. 
 
Author response: We thank the Reviewer for the positive comments. 
 
Of the techniques utilized, proteomic assessment and documentation requires additional 
effort prior to publication such that the community can better understand and replicate the 
results. 
 
Below are recommended edits: 
1. Results/Delineation of transcriptomic classes in NMIBC: 
Please further comment on class 3 for the reader as it establishes an early grounding for 
comparisons. 
 
Author response: We thank the reviewer for this suggestion. In the “Delineation of 
transcriptomic classes in NMIBC” section, we mention that class 3 is associated with a 
higher expression of early cell-cycle genes, differs from class 1 by having high AR and 
GATA3 regulon activity and less methylated gene promoters and shows significantly 
lower immune infiltration compared to all other classes. We have now added the following 
sentence: “Furthermore, class 3 tumors were characterized by high expression of 
FGFR3-coexpressed genes and a depleted immune contexture (Fig. 1e-f), as previously 
demonstrated in MIBC and upper tract urothelial carcinoma (Sweis et al., Cancer 
Immunol Res., PMID: 27197067; Robinson et al., Nat Commun. 2019, PMID: 31278255)”. 
The biology of class 3 tumors is also included in the discussion (fourth paragraph), and 
potentially druggable pathways in class 3 are suggested (fifth paragraph). Furthermore, a 
summarised overview of class 3 tumors is provided in Fig. 5c.      
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2. Integration of genomic alterations and transcriptomic classes: please remove 
"suggesting that these tumors present a high level of neoantigens" unless you have data 
to reference. 
 
Author response: We agree with the Reviewer that this statement requires data to  
reference and it is now removed.  
 
3. Spatial proteomics analysis: please revisit this section and describe with more detail 
and improved clarity: 
 
- How are you defining "high class I"? what is your normalization modality? 
 
Author response: We are not entirely clear as to what the reviewer is referring to with 
regard to “high class I”, and so apologize if we do not fully address this question. 
However, in the section regarding the WISP analysis, we describe high class 1 weights, 
which are defined in the Methods section relating to that component of the analysis. We 
have now included an additional sentence in the Results section for further clarification: 
“WISP calculates pure population centroid profiles from the RNA-Seq data and estimates 
class weights for each sample based on the centroids (hence, each sample is weighted 
between all four transcriptomic classes; for details see Methods).”   
 
- Please define your Z-score calculation. 
 
Author response: We have now included the calculation of the z-score in the legend to 
Fig. 4b:𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  − ���� �����

𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 𝑠𝑠𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠
  

 
- Fig. 4a is a poor representation of high vs. low in that it does not appear to represent the 
extent of difference in Fig. 4b. Please resolve as it suggests the data in 4b is not scaled 
appropriately. CTL and Thelper staining appears very weak suggesting technical 
problems in staining or acquisition thereof. Please specify in the legend what the colors 
refer to (what is yellow in line vs. globular yellow in image?). 
 
Author response: We thank the reviewer for highlighting that the weak staining intensity 
in Fig. 4a could be misinterpreted as technical issues. However, in this case the weak 
colouring appeared after exporting the scanned image from the Visiopharm software. 
Hence, as also mentioned in the response to Reviewer 3, we have now replaced and 
redesigned the illustrations in Fig. 4a with more representative high-quality images of 
tumors with high- and low immune cell infiltration, respectively. We have extended the 
legend to include information on antibodies, fluorophores, and a reference to the dashed 
line separating the tumor parenchyma from the tumor stroma. Lastly, we have added a 
scale-bar to ease interpretation. 
  
- Please include single panel mplex images showing multiplex staining equivalency with 
DAB and adequate stripping of antibodies between cycles such that residual antibody is 
not causing signal in the next cycle of the tyramide assay (suppl). More details of the 
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assay would be helpful as well (retrieval times, stripping times) which you may be able to 
reference. 
 
Author response: We would like to refer the Reviewer to Supplementary Fig. 7. The 
figure includes single-plex images of the different fluorophores together with DAPI. We 
agree with the reviewer that the Methods section “Proteomics” should include more 
details and so to address this, we have rewritten the section and added a relevant 
reference. “Proteomics” now includes an additional subsection “Immunofluorescence, 
immunohistochemistry and imaging”, incorporating all of the specific details relating to 
reagents, retrieval times, stripping times, ect. for fluorescence and brightfield detection. 
Detailed information on the antibody assays (clone, company, species. dilution, 
incubation, RRID and fluorophore) is listed in Supplementary Data 1.  
 
- Please include more details for the DAB assays in this paper (a table of the retrieval 
time/conditions, antibodies, dilutions, incubation time etc similar to the mplex would be 
more complete than partial data listed in the methods). 
 
Author response: Details for the DAB assays is accessible in Supplementary Data 1. 
This has now also been clarified in the Methods section.    
 
- The use of overlays for PDL1 and CK is not ideal as the myleloid or TAM cells 
expression of PDL1 within or adjacent to tumor can be mis-attributed to tumor and vice 
versa. This should ideally be a separate multiplex panel or caveats to interpretation 
included in the manuscript. 
 
Author response: We agree with the Reviewer that it is not possible for us to distinguish 
between PD-L1 positive immune cells and PD-L1 positive carcinoma cells. We did not 
adequately specify this in the paragraph regarding PD-L1 expression. We have now 
clarified this in the revised manuscript, and we now operate with overall PD-L1 
expression in the different tumor regions (stroma and parenchyma). We thank the 
Reviewer for highlighting this, and for allowing us to clarify the manuscript.  
 
- There seems to be little to no mention of TMA core replicate statistics in the manuscript 
or of core-to-core variability in stroma or tumor region areas analyzed or variation of the 
total area of tumor and stroma regions analyzed between subgroups. Please further 
clarify. 
 
Author response: We have now included core-to-core correlation statistics to the 
Methods section. We generally observe a strong correlation between the TMA tissue 
cores (see figure below). The correlation is strongest for immune cells in the tumor 
parenchyma and less for immune cells in the tumor stroma; however, still significant. In 
the manuscript we have mainly focused on infiltrating immune cells present in the tumor 
parenchyma. 



14 

 
The observed variation, especially in the tumor stroma, could be explained by the modest 
number of immune cells per tissue core (see figure below). We have therefore concluded 
that the per core number of immune cells was too limited to study intra-tumor 
heterogeneity. The low number of immune cells per core highlights the need for 3 cores 
per patient. The agreement between TMA sections and whole tissue sections has been 
studied in melanoma tumors for CD8 and CD163 and ranged from 83% to 96% (Jensen 
et al., Tumor and inflammation markers in melanoma using tissue microarrays: a 
validation study. Melanoma Res., 2011).    
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- Please further clarify how the multiplex images are analyzed to derive single cell data 
(which version of software and modules are being used)? 
 
Author response: We have now included a detailed Methods section regarding digital 
pathology that specifies the software used (Visiopharm) and which modules we have 
utilized (Tissue array, Tissue align and Tissue author). 



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author): 

All my comments have been addressed. 

Reviewer #5 (Remarks to the Author): 

The authors applied a multi-omics approach in combination with taking advantage of a multi-center 

study to understand molecular networks in non-muscle-invasive bladder cancer to identify potential 

biomarkers of clinical outcome. The study is well-designed and represented in a clear and 

comprehensive way. 

The authors carefully addressed all major concerns of reviewer 4. 


