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Supplementary Figure 1
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SupplementaryFigure 1

Effect of TCM on human macrophages

(a) Heatmap of M1- and M2-like genes in GBM-infiltrating CD14" cells (GBM) and microglia from healthy individuals (Control) using
Nanostring (n=3 biologically independent samples). (b) Expression of Ahr and M2-like genes in BMDMs stimulated with TCM from
CT2A cells per 24 hours (n=3 technical replicates). Data are representative of two independent experiments with similar results
Unpaired two-tailed t test was used for statistical analysis. (c) Relative gene expression of CYP1B, KLF4, MCR1, LLGL1, STATS,
STAT1, CD274, IL10 and ENTPD1 in CD14" blood cells from healthy donors treated with TCM from different glioma cell lines per 24
hours. DMEM sample was used as reference sample. Each symbol represents an individual (n=4 biologically independent samples).
Ordinary one-way ANOVA was used for statistical analysis. (d) Left panels. Representative immunofluorescence images of human
gliomas stained for in the top CD68 (green), TMEM119 (red), AHR (cyan) and nucleus (blue), in the middle AHR (green), CD4 (re d)
CD3 (cyan) and nucleus (blue) and in the bottom AHR (green), CD8 (red), CD3 (cyan) and nucleus (blue). Right panels. Quantification
of AHR'CD68 " TMEM119"® cells in tumor from grade 1 (n=2), grade 2 (n=14), grade 3 (n=8) and grade 4 (n=9) (top); AHR "CD4*CD3
cells (middle) and AHR*CD8'CD3" cells (bottom) in tumor from grade 1 (n=5), grade 2 (n=9), grade 3 (n=13) and grade 4 (n=8). Each
symbol represents one individual and all data are mean = s.em. Kruskal-Wallis test was used for statistical analysis. Scale bars, 20|
um.




Supplementary Figure 2
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Supplementary Fgure 2

Immunoblot analysis of AHR, NFkBp65 and TRAF6

(@) Immunoblots of AHR (top) and GAPDH (bottom) in total protein lysates of RAW264.7 macrophages overexpressing or notthe miR-
29b, corresponding to the immunoblot in the Fg. 2n. Control samples (1, 3, 5), miR-29b transfected cell samples 2, 4, 6). (b
Representative immunoblots of AHR (upper panel) and GAPDH (lower panel) in total protein lysates of BMDMs from W T and AHR"®

mice, corresponding to the immunoblotin the Suppl. Fg. 3b. BMDMs WT (1, 3 and 5) and AHRMM (2, 4 and 6) samples. (c) Westem
Blot analysis of NF-xB (p65) (upper panel), GAPDH (middle panel) and histone 3 (lower panel) in cytoplasmatic and nuclear fraction of
BMDMs stimulated or not with TCM for 90 minutes from WT and AHR™™ mice, corresponding to the immunoblot in the Fig. 4l.
Samples: 1 (control WT), 2 (TCM WT), 3 (control AHR"™) and 4 (TCM AHR"®™). (d) Immunoblots of TRAF6 (upper panel) and
GAPDH (lower panel) in total protein lysates of BMDMs stimulated or not with TCM for 6 hours from WT and AHR "M mice
corresponding to the immunoblot in the Suppl. Fig. 4k. Samples: 1 (control WT), 2 (TCM WT), 3 (control AHR") and 4 (TCM
AHRY™). L: ladder.




Supplementary Figure 3
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Supplementary Fgure 3

IAHR expression in WT and AHR™M mice

(a) Ahr expression in sorted bone marrow inflammatory monocytes (CD3V*9B220"*9Ly6GN* NK1.1*9Siglec-F¥*9CD11b*Ly6C"") from
naive WT and AHR"* mice (n=3 independent mice). Representative of two independent experiments with similar results. (b) Westem
blot analysis of AHR in BMDMs from WT and AHR"“*™ mice (n=3 biologically independent samples). Data are representative of two
independent experiments with similar results; images were cropped and the full scans are shown in Supplemental Fgure 2b. (c-e)
gPCR analysis of Ahr expression in microglia (c), B cells (CD19%) and T cells (CD3" CD4" and CD3" CD8") (d), neutrophils|
(CD115M*9CD11b*CD11c"®Ly6G") and dendritic cells ((30115“39c011b“"9c011c MHCII™) (e) (n=3 independent mice). (f) Fre quency
of neutrophils and dendritic cells in the CD45*CD11b" gate of glioma-infiltrating cells. CyTOF analysis was performed in WT mice 15
days after GL261 cell implantation. The dot plot graphs are representative of two independent experiments with similar results. (g
Frequency of microglia, splenic B cells and T cells in naive WT and AHR M mice (n=4 independent mice). (h) Total nhumber of




macrophages (CD11b+F4/807) and inflammatory monocytes (CD11b F4/80°Ly6C™) in spleen from WT and AHR™ " (n=4 independen{
mice). (i) Survival curve analysis from WT and AHR"™ mice implanted intracranially with CT2A cells (n=10 independent mice),
Representative of two independent experiments with similar results. Survival analysis was performed using a Kaplan-Meier plot using &
log-rank (Mantel-Cox) test. (j) Flow cytometry analysis of TMEM119 (blue), CX3CR1 (red) and Ly6C (magenta) expression in TAMs, 15
days after GL261 implantation in WT mice. Representative of two independent experiments with similar results. (k) Ly6C expression on
TAMs gate (LinNegCD11b+CD45+) in GBM from WT and AHR"*M mice on day 15 (n=3 independent mice). In the left, representative dot|
plot graphs of Ly6C expression in TAMs gate, where microglia (CD45L°WCD11b+) is shown in blue and peripheral infiltrated
macrophages (CD45H'CD11b+) in red. Percentage of Ly6C" cells in TAMs (right panel). Representative of two independent experiments
with similar results. (I, m) Ccl2 and Ccl7 gene expression in naive brain and GL261 tumor-bearing mice (I) and in CT2A cells (m) (n=3
tmice per group). Representative of two independent experiments with similar results. (n) Quantification of CCL2 in TCM from human
GBM cells by ELISA (n=5 biologicallyindependent samples). Unpaired two-tailed ttest was used to compare two groups (a-d, g, h, k,
m and n) and one-way ANOVA was used to compare three or more groups (e and l). All data are presented as meants.e.m.
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Supplementary Fgure 4

Kyn regulates TAM polarization in vivo via AHR

(a) Nanostring analysis of peripheral infiltrated macrophages (Lin"*?CD11b"CD45™) in GBM from WT and AHR™™ mice 15 days aftef

GL261 cells implantation (pool of 4 mice per group). Ingenuity pathway analysis of macrophage polarization genes is shown. (b) Tumor
size in WT mice 7 days after implantation of GL261-control and GL261-TDO/IDO cells (n=3 independent mice). Representative images
and quantification (left and right, respectively). Data are representative of two independent experiments with similar results. (c,e) ldoll
and Tdo2 expression in tumor tissue from WT mice injected with GL261- control and GL261-TDO/IDO (n=3 independent mice) (c), and
in CT2Accells (n=3 biologicallyindependent samples) (e). Representative of two independent experiments with similar results. (d) Argl]
expression in sorted TAMs from WT mice injected with GL261-control and GL261-TDO/IDO cells (n=3 independent mice)
Representative of two independent experiments with similar results. (f) Schematic of AHR binding sites (XRES) in the Klf4 promoter
The arrows indicate primers designed to study AHR (sites 1-6) recruitment. (g,h) KIf4 gene was silenced by siRNA in bone marrow|
derived macrophages. The cells were stimulated with TCM from GL261 cells for 24 hours and gene expression of M1 - and M2-like]
genes was analyzed by qPCR (n=3 technical replicates). Data are representative of two independent experiments with similar results
(i) Ingenuity Pathway Analysis of NF-kB signaling using data from Nanostring analysis of peripheral infiltrated macrophages
(Lin"*®CD11b*'CD45™) in GBM from WT and AHR™™ mice 15 days after GL261 cells implantation (pool of 4 mice per group). Colors,
indicate up- and down-regulation of individual pathway components in red and green, respectively. (j,k) Socs2 expression (j) and
TRAF6 protein levels (k) in TCM-stimulated BMDMs from WT and AHR™™ mice. Data in j were repeated two times with similar results
with three technical replicates. The experimentin k was repeated two times with similar results; images were cropped and the full scans
are shown in Supplemental Figure 2d. All data are presented as mean + s.e.m, Unpaired two-tailed t test was used to compare two
groups (b-e, h and j) and one-way ANOVA was used to compare three or more groups (g).
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Supplementary Fgure 5

CD39 in TAMs drives T cell dysfunction

TTE TI7TT

(@) Schematic of generation of LysM~" CD39™ mice. There is insertion of a LoxP site into the exon 5 and the exon 6 in the mouse
Entpdl %ene (b) MFI of CD39 expression determined by flow cytometry in splenic macrophages (F4/80°CD11b") from naive WT and
CD39"" mice. Data are representative of two independent experiments. (c, d) Percentage of CD39 in CD4" T cells (c) and in Treg
cells (CD4" FoxP3") (d) in the blood of WT and CD39"M mice (n 5 independent mioe) On the left of each figure are the representative
dot plots from each roup. (e) Frequency of CD3" T cells, CD3'CD8" TceIIs CD3"CD8" T cells and Tregs (FoxP3 CD4%) in the blood,
from WT and CD39™* mice (n=5 independent mice). (f) Effect of CD8" T—ceII depletion in WT and AHR"™™ mice performed as
previously described * Survival curve analysis of GBM mice injected with GL261 cells in WT and AHR™ (n=8 independent mice)
Log-rank test was used to compare survival among the Isotype WT and Isotype AHR M groups, or between Isotype and anti-CD8
treated mice in WT group or in AHRDM group. Representative of two independent experiments with similar results (g,h) Flow
cytometry anaIyS|s of TILs in WT and AHRL”S"’I mice 15 days after GL261 ceIIs |mplantat|0n Total number of CD8" TILs (g) and
frequency of PD-1"granzyme B" cells in CD8" T cells and of Treg cells (FoxP3" CD4") (h). Data are representative of two independent
experiments with similar results, using three mice per group. (i,j) Flow cytometry analysis of TILs in WT and AHR"™ mice 28 days after
CT2A-luciferase cells implantation. Total number of CD8" TILs (i) and frequency of IFN-y" in CD8" T cells and of Treg cells (FoxP3"]




CD4") (j). Data are representative of two independent experiments with similar results, using three mice per group. Unpaired two-tailed
t testwas usedto compare two groups (c-e,g-j). All data are shownas meants.e.m..
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Supplementary Fgure 6

Proposed model of the effects of GBM-produced AHR agonists on TAM function and T cell immunity

Kyn released by glioma cells activates AHR in TAMs, modulating TAM recruitment into GBM via CCR2, TAM polarization via KLF4/NF -
kB, and T-cells via CD39.
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Supplementary Fgure 7

Gate strategy used to analyze TAMs

FACS gating strategy for TAM purification from GBM- infiltrated mononuclear cell suspensions.




Supplementary Table 1

Hazard Ratio 95% ClI P value
Univariate analysis
Age 1.03 1.02-1.04 <0.0001
Gender (being male) 0.84 0.63-1.13 0.26
Karnofsky performance score (KPS) 0.97 0.96 - 0.99 <0.0001
TCGA Expression subtype
Mesenchymal Reference
Proneural Non-G-CIMP 1.5 1.00 - 2.28 0.05
Proneural G-CIMP 0.28 0.14-0.50 <0.0001
Neural 0.77 0.49 -1.22 0.27
Classical 0.94 0.64 - 1.36 0.72
IDH1 mutated 0.35 0.17-0.74 0.006
MGMT methylated 0.57 0.33-1.00 0.05
Tregtment with temozolomide 0.54 0.41-0.72 <0.0001
(being treated)
RNA expression (high vs. low by
median)
AHR 1.41 1.05 - 1.88 0.02
ENTPD1 1.11 0.83-1.48 0.47
KLF4 1.19 0.90 - 1.58 0.23
CYP1A1 1.11 0.83-1.47 0.49
STAT1 1.13 0.85-1.50 0.39
STAT3 1.34 1.00-1.78 0.05
CCL2 1.45 1.09-1.93 0.01
CCR2 1.29 0.97 -1.71 0.08
Multivariate model (adjusted by age, expression subtype, IDH1 mutation, KPS, and
treatment)
High AHR Expression 1.7 1.10 - 2.63 0.02
High ENTPD1 Expression 1.58 1.02-243 0.04
High KLF4 Expression 1.26 0.81-1.94 0.29
High CYP1A1 Expression 1.2 0.78 - 1.85 0.4
High STAT1 Expression 1.22 0.79 - 1.86 0.37
High STAT3 Expression 1.09 0.70-1.69 0.7
High CCR2 Expression 1.39 0.90-2.14 0.13
High CCL2 Expression 1.44 0.94-2.19 0.09

Validation of univariate and multivariate analysis of overall survival using data
shown in Supplmentary Table 5 obtained from The Cancer Genome Atlas
Research Network, Nature 2018, 455:2061-1068. Log-rank test was used to

assign significance.
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