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SUPPLEMENTARY METHODS 

 

PBMC processing  

Peripheral blood mononuclear cells (PBMC) were obtained from leukapheresis 

samples by density gradient centrifugation and cryopreserved in liquid nitrogen. For the 

isolation of immune cell types of interest, cryopreserved PBMCs were thawed, washed, 

stained directly with cocktails of fluorescently conjugated antibodies or pre-enriched for 

total B cells using the ‘Human B Cell Isolation Kit II’ (Miltenyi Biotec), following the 

manufacturer’s instructions before staining with antibodies and sorted on a BD FACSAria 

II (Becton Dickinson) using the gating strategies as described 1. The FACS-sorted cells 

were washed and fixed using 1% formaldehyde, as described 2, for ChIP-seq and HiChIP 

assays.  

 

Semi-automated micro-scaled ChIP-seq for H3K27ac  

Cell types from 6 donors (as described above) were utilized for this analysis. A 

total of 30 ChIP-Seq assays were performed as described previously 3. Briefly, sheared 

chromatin from each cell type was immunoprecipitated with a polyclonal anti-H3K27ac 

antibody (1.5µg/sample) (C15410196; Diagenode) by use of an automated ancillary liquid 

handler SX-8G IP-Star from Diagenode. Immunoprecipitated chromatin was captured, 

washed, Illumina library adaptors integrated by transposase-based method 3 and library 

prepared by PCR amplification. Libraries were sequenced on an Illumina HiSeq 2500 

sequencer to obtain 50-bp single-end reads.  



 

Luciferase assay 

500 ng of luciferase reporter plasmid for the indicated cis-regulatory sequence was 

transfected into 2.0 × 105 cells using the Neon Transfection System (Thermo Fisher 

Scientific) according to the manufacturer's protocol (settings: 1,600 V, 10 ms, 3 pulses). 

Fresh media (as described above) was then added and cells were maintained for 72 hours. 

After 72 hours cells were washed with PBS, and harvested. Preparation of cytosolic 

extracts with equal number of cells and luciferase assays were carried out using a Nano-

Glo® Luciferase Assay System (Promega, Madison, WI), according to the supplier’s 

protocol, and results were quantitated on an envision multiplate reader. All luciferase 

reporter plasmid was cloned by Twist biosciences. 

 

qRT-PCR 

Total RNA was extracted using the miRNeasy Micro Kit (Qiagen); cDNA was 

reverse-transcribed with the SuperScript III First-Strand Synthesis System (Life 

Technologies). Real-time PCR was performed using the Fast Start Universal SYBR 

Green Master Mix (Roche); see Supplementary Table 1F for primer sequences. Data 

were acquired on the QuantStudio 6 Flex (Applied Biosystems); all results are presented 

relative to expression in control crRNA and tracrRNA duplex transfected cells. Transcript 

levels were normalized using housekeeping gene YWHAZ as control in each sample. 

 

Lentivirus production and generation of dCas9-KRAB expressing cell lines 



For virus production, 5 X 106 HEK293T cells were plated in a 10 cm plate. The 

following day, plasmid encoding lentivirus (pHR-SFFV-KRAB-dCas9-P2A-mCherry) was 

co-transfected with MISSION® Lentiviral Packaging Mix into the cells using JetPRIME® 

transfection reagent (Polyplus transfection) according to the manufacturer’s instructions. 

Supernatant containing viral particles were collected 48 hours after transfection and 

filtered. Virus was concentrated using Lenti-X concentrator (Clontech) and stored at -

80°C. For virus infection, 1 ml of virus, and polybrene (final 4 mg/ml, Sigma Aldrich) was 

added to 1 million cells (Jurkat cell or GM12878 cells) and centrifuged for 90 minutes at 

1400 X g at 30°C. After centrifugation, cells were incubated at 37°C for two hours, and 

then viral supernatant was replaced with fresh medium (as described above). Fresh 

media was then added every other day and cells were maintained for 45 days. After 45 

days KRAB-dCas9 expressing cells were selected by sorting mCherry expressing cells. 

 

Alignment and peak calling for ChIP-seq data 

ChIP-seq reads were aligned using bowtie2 4 with respect to hg19 reference 

genome, using the parameters -k 4 --mm --threads 8 -X 2000.  Uniquely mapped reads 

with MAPQ >= 30 were retained, and duplicate reads were discarded using Picard 

(http://broadinstitute.github.io/picard). For each cell type, we then merged the resulting 

de-duplicated aligned reads (in .bam format) using samtools 

(http://samtools.sourceforge.net/) for all six donors, to produce aggregate ChIP-seq reads 

for each cell type. These merged alignment files were then applied to MACS2 - version 

2.1.1 5 for peak calling, using the parameters -f BAM -g 'hs' --nomodel --extsize 147 --



keep-dup 1 -q 0.01. In addition, we also merged alignments for all cell types, and then 

called MACS2 (with the same settings) to obtain ChIP-seq peaks for all cell types. 

Reproducibility analysis for HiChIP 

We performed reproducibility analysis between two replicates of individual donors 

by first constructing the union of FitHiChIP-L loops significant in at least one replicate. 

Contact counts of those loops in both replicates (missing values are replaced by zero) 

are used to plot the scatterplots. R function cor() is used to find the correlation of contact 

counts. 

 

Principal component analysis (PCA) for HiChIP samples 

We first applied FitHiChIP-L (peak-to-all foreground; loose or peak-to-all 

background) on donor-specific HiChIP samples from the five immune cell types. Then, 

for each cell type (consisting of either six or nine samples, including duplicates), we 

extracted 20,000 most significant (FDR < 0.01) loops occurring in all the samples. In total 

for the five cell types, we extracted 100K loops, of which 52,648 were unique loops. For 

each of these loops, we listed their FitHiChIP-L significance (FDR values) for all samples 

(replacing missing entries with 1) to form a feature matrix M of 52648 x 30 dimension. 

The matrix M was applied on the R function prcomp for PCA. Individual samples in the 

PCA were plotted using the R package factoextra. 

 

Finding interacting ChIP-seq peaks from HiChIP 



 Peak were called by MACS2 on the merged H3K27ac ChIP-seq tracks (across 6 

donors) for each individual cell types. These H3K27ac peaks were inputted as reference 

peaks to FitHiChIP to process the 70M read merged HiChIP dataset for the corresponding 

cell type. The resulting significant interaction calls were used to determine interacting 

H3K27ac peaks by checking whether the 5 Kb bin(s) that overlaps a given ChIP-seq peak 

(i.e., peak bin) is involved in a significant HiChIP interaction. Similar overlap computations 

and classifications were carried out for PCHiC data using CHiCAGO loop calls. We 

computed all overlaps using bedtools intersect routine (minimum 1 bp overlap). 

 

Annotation of interacting bins as promoter, enhancer or other 

We defined an interacting bin as a promoter (P) bin if it lies within 5 Kb of a 

reference TSS site. An interacting bin was labeled as enhancer (E) if it overlaps (minimum 

1 bp) with reference H3K27ac ChIP-seq peaks from merged tracks and is not a promoter 

bin. A bin not in promoter or enhancer category was labeled as other (O).  

 

Enrichment of different histone marks in promoters and enhancers 

ChIP-seq bigwig tracks of corresponding cell types for the histone marks 

H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3 were downloaded for all 

available replicates from the IHEC data portal 

(https://epigenomesportal.ca/ihec/grid.html?build=2017-

10&assembly=1&cellTypeCategories=1). For each histone mark, we merged the multiple 

bigwig files from replicates using utility functions bigWigMerge and bedGraphToBigWig 6. 



These merged bigwig tracks along with the H3K27ac ChIP-seq tracks for these cell types 

were used to find the enrichment of promoters and enhancers participating in HiChIP 

loops for the different cell types. The computeMatrix and plotHeatmap of the package 

Deeptools were used to plot the heat map and distribution plot. 

 

Reanalysis of HLA transcript levels using HLApers 

We applied HLApers pipeline (https://github.com/genevol-usp/HLApers) for in 

silico HLA mapping and obtaining transcript expression with some modifications. This 

pipeline generates personalized HLA index files for individual samples, which are used to 

estimate sample specific HLA genotype. We applied HLApers with its default settings, 

aside from customizing it to support our single-end reads. We executed HLApers by using 

STAR as the aligner and Salmon for quantifying the transcripts. Reference HLA transcript 

annotations and fasta sequences were obtained from the latest release of IMGTHLA 

database (https://github.com/ANHIG/IMGTHLA.git) for HLA. We downloaded Gencode 

version 30 reference fasta and gene annotation (GTF) files corresponding to the hg19 

human reference genome (https://www.gencodegenes.org). The R libraries 

TxDb.Hsapiens.UCSC.hg19.knownGene, tximport and tximportData were used to 

generate gene expression from transcript quantification, for both non-HLA and HLA 

transcripts. We then used matrixeQTL to obtain eQTLs from the HLApers-computed gene 

expression values for HLA genes. For all downstream analysis, we replaced the HLA 

eQTLs from the initial DICE release with this revised analysis. 

 



Conditional eQTL analysis 

We used MatrixEQTL with linear regression model to perform forward stepwise 

conditional eQTL analysis7. We used the same genotype and gene expression data in 

the conditional eQTL analysis as employed in the eQTL study, i.e. DICE data for non-

HLA genes and HLApers output for HLA genes. In the default conditional analysis, FDR 

was computed in the very first step using the Benjamini-Hochberg method across all cis-

eQTL tests within each chromosome. Subsequent iterations did not re-compute FDR, but 

rather used a fixed p-value threshold corresponding to the 5% FDR of the first step, as 

suggested7. At each step, for each gene with at least one cis-eQTL (+/- 1Mb) below the 

FDR or p-value threshold, its most significant SNP (lead SNP) was added as a covariate 

in order to identify additional independent eQTLs. We repeated this process for a 

maximum of 20 iterations to identify conditionally independent eQTLs for each gene. 

Consistent with GTEX estimates8, only 10-18% of eGenes reported additional 

independent eQTLs (E2, E3, …) beyond the first iteration of the conditional mapping (E1) 

across all cell types (Extended Data Fig 3A). For 19-26% of the eGenes the identified 

conditionally independent eQTLs coming from any iteration directly matched the pieQTLs 

compared to 12-15% matching the promoter eQTLs (Extended Data Fig 3B).  

As many pieQTLs or promoter eQTLs may not come as the top SNP but may indeed be 

in high LD with it (Extended Data Fig 3C), we expanded the set of SNPs coming from 

each iteration of conditional analysis to those that are in high LD (R2>0.8) with the lead 

SNP (E1) or the top conditionally independent SNP (E2, E3, …).We used PLINK 

v1.90b3w 9 to compute the linkage disequilibrium (LD) between the lead SNPs generated 

at each step of the conditional analysis, and the promoter proximal eQTLs (located within 



2.5Kb of respective TSS) or pieQTLs. If a gene does not have any promoter proximal 

eQTL or pieQTL, corresponding LD is set as zero. The ggplot2 package in R was used 

to plot the LD score density plots for promoter eQTLs and pieQTLs. For 68-73% of the 

eGenes, we found a pieQTL in the expanded set, whereas these percentages were 44-

51% for the promoter eQTLs across the five cell types (Extended Data Fig 3D). 

 

Allele-specific mapping of HiChIP data 

For individual samples in different cell types, we again applied HiC-Pro pipeline 10 with 

previously described parameters and settings but this time in the allele-specific mapping 

mode. Briefly, HiC-Pro in this mode first performs both a global and local alignment of 

HiChIP reads to a masked hg19 genome reference (bedtools maskfasta) using SNPs 

from the genotyping data generated in the initial DICE database release 1. Then using all 

imputed SNP data from donors, HiC-Pro assigns reads to either of the parental genomes 

(G1 or G2) for heterozygous loci. Downstream analysis including allele-specific screening 

of reads overlapping pieQTLs was performed using the valid read pairs output files of 

HiC-Pro. We determined the number of allele-specific interactions/contacts by counting 

the number of valid read pairs overlapping a given pieQTL in samples that are 

heterozygous for that pieQTL (e.g., GAB2 pieQTL). For each such read, the base pair at 

the pieQTL location was further confirmed by looking up the sequence at that specific 

coordinate. 

 

Cell specific eQTL, pieQTL, eGene and pieGene counts 



For each cell type, we extracted the following sets of eQTLs or eGenes: A) all 

eQTLs, B) subset of A within 2.5Kb of TSS of respective genes, C) subset of A falling 

within 10Kb of TSS of respective genes, D) eQTLs overlapping with ChIP-seq peaks, E) 

subset of D within 2.5Kb of TSS of respective genes, F) subset of D falling within 10Kb of 

TSS of respective genes, G) Set of direct and indirect pieQTLs, H) eGenes corresponding 

to the set of eQTLs in set A, I) eGenes corresponding to the set of eQTLs in set D, J) list 

of promoters interacting with the pieQTLs in set G through HiChIP interactions. For each 

of these sets, cell specificity and common elements in multiple cell types were listed and 

plotted in pie-charts. 

 

Inspecting LD between pieQTLs and eQTLs proximal to the TSS 

We used PLINK v1.90b3w 9 to compute linkage disequilibrium (LD) between the 

eQTLs. The parameter --ld-window-kb was fixed at 10000 (i.e. 10 Mb) since we 

considered pieQTLs up to 10 Mb distance. The parameter --ld-window (maximum number 

of intermediate variants between two SNPs) was fixed at 1000,000. As mentioned before, 

PheGenI database 11 having information of continental ‘super populations’ (AFR, AMR, 

EAS, EUR, SAS) based on data from the phase 3 of the 1,000 Genomes Project 12 was 

used for generating LD statistic. The parameter --r2 was set as 0.8, indicating that an LD > 

0.8 in any of the five super-populations would indicate tight genetic linkage between a 

pair of SNPs. For each cell type c, suppose Gc denotes the set of genes having at least 

one promoter-proximal eQTL (distance from TSS < 2.5 Kb or 10 Kb depending on the 

proximality threshold used) and simultaneously at least one pieQTL having significant 

HiChIP loops with that gene. Using the LD analysis, we listed for each gene gÎ Gc , LD 



values between all pairs of its promoter-proximal eQTLs and pieQTLs interacting with g. 

For each cell type c, we then plotted the following statistics:  

1. Count and fraction of genes g out of total genes Gc such that at least one pair of 

promoter-proximal eQTL and pieQTL of g has LD > 0.8 (i.e. significant tight 

linkage).  

2. Per gene fraction of pieQTLs which are in tight linkage with one or more promoter 

proximal eQTLs of that gene.  

3. For each chromosome, fraction of all pieQTLs which are in tight linkage with one 

or more promoter proximal eQTLs of the corresponding interacting promoters. 

 

Inspecting LD between ultra-long pieQTLs and eQTLs (all or proximal to the TSS) 

Here we considered ultra-long pieQTLs (i.e. pieQTLs having distance > 1 Mb from 

the interacting promoters). We computed LD between all pairs of SNPs in the catalog of 

SNP-trait associations (as described before) with PLINK using the settings --ld-window-

kb 10000 --ld-window 1000000 --r2 0.8. For each cell type c, here we considered the set 

of eGenes Gc having at least one ultra-long interacting pieQTL. For each gene gÎ Gc , we 

inspected LD between its ultra-long pieQTLs and either all eQTLs or only promoter 

proximal eQTLs (distance from TSS < 10 Kb), and reported the fraction of genes or 

pieQTLs showing tight linkage with one or more eQTLs / promoter proximal eQTLs for 

each cell type. 

 

Fine mapping of eQTLs 



We used FINEMAP (version 1.3.1) 13 to perform statistical fine-mapping of the 

DICE eQTLs. Statistics for individual eQTLs such as reference and alternate alleles, MAF, 

FDR, beta, z-scores were used from our earlier work 1. Fine-mapping was performed with 

stepwise conditioning (--cond) option in the FINEMAP package. For all other options, we 

used default settings in FINEMAP.  

 

Enrichment of ultra-long pieQTLs and testable SNPs compared to the distance 

matched random simulated SNPs 

We considered P-E loops > 1 Mb from FitHiChIP significant loops and extracted 

SNPs from the interacting bins and also from their +/- 1 bins. These are the set of testable 

SNPs T for ultra-long pieQTL mapping within distance 1 – 10 Mb from the interacting 

promoters. To construct the set of distance matched random SNPs (denoted by the set 

R), we checked individual bins b interacting with a promoter by FitHiChIP significant loops > 

1 Mb, and randomly sampled 50 SNPs from the bins located within 5 Kb to 105 Kb (i.e. a 

span of 100 Kb) from the bin b. We have also simulated 50 SNPs from the bins within 5 

Kb to 105 Kb of the bin that is of equal distance to the same promoter but in opposite 

direction.  By definition, the distance distribution of SNPs in R is matched to that of T, the 

set of actually tested SNPs for ultra-long pieQTL discovery. We also selected another set 

of distance-matched random SNPs that overlap active cis-regulatory regions as defined 

by H3K27ac peaks, namely A. For all SNPs within the sets T, R and A, we computed the 

p-values of their association with the expression of their “target” genes using MatrixEQTL 

14. We used default settings of the MatrixEQTL with a linear regression model except 

setting the cis distance to 10000000 (i.e. 10 Mb). Compared to both sets of SNPs, 



overlapping randomly selected regions or H3K27ac peaks, the promoter interacting SNPs 

used for association testing showed a very strong enrichment in identifying SNPs with 

statistically significant associations to the expression of their target gene for each cell type 

(Extended Data Fig. 6). 
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