PNAS

WWW.pnas.org

Supplementary Information for

Provisional COVID-19 infrastructure induces large, rapid increases in cycling
Sebastian Kraus and Nicolas Koch

Kraus.
E-mail: kraus@mcc-berlin.net

This PDF file includes:

Supplementary text
Figs. S1 to S6
Tables S1 to S5

SI References

Sebastian Kraus and Nicolas Koch

10f 16



20

21

22

23

24

25

26

27

28

29

30

31

32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
59
52
53
54
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Supporting Information Text
Data cleaning

Bicycle count data. We assemble a new data set of daily bicycle counts from municipal bicycle counters. We connect to national
and municipal open data portals for bike counter data sets. We connect directly to the API of those cities that use the
Eco-Counter standard (see the data and code repository at https://zenodo.org/record/4015974). We also obtain longer time series
of bike counts going back to 2012 directly from the mayor’s staff for road planning and data in Paris.

Our raw data set contains roughly a million daily counts starting in 2007. We drop the lower and upper percentiles from
this raw sample since counters can record very low values, when they are not functioning properly or very high values, when
there is a cycling event that drives up counts. We drop the counter 100041252 from Bergen that varies between very low values
and some of the highest daily counts in the sample. Our results are robust to keeping these extreme values in the sample. The
bulk of the bike counts are from most recent years and we focus most of the comparisons made in our regressions on the years
2019 and 2020. For certain treated cities, such as Paris and Berlin, the raw data already indicates an increase in the annual
peak in June 2020 compared to June 2019. However, many of the control cities show a similar pattern (see Figure S4). In our
regression analyses we find a robust effect of new infrastructures, both when taking the difference in these differences between
treatment and control cities, but also when focusing on variation in treatment timing exclusively (i.e. when discarding control
city information) (see Figure 3 in the paper).

Except for robustness checks at the city level, the unit of observation in our regression analyses is the bike counter and
counts vary daily. An average counter detects 1457 cyclists per day. The mean number of counters active in the same city on a
given day for the counters in the sample is 22.9 (mean over all counter-day observations). The mean size of cities in our sample
is 33000 ha (see Figure S1).

Pop-up infrastructure data. We use project-level data on provisional infrastructure in European cities as a reaction to the
COVID-19 pandemic collected by the European Cyclists’ Federation (1). In the data we typically see the street, where the
project is implemented, its size measured in kilometers, the date of announcement, and the date of implementation. The data
also contains the type of project. 80% are categorized as bike lanes and 16% as traffic calming. Our data includes all projects
recorded as of July 8, 2020. Our sample does not include infrastructure built after that date and excludes some bigger cities,
for which adequate open bike counter data is missing.

We aggregate this data at the city-day level to construct a variable of daily implemented kilometers of pop-up bike
lane. We use the city definition and corresponding polygons from the European Urban Audit 2020 (2). Typically areas
defined by the European Urban Audit include suburbs. For instance, the Paris polygon includes many areas beyond the
ring highway that surrounds the municipality of Paris (“Ville de Paris”). This allows us to capture commuting enabled by
new bike lanes from the suburbs into the city center, which constitute an important share of all projects (see for instance
https://carto.parlons-velo.fr/#10.13/48.8312/2.5506 for a detailed map of projects in France).

Our estimation sample contains 22 treated cities and 84 control cities, both of which some are dropped from our Poisson
regressions depending on the specification because of a lack of variation after removing fixed effects or because we do not have
observations for our control variables (the transit (3) and overall mobility (4) controls). Dublin and Berlin have been the
earliest adopters of pop-up bike lanes in the sample and Paris has been the city with the largest program (see Figure 1 in the
paper). We use variation in both timing and the extent of the implemented infrastructure to estimate our effects. We have a
large sample from both France and Germany. This allows us to estimate our effect based on within-country variation removing
time-varying factors related to the pandemic that could create bias in our estimates. While important cities such as London,
Milan, Lisbon and Rome had either announced or already implemented a pop-up bike lane program at the time of the analysis,
they are missing from the sample due to insufficient spatial or temporal coverage of the bike count data. The average length by
city of all bike infrastructures in our sample combined is 11.5 km, the length of bike lanes is 8.2 and the number of measures
implemented 19.8 (see Figure S2).

We check the sensitivity of our results to different specifications of the treatment, for instance as an indicator variable that
is 1, if there is any cycling related infrastructure change in a city and 0 otherwise (see Figure S3).

Measurement error. The unit of observation in our preferred specifications (see Equation 1 in the Materials and Methods
section) is the counter. Our estimates give the average effect over all counters in all cities in the sample. We assign the
treatment to counters at the city-level, but our research design ensures that conditional on fixed effects and control variables
treatment is as good as random. Therefore, measurement error in our natural experiment can be analyzed similarly to the
stylized case of a cluster randomized controlled trial (RCT), for instance with a treatment that is randomized and assigned at
the village or class-room level, but outcomes are measured for individuals.

We use different treatment definitions to investigate how different ways of conceptualizing and therefore mismeasuring the
treatment influences our estimates. We could think that only the fact that a city rolls out a pop-up bike lane program could
already create more cycling. We, therefore, start our investigation by looking at a binary treatment definition, separating the
sample into treated and control cities for a standard difference-in-differences analysis. We could, however, also think that the
number of kilometers built will make an important difference for the media echo that an announcement of such a policy gets.
It is further likely that a kilometer of pop-up bike lane will have a larger impact in a small city than in a larger city. Thus, we
also estimate dose-response relationships (effect for each kilometer built) in a generalized difference-in-differences setup and
look at effects when the dose is expressed in absolute kilometers and in per capita and per km? terms. This helps correct for
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the fact that in larger or more populous cities, just like in the case of an individual in a cluster RCT in a larger village or
school class, we tend to overestimate the dose received at each counter.

All these different cases are presented in Figure 3 in the paper. We show that our estimates get attenuated by measurement
error when the dose is expressed in absolute kilometers and that treatment effects are higher, when the dose is expressed
relative to population size and relative to the area of a city. Note that our fixed effect already removes any variation between
cities in terms of population and area, ensuring that there is no omitted variable bias in the estimates.

Within cities there will still be counters that are farther away from pop-up bike lanes than others and some will only measure
the expansion of cycling from pop-up bike lanes partly or not at all. We argue that our fixed effects remove any variation
between counters and cities that could lead to systematic relationships between this measurement error and our treatment.
With the counter fixed effect we control for factors related to city size, road network, and topography that could be both
determinants of counter placement and treatment. The counter fixed effect also controls for local institutions and political
majorities that could be driving both where there are counters and where treatment happens. In our remaining variation, we
expect some counters to get a treatment measured with an upward bias and some with a downward bias without there being a
systematic tendency, i.e. we are left with classical measurement error.

The counter fixed effect also removes systematic measurement differences between counters, for instance when a counter is
placed near a route used for recreational cycling. Further, it ensures that only variation from counters that are present both
before and after treatment will be used for the estimation of our treatment effect.

A remaining concern could be that cyclists change their routes and that this could potentially even imply that there is a
problem with double-counting. However, we do not expect route changes to create a skewed measurement of cycling traffic. It
is likely that cyclists will change their routes in reaction to pop-up bike lanes and this route change means they can come
past a counter that they did not pass on their old routes. However, it can also be the case that they switch their route choice
away from a counter. On balance, we do not expect this to create systematic measurement error. Further, because our unit of
analysis is the counter and we look at average changes in these counts rather than the sum of cyclist counts in a city, there
cannot be any double-counting. We also show robustness checks, for which we take the mean of all counters in a city to obtain
a measure for city-level cycling traffic and run a regression at the city level (see Figure 3 in the paper).

Empirical strategy (continued from main body)

This section provides additional elements regarding our empirical strategy.

Our preferred specifications are presented in Equation 1 and Figure 2 (marked in blue) in the main body. In Table S5
we report on these specifications in more detail, varying the treatment definition (km, km per capita, and km per km2) and
including or dropping the public transit control.

In the following section we discuss our choice of using the outcome (cycling counts) in the logarithmic form. In the next
section we explain the additional empirical specification on which Figure 2 in the main body is based.

Functional form. We use the natural logarithm rather than the level of the count of cyclists as the outcome because we expect
cycling to grow in a multiplicative way between cities but also between counters. The country-day FE ensures that we focus on
variation between cities in the same country, which are typically at similar stages in their “market penetration” of cycling and
where thus cycling can be assumed to grow at similar “natural” rates in the absence of treatment. We expect pop-up bike lanes
to have a multiplicative effect across counters in a city because they typically remove prominent bottlenecks from the network,
leading to improved routes and increased (perceived) safety. The cycling counters that measure our outcome are placed next to
roads and bike lanes that have different roles in the overall network. Central counters will pick up larger absolute increases
than more peripheral ones. However, the growth rates they measure (approximated by the A of the natural logarithms) will be
more similar.

We also show that our results are robust in a non-parametric setting using the Matriz Completion method for panel data
(5), a machine-learning method to construct a counterfactual. The Matrix Completion approach frames the problem of causal
inference as a missing data problem: For treated units we observe the potential outcome Y, i.e. cycling given the introduction
of pop-up infrastructure, but we do not observe the potential outcome Y representing cycling in the treated city had the
treatment not happened. If we did, the difference would be the treatment effect. We treat our panel dataset as a matrix with
missing values, which are the missing potential outcomes Y;". The Matrix Completion method imputes these missing values via
regularization based prediction (5).

Let Z° be the estimated missing elements of the Y'° matrix. Analytically, the objective of the Matrix Completion approach
is to “optimally predict the missing elements by minimizing a convex function of the difference between the observed matrix of
Y and the unknown complete matrix Z° by using nuclear norm regularization” (6):

— YO _ 70)?
ZO = argrgi()n Z (lt|§21t) +AHZO | [1]
(4,5)€Q

where ||Z°|| is the “nuclear norm (sum of singular values of Z°)” (6) and Q denotes the rows i and columns j of the
non-missing entries. The regularization parameter A is chosen using 10-fold cross-validation.”

*For a longer explanation of the method in an applied context see (6), who we follow closely here.
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The coefficients shown in Figure S5 confirm that the treatment effect of bike lanes builds up fast enough for specifications
with city-week fixed effects to capture it (Equation 1, main body).

Additional empirical specification (Figure 2 in main body). Estimates shown in Figure 2 (main body) are based on the following
model:

In Count;q = 3,6, (Treated. X D;,) + Xea + e + @na + €id 2]

where ¢ indexes a counter, ¢ a city, n a country, d a day, and m a month.

The data varies at the counter-day. p. is a city fixed effect and ¢4 is a country-day fixed effect that captures any daily
changes common to all cities in a country.

The coefficients of interest plotted in Figure 2 are the d,. They capture the effect of the pop-up bike lane treatment on
bicycle counts over time. For this purpose our treatment variable Treated is defined as a binary indicator for treatment that is
1 for treated cities and 0 for control cities. The Dj, are binary indicators that are 1 if month m is 7 months before or after
March 2020, when the pre-treatment period ends. In these specifications, the reference month and begin of the sample is
February 2019, when 7 equals —13.

Figure 2 in the main body and Figure S6 present the transformed estimate: 100 x (exp dr — 1).

We also run this specification including weather controls X .4 to investigate, if seasonality could be driving these results
(Figure S6). The results look virtually the same.
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Std. Dev. 25% 50% 75% 95% Min. Max.
Daily number of cyclists 1895.7 255 744 1923 5151 1 13339
City size (ha) 42393.6  14163.3 220185 40659.9 89180.2 455.6 251517
Year 2 2016 2018 2019 2020 2007 2020
Number of active counters in the same city 23.2 4 14 32 82 1 90
Facebook mobility index 0.21 -0.27 -0.11 -0.0044 0.088 -0.81 0.51

Observations

Table S1. Summary statistics at the counter-day level. The unit of observation of our analysis is the counter and data varies daily. Count
data is from municipal bike counters and is obtained from different municipal APIs. Treatment and control variables are assigned to counters
based on their city attribute. City definitions are from the EU Urban Audit (2). The Facebook mobility index is only available from March 2020.
It measures aggregate movement activity by Facebook users in a given administrative area (districts or states).

Sebastian Kraus and Nicolas Koch

50f 16



Mean Std.Dev. 25% 50% 75% 95% Max.

Total length of bike infrastructures 11.5 20.0 139 257 166 579 851
Total length of bike lanes 8.24 18.3 024 205 735 248 843
Number of measures 19.8 48.1 1 4 17 52 226

Observations 22

Table S2. Summary statistics of most recent state of infrastructure at the city level. We use data from the European Cyclists’ Federation
(1). The raw data includes information on individual infrastructure projects announced or implemented. We aggregate it to the city-day

level using city definitions from the EU Urban Audit. Our analysis includes data up to July 8, 2020. The newest data can be found at:
https://ecf.com/dashboard
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Outcome: Cyclist count

(1) (2 3 (4)
All km Bike lane km Num of measures  Any treatment
Pop-up treatment 0.006** 0.007** 0.004* 0.061*
(0.003) (0.003) (0.002) (0.036)
City clusters 78 78 78 78
N 59904 59904 59904 59904

Table S3. Different treatment specifications. Each column shows the effect of treatment with pop-up infrastructure on a city’s cycling count
compiled from city APls. The data on daily pop-up bike lane additions is from the European Cyclists’ Federation (1). The newest data can
be found at: https://ecf.com/dashboard. The unit of observation is the cycling counter. Time variation is daily. Coefficients are from Poisson
regressions. Column (1) shows the effect of a kilometer of any bike infrastructure, (2) shows the effect of a kilometer of bike lanes, (3) the
effect of any single measure in a city, and (4) the overall treatment of an implemented pop-up infrastructure program in a city. All regressions
include counter and day fixed effects and controls for overall mobility (measured with Facebook user movements) (4), weather (temperature,
wind, sunshine, precipitation) (7), and the number of counters active on a given day in a city. We cluster standard errors (in parentheses) at
the city level, where treatment is assigned. Significance levels are * p < 0.1, ** p < 0.05, *** p < 0.01.
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M ] @) (4) (6)

Preferred Transit sample Large sample  Transit sample w/o Paris  Large sample w/o Paris
Pop-up treatment 30.183*** 30.170*** 11.197** 34.079*** 15.582%**
(8.855) (8.895) (5.610) (6.729) (3.330)
N 29596 29596 63617 28719 62726

Table S4. Additional robustness checks for our preferred estimate. Each column shows the effect of treatment with pop-up infrastructure
on a city’s cycling count compiled from city APIs. The data on daily pop-up bike lane additions is from the European Cyclists’ Federation
(1). The newest data can be found at: https://ecf.com/dashboard. The unit of observation is the cycling counter. Time variation is daily.
Coefficients are from Poisson regressions. Column (1) shows our baseline estimate including the transit control, (2) shows an estimate in
the same sample as (1) but without the transit control, (3) the effect in the large sample including cities for which the Apple transit variable
does not exist, (4) the same specification as (2) but dropping Paris from the sample, and (5) the same specification as (3) but without Paris.
All regressions include counter, city-week, and country-day fixed effects. They also include controls for overall mobility (measured with
Facebook user movements) (4), weather (temperature, wind, sunshine, precipitation) (7), and the number of counters active on a given day
in a city. We cluster standard errors (in parentheses) at the city level, where treatment is assigned. Significance levels are * p < 0.1, ** p <
0.05, *** p < 0.01.
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(1) &) (3) 4) ®) (6)
Pop-up bike lanes (km) 7.585*** 7.595***
(2.545) (2.538)

Pop-up bike lanes (km per km?) 30.183***  30.170***
(8.855) (8.895)
Pop-up bike lanes (km per capita) 23.295"*  23.362***
(6.124) (6.148)
Temperature 0.229*** 0.231** 0.229*** 0.231*** 0.229*** 0.230***
(0.048) (0.049) (0.048) (0.049) (0.048) (0.049)
Precipitation -0.035***  -0.036***  -0.035***  -0.036***  -0.035***  -0.036***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
UV Radiation 0.158*** 0.158*** 0.159*** 0.159*** 0.159*** 0.159***
(0.023) (0.023) (0.024) (0.024) (0.024) (0.024)
Wind (u component) —0.010 —0.010 —0.011 —0.010 —0.011 —0.011
(0.009) (0.010) (0.009) (0.010) (0.009) (0.010)
Wind (v component) —0.008 —0.008 —0.008 —0.008 —0.007 —0.008
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
Active Counters (day) —0.009 —0.012 —0.010 —0.012 —0.010 —0.012
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
Overall mobility 1.081*** 1.114* 1.076*** 1.109*** 1.073*** 1.105***
(0.108) (0.106) (0.105) (0.102) (0.104) (0.100)
Transit 0.001 0.001 0.001
(0.001) (0.001) (0.001)
Counter FE Y Y Y Y Y Y
City-week FE Y Y Y Y Y Y
Country-day FE Y Y Y Y Y Y
City clusters 18 18 18 18 17 17
N 29,596 29,596 29,596 29,596 29,210 29,210
Pseudo R? 0.932 0.932 0.932 0.932 0.932 0.932

Table S5. Estimates of the average effect of pop-up bike lanes on cycling. Estimates are from the preferred specifications marked in blue
in Figure 3 in the main body (Equation 1). These are Poisson regressions using the level of the cyclist count. The unit of observation is
the bike counter and data varies daily. Treatment is defined in kilometers, km per capita, or km per km? of pop-up infrastructure in service
in a city on a day. Treatment effects are scaled to the mean treatment intensity in the sample. Data for the treatment is from the European
Cyclists’ Federation (1) and data for the outcome is from municipal bike counters (Materials and Methods). All regressions include controls
for the number of active counters in a city on a given day and for the weather (temperature, sunshine, wind, precipitation; all standardized)
(7). All regressions include a control for overall mobility (4). The transit control is from Apple routing requests (3). All regressions include
fixed effects at the counter, city-week, and country-day level. We cluster standard errors (in parentheses) at the city level, where treatment is
assigned. Significance levels are * p < 0.1, ** p < 0.05, *** p < 0.01.
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Fig. S1. Pop-up bike lanes and bicycle counters in Paris. The map shows pop-up bike lanes implemented in Paris as of July 3, 2020 (green lines) and the location
of bike counters (dots) in our data set. The detailed infrastructure data has been collected by a consortium of French NGOs and researchers. It is available at: https:
//carto.parlons-velo.fr/#10.13/48.8312/2.5506
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12 of 16

Sebastian Kraus and Nicolas Koch



15000 -
10000 -
5000-

15000~
10000~
5000~
0-

15000 -
10000~
5000-

0-

15000 -
10000~
5000~

0-

15000~
10000~
5000-
0-

15000 -
10000 -
5000-
0-

15000~
10000~
5000-
0-

15000~
10000~
5000-
0-

Weekly average bike count

15000 -
10000 -
5000-

0-

15000 -
10000~
5000-

15000 -
10000 -
5000-

15000~
10000~
5000-
0-

15000~
10000 -
5000-

15000 -
10000 -
5000-

0-

Aix-en-Provence

Augsburg

PR i (EEENIPINY N o

Bologna

AN e

Dortmund

e e e e

Geneva

N A e o

Heilbronn

M,—N’w

Konstanz

Lille

Milano

P i A

Northampton

Osnabrick

Salzburg

e

Tartu linn

Uppsala

AN TN

Jun 2019 Dez 2019 Jun 2020

Angers

Basel

Bonn

O SV

Dunkerque

Gottingen

h—/”“-‘/\A*\I‘\»J\

Helsinki

—

Kortrijk

P R At S gy

Lucerne

M

Mulheim a.d.Ruhr

M

Nurnberg

AT

Pardubice

e ~——

Sankt Augustin

Toulon

—_— A

Valence

Jun 2019 Dez 2019 Jun 2020

Annecy

NN N

Benidorm

Bucuresti

Erlangen

pr NN A

Guimarées

Hospitalet de Llobregat, L'

—_— e —

La Rochelle

Ludwigsburg

AN AN i

Mulhouse

—————— e —

Oberhausen

Annemasse

O

Bergen

e

Cambridge

[ttt Ve U

Esplugues de Llobregat

—_— —

Hamburg

AN

Innsbruck

M

Le Havre

Lund

———

Miinchen

M

Offenbach am Main

AN S

Praha Rostock
B N
Sindelfingen Stockholm
——— e~ _
Tromsg Trondheim
Vantaa Vasteras
- e e

Jun 2019 Dez 2019 Jun 2020

Jun 2019 Dez 2019 Jun 2020

Arhus

Bern

W

Colmar

Espoo

T A A

Hannover

PNt S VSN

Karlsruhe

/_/V—J"/VW

Leipzig

WW

Luxembourg

Y U

Minster

A AN

Orebro

—e_~

Saint-Brieuc

Tallinn

——A

Tubingen

UV S

Worcester

e~
Jun 2019 Dez 2019 Jun 2020

Aschaffenburg

—

Bilbao

e

Darmstadt

et

Freiburg im Breisgau

W

Heidelberg
f\_\fV"VV\J\I\q\W\/-
Klaipéda
Lens
Manchester
Nice
Oslo
——e
Saint-Denis

Tampere

Turku

Jun 2019 Dez 2019 Jun 2020

Fig. S4. Average bike count per week in control cities. Daily bike counts are aggregated by city and averaged over the week. Bike counts are assembled from municipal open
data feeds. The lower and upper percentiles of the base sample (treated and control cities combined) are removed from the estimation sample. Only measurements from 2019
and 2020 are shown. City definitions are chosen according to the EU Urban Audit (2).

Sebastian Kraus and Nicolas Koch

13 of 16



1.00-

0.75-

0.50 -

Change in cycling

0.25-

0.00- \/\-———W\J

-20 0 20
Days relative to treatment

Fig. S5. Change in daily cycling after the first day of treatment for each city (see Equation 1). The Figure shows the average treatment effect on the treated (ATT) of treatment
with pop-up bike lanes based on the Matrix Completion method (5). We implement Matrix Completion at the counter-day level and include controls for the number of active
counters in a city on a given day and for the weather (temperature, sunshine, wind, precipitation) (7). The lighter grey area shows 95% confidence intervals based on 5000
bootstrap runs clustered at the city level. The sample for this Figure is restricted to 30 days before and after the first treatment day for each counter/city. Note, that estimates are
not converted to % changes. The Figure is implemented with the gsynth package (8).
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Fig. S6. Treatment effect (difference between treated and control cities) in months before and after the beginning of the pop-up bike lane policy. This is the same specification
as shown in Figure 2 in the main body (Equation S2) except for the inclusion of weather controls (7). Observations are binned into months. Treatment for this plot is hard-coded
to March 2020 and the baseline category and the begin of the sample are set to February 2019. Estimates are from Poisson regressions that include city and country-day fixed
effects. The shaded area shows the 95% confidence interval. Data for the outcome variable is from the European Cyclists’ Federation (1) and data for the treatment variable is
from municipal bike counters (Materials and Methods).
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