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Supplementary figure 1 referring to Figure 1. Comparison of d/d HiC scaffolding with
meiotic scaffolding and with WT HiC contacts. A. Current HiC-based assembly (Amex-
G_v6.0DD) properties compared to meiotic linkage map based assembly (Smith et al,
2019). B. Lengths in basepairs of scaffolds and designation as chromosomes as in
(Smith et al, 2019). C. HiC heat map of chromosome 12p made from WT erythrocyte
nuclei. Large structural variants were not found between AmexG_v6.0DD and the WT
erythrocyte data.
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Supplementary figure 2 referring to Figure 2

Supplementary figure 2A, 2B can be found at the end of the Supplement due to
size of the image.

Supplementary figure 2A: Maximum likelihood phylogenetic trees constructed for
HLA codon and protein alignments. The Bootstrap values are shown next to each node of
the tree. Branches were collapsed into triangles base on their position in the tree for easier
interpretation. Colored in red are the sequences that belong to axolotl, while in blue the
sequences that belong to human

Supplementary figure 2B is available as a separate file:

Supplementary figure 2B: Maximum likelihood phylogenetic trees constructed for the
TRIM protein family alignments. The Bootstrap values are shown next to each node of the
tree. Branches were collapsed into triangles base on their position in the tree for easier
interpretation. Colored in red are the proteins that come from the axolotl MHC, while in blue
those proteins that belonged to the TRIM39 clade.
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Supplementary figure 3 referring to Figure 3:

Gene synteny of the axolotl fgf8 regulatory locus.

A. The genomic region surrounding the axolotl fgf8 gene. Fgf8 is marked with a blue arrow
and the TSS is denoted in blue. Conserved gene alignment between Idb1.L to pdzd7 with the
human FGF8 genomic region is observed. The estimated genomic distances between the
Axfgf8 TSS and each gene are denoted.

B. The genomic region surrounding the human FGF8 gene. FGF8is marked with a blue
arrow and the TSS is denoted in blue. The gene annotation was exported from
GRCh37/hg19. The estimated genomic distances between the hsFGF8 TSS and each gene
are denoted.
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Supplementary Figure 4 referring to Figure 4

Expanded genomic region between axolotl Fgf8 and Npom3 contains abundant
repeats. Genome browser visualization of axolotl and human hg38 assemblies with
repetitive element annotation tracks. The axolotl region (upper) contains dense arrays of
diverse repetitive elements while the human region (lower) has sparse repeats.
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Supplementary figure 5 referring to Figure 5: TAD size distribution.

The average TAD size in the human genome is 455 kb, while the average size in the
axolotl genome is 10 times longer 4.8 Mb. The difference is significant (p=0, t-test,
number of TADs -12,360 and 30,226 for human and axolotl, respectively).
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Materials and Methods

Animals and cultured cell lines

Axolotls were maintained in individual aquaria and all animal breedings were undertaken by the IMP
animal facility. All animal handling and surgical procedures were carried out in accordance with local
ethics committee guidelines. Animal experiments were performed as approved by the Magistrate of
Vienna. Animals which have white skin are called d/d strain. All animal surgeries and tissue
amputations were carried out under anesthesia in 0.03% benzocaine (SIGMA).

Axolotl cells (AL1 cell line) were obtained from Dr. David Gardiner at UCI(1, 2). AL1 cells were
maintained under optimized culture conditions. Briefly, AL1 cells were grown at a constant temperature
of 25°C with 2% of CO» in 10%FCS/AMEM (70% volume of DMEM, 10% volume of Fetal Cow
Serum, 100 U of Penicillin-Streptomycin, Glutamin, Insulin) in gelatin-coated flasks.

In situ Hi-C library preparation

Cell preparations from d/d animal embryo

3cm (nose to tail) d/d embryos were kept under starving conditions for 3 days to avoid genomic DNA
contamination from food. After starving, intestines and guts were removed, the remaining parts were
dissected from 10 embryos and washed with 80% diluted PBS (APBS) under the anesthetic conditions.
The dissected pieces were treated with Liberase TM (1:100 dilution Unit) for 30 min with rotation.
Cells were spun down, resuspended into 10%FCS/AMEM. 1x 10° cells were resuspended into 36ml of
10%FCS/AMEM.

Cell preparations from AL1 culture

Culture cells were treated with 1% Trypsin at room temperature for 3 minutes, then Trypsin was
quenched by addition of 10%FCS/AMEM. Cells were spun down and counted. 1x 10° cells were
resuspended into 36ml of 10%FCS/AMEM.

Cell preparations from ALI cell line during mitotic phase

For arresting AL1 cells in mitotic phase, AL1 cells were treated with Thymidine-nocodazole under
culture conditions (3). The condition of two-step drug treatment were tested by analysis of Propidium
iodide staining intensity. In brief, AL1 cells were passaged into flasks at 30% confluency and cultured
for 5 days in normal culture conditions. To arrest in mitotic phase, the culture medium was replaced by
10%FCS/AMEM with supplemental Thymidine (2 mM f. c. (SIGMA)), and the medium was changed
every day during Thymidine treatment. After 72 hours of Thymidine treatment, the medium was
replaced by 10%FCS/AMEM supplemental Nocodazole (4 nM f. c. (SIGMA)) and cultured for 18
hours. After release from nocodazole treatment, the cell cycle arrested cells were detached by shaking
and the supernatant was collected. The cells in the supernatant were spun down (200 x g for 10 min at
room temperature) and resuspend in 10%FCS/AMEM. 5x 10° cells were resuspended into 36ml of
10%FCS/AMEM for Hi-C library preparation.

Hi-C Library preparation

All Hi-C libraries from this paper were generated as described in(4) (5), with the following
modifications. After harvesting the cells in 10% FCS/AMEM they were fixed with formaldehyde (1%
f. c. (Merck)) for 10 minutes at room temperature. The fixation was stopped by adding ice-cold glycine
(125 mM f. c. (SIGMA)). Fixed cells from embryonic samples were strained with a 100 pum cell strainer
to generate single cells, collected by centrifugation (200 x g for 10 min at 4°C), and washed with ice-
cold PBS twice (200 x g for 10 min at 4°C). 1 x 10° cells were collected and incubated in ice-cold lysis
buffer (10 mM Tris—HCI pH 8, 10 mM NacCl, 0.2% Igepal CA-630, 1% Triton-X100, protease inhibitor
cocktail EDTA free) with occasional agitation for 30 min on ice. After centrifugation to pellet the cell
nuclei (250 x g for 10 min at 4°C), nuclei were washed once with 1.25x NEBuffer2 (with HindIII
library) or NEBbuffer3 (with DpnlI library) (NEB). The nuclei were resuspended in 1.25x NEBuffer2
or NEBbuffer3, SDS (0.6% f. c.) was added, and the mixture was incubated with agitation (950 rpm for
2 h at 37°C). Triton X-100 (3.3 % f. c.) was added to quench SDS, and the nuclei were incubated with
agitation (950 rpm for 2 h at 37°C). Restriction digest with HindIII or DnplI (in 1x NEB2.1 or 1x DnplIl
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buffer from NEB; 2,000 U per 0.25 million cells) was performed overnight with agitation (950 rpm at
37°C). Using biotin-14-dATP (Thermo Fisher), dCTP, dGTP, and dTTP, the restriction sites were filled
with Klenow (50 U per 0.5 million cells) for 1 h at 37°C with repeated agitation (700rpm 10 sec and
rest 30 sec for 1 h in a thermal cycler). Ligation was performed overnight at 18°C (2000 U of T4 DNA
ligase). After ligation, crosslinking was reversed by incubation with proteinase K in SDS buffer (50
mM Tris-HCl pH8.0, 1% SDS, 10 mM EDTA) overnight at 65°C. An additional proteinase K
incubation at 65°C for 2 h was followed with RNase A treatment and two sequential phenol/chloroform
extractions. After DNA precipitation, the DNA was spun down (centrifugation with max-speed for
30 min at 4°C). The pellets were resuspended in 20 pl TE and the DNA concentration was determined
using Qubit 2 device (Thermo Fisher). 20 pg of Biotinylated DNA was used for the library preparation.
Biotin from non-ligated fragment ends was removed with T4 DNA polymerase (NEB) for 30 min at
37°C and EDTA was added to stop the reaction (10 mM f. c.). DNA was sonicated using the Covaris
system to generate DNA fragments with a size peak around 400 bp (Covaris S2 settings: duty factor:
10%; peak incident power: 5 ; cycles per burst: 200; time: 60 sec). After end repair with T4 DNA
polymerase and Klenow Large fragment (both from NEB) and T4 DNA polynucleotide kinase (in-
home) in the presence of ANTPs in T4 DNA ligation buffer (for 30 min at room temperature), the DNA
was purified (QIAGEN mini purification kit). A double-size selection using DNA purification beads
(in-home) was performed: First, the ratio of the DNA purification bead (in-home) volume to DNA
sample volume was adjusted to 0.6:1. After incubation for 15 min at room temperature, the sample was
transferred to a magnetic stand, the supernatant was transferred to a new Eppendorf tube, while the
beads were discarded. The ratio of the DNA purification beads solution volume to DNA sample volume
was then adjusted to 0.9:1 final. After incubation for 15 min at room temperature, the sample was
transferred to a magnetic stand. Following two washes with 80% ethanol, the DNA was eluted in Elution
buffer (QIAGEN). Biotinylated ligation products were isolated using pre-washed MyOne Streptavidin
C1 Dynabeads (Life Technologies) on a magnet stand in binding buffer (5 mM Tris pHS, 0.5 mM
EDTA, 1 M NaCl) for 30 min at room temperature. dA-tailing was carried on beads: dATP was added
with Klenow exo- (for 1h at 37°C, NEB), then the enzyme was heat-inactivated (20 min at 65°C). After
two washes in binding buffer and one wash in T4 DNA ligation buffer, Illumina adapters were ligated
onto Hi-C ligation products bound to streptavidin beads in T4 DNA ligase with slowly rotation (for 2 h
at room temperature). After washing twice with wash buffer (5 mM Tris pH 8.0, 0.5 mM EDTA, 1 M
NaCl, 0.05% Tween-20) and then once with binding buffer, the DNA-bound beads were resuspended
in a final volume of 20 ul 1x NEBuffer2. Captured biotinylated Hi-C DNA was amplified with PCR
amplification cycles (with NEBNext® High-Fidelity 2X PCR Master Mix (NEB)). After PCR
amplification, the Hi-C libraries were purified with DNA purification beads. The concentration of the
Hi-C library was determined using fragment analyzer and qPCR, and the Hi-C libraries were paired-
end sequenced at VBCF NGS.

Hi-C data pre-processing

For scaffolding, we generated 16 Hi-C datasets (SAMN15470432- SAMN15470436) from ALI cells
and embryo. The quality of the Hi-C reads was checked using FastQC(6) (v0.11.8). Low quality bases
at the beginning and the end of the reads as well as the retained Illumina adapter sequences were clipped
using Trimmomatic(7) (v0.39) with the following settings:

ILLUMINACLIP:I1lumina.fa:2:20:10 LEADING:20 TRAILING:15
SLIDINGWINDOW:4:20 MINLEN:100

The processed read pairs were mapped and filtered using the HiCUP pipeline(8)(v0.7.1). In order to
increase the number of valid pairs, mapped reads with MAPQ>=30 and the difference between AS and
XS tags more than 10 were considered unique mappers rather than multimappers.

Genome Scaffolding

The high level of repetitiveness of large genomes poses a challenge for Hi—C based scaffolding.
Contact depletion in repetitive regions coupled with sequence biases disturbing the assumed uniform
spread of digest sites throughout the genome result in biases that lead to suboptimal scaffolding. We
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developed an agglomerative hierarchical clustering-based scaffolding approach utilizing various
normalization techniques to overcome these hurdles while also achieving high performance.

The scaffolder can be used in two ways. Fully automated scaffolding of a list of contigs and their
associated contacts. Guided scaffolding, which allows forcing a global structure onto a scaffold, e.g.
reusing an existing scaffolding, but still allowing for local reorderings of the contigs. This can be used
for a final polishing pass on the scaffolds or after contigs have been assigned to an existing scaffold
and placed close to their assumed position in the scaffold.

Normalization encompasses contact repositioning, length normalization and midpoint computation.
Contact repositioning entails the adjustment of the contact positions to the nearest digest site. For
length normalization we employ two strategies resulting in two measures for the effective sequence
length. One dividing the sequence in equally sized bins, with the counts of the bins corresponding to
the number of contacts contained in them. The effective sequence length corresponds to the number of
non-zero bins multiplied by the bin size. The other measure uses the number of active digest sites (i.e.
sites present in the sequence with an actual contact mapping to it) as a proxy for sequence length. The
midpoint, i.e. the middle of the contig, is used to determine the orientation (reverse complement or
not) in relation to other contigs. Here, contact depletion can effectively result in the breakdown of the
assumption that the midpoint corresponds to the length divided by two. To illustrate, imagine a contig,
in which the left half is depleted of repetitive elements, whereas the right half is not. Most contacts
will therefore be located in the left half. If the midpoint is not adjusted, this would result in the contig
preferentially being attached to others at its left side.

The high-level structure of the scaffolding algorithm is as follows:

Pre-processing

Reading of contig sequence lengths from provided fasta or fasta index
Reading of the location of the digest sites

Reading of the contacts and remapping to the closest digest site
Effective sequence length computation based on binning

Midpoint computation

Effective length computation based on digest sites

Build initial scaffold graph (node = contigs, edges = contacts)

Qe e os

Scaffolding (repeated until no more nodes can be joined)
a. Node scoring — for each node compute the most likely node to the left and right
b. Nodes having each other as most likely neighboring nodes are joined into paths. Paths
effectively represent a node in the graph and subsume their contained nodes.
c. Compute effective lengths and midpoints for new nodes (ie. paths)

Post-processing
a. Write final set of paths (i.e. scaffolds)

We created initial clusters based on the linkage map from Smith et al(9). We then added contigs based
on unique assignability to the clusters. This was followed by scaffolding the cluster separately, visual
inspection of an approximate contact map and return of wrongly assigned contigs to the set of
unassigned contigs. We created contact maps for all clusters (effectively a whole genome contact
map) and merged or split clusters based on the signal within those. The process of assigning contigs,
scaffolding, merging and splitting clusters was repeated until no more useful changes could be made
to the clusters.

Genome Error Correction
Due to relatively high residual error rate in the assembled contigs, it was necessary to perform error
correction prior to scaffolding. For this purpose, we generated 5 datasets (2,866,891,596 read pairs,
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965Gb, 30x coverage of the genome) using the DNA from the same animal that was used to generate
the data for the genome assembly(10).

Library preparation for Illumina sequencing

The library preparation was performed using the Westburg NGS DNA library kit (Westburg). The final
library was excised with the Pippin prep with 400bp DNA size. The DNA library was paired-end
sequenced at VBCF NGS.

The quality of the reads was checked using FastQC, low quality bases at either end of each read were
clipped as well as retained Illumina sequencing adapters were clipped with Trimmomatic (v0.39).

ILLUMINACLIP:I1lumina.fa:2:30:10 LEADING:30 TRAILING:20
SLIDINGWINDOW:4:30 MINLEN:50

The DNA reads were aligned to the genome using bowtie2(11) (v.2.3.4.2) with the parameter ‘--very-
sensitive’. Afterwards, the mapped reads were used to correct polymorphisms, indels, small gaps and
local mis-assemblies using Pilon(12) (v1.23).

In the second round of correction, RNA-seq reads (SAMNO06564480-SAMNO06564500 and
SAMN10869061- SAMN10869072) were mapped to the corrected reference using hisat2(13) (v2.1.0)
run with the options ‘--fr --rna-strandness RF’. Since the reads originated from multiple individuals,
only indels and small gaps were fixed, but not polymorphisms.

Annotation

The scaffolded genome was annotated using the bottom-up approach, in which the RNA-seq data was
mapped to the genome to generate gene models. Two different sources of RNA-seq data were used:
stranded (SAMNO06564480-SAMNO06564500 and SAMN 10869061 - SAMN10869072) and unstranded
short Illumina reads (PRINA300706), and long IsoSeq reads generated using the Lexogen Teloprime
kit to ensure that only full-length transcripts were sequenced. The samples were selected to cover as
many different tissues and developmental or regeneration stages as possible.

Illumina reads were mapped to the genome using hisat2(13). Afterwards, StringTie(14) (v2.1.1) was
used to reconstruct the gene models. Next, both assembled transcripts and long PacBio reads were
aligned to the genome using GMAP(15) (v2019-09-12) to generate a combined set of gene models. The
resulting gene models were further merged using StringTie --merge.

The IsoSeq reads are more likely to represent correct full-length transcripts than the transcripts
assembled from short Illumina reads. In turn, stranded RNA-seq data are more likely to generate correct
gene models than unstranded RNA-seq data in case of overlapping transcripts. In order to determine,
which sequence a particular isoform was based on, we additionally introduced a prefix system for
isoform names (but not gene names). Thus, a gene AMEX60DDxxxxx can have isoforms
AMEX60DDpppxxxxx.1, AMEX60DDpppxxxxx.2 and AMEX60DDpppxxxxx.3, where ppp is a
three-digit prefix and xxxxx is the gene ID. Possible values of ppp are listed in Supplementary table 1.
Note that the prefix only appears in the isoform names and all isoforms have the same xxxxx part.

Prefix Meaning

101 The isoform is based on one or more IsoSeq reads

102

103

201 The isoform was reconstructed from stranded RNA-seq data
301 The isoform was reconstructed from unstranded RNA-seq data

Supplementary table 1: Isoform prefixes and their meaning
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The final gene models were annotated using a custom annotation pipeline. In brief, the transcripts were
BLASTed(16) (blastx, e-value cut-off le-10) against the nr database limited to vertebrate GIs and
against the nr database limited to human GIs only. Best homologs from both searches were kept and
used to annotate the transcripts. In case gene symbols from both runs matched, the gene symbol was
kept. Otherwise, the gene was annotated using the following schema: ‘Symbol [nr]ISymbol [hs]’.
Additionally, open reading frames (ORFs) were predicted by extending the homologous alignment to
the left until the left most start codon (if possible) and to the right until the first in-frame terminal codon
(if present). The resulting ORFs were split into 4 broad categories:
1. Putative — full-length ORFs based on homologous alignment.
2. C-terminal, N-terminal, partial — ORFs based on homologous alignment, but lacking the left-
most start codon, the in-frame terminal codon or both, respectively.
3. Enforced — the homologous alignment is present but interrupted by terminal codons. Those
transcripts are likely to represent pseudogenes.
4. Predicted — the transcripts that did not have a homolog but had an ORF longer than 150 amino
acids.

Synteny analysis

We  downloaded the set of gar proteins  (from ftp:/ftp.ensembl.org/pub/release-
102/fasta/lepisosteus_oculatus/pep/Lepisosteus _oculatus.LepOcul.pep.all.fa.gz) and extracted those
that were annotated as protein-coding. Then we downloaded the list of annotated genes
(ftp:/ftp.ensembl.org/pub/release-
102/gft3/lepisosteus_oculatus/Lepisosteus_oculatus.LepOcul.102.gff3.gz). Then we extracted protein-
coding genes from the axolotl genome and ran a two-way blastp with default settings — axolotl against
gar and vice versa. Finally, we identified a subset of 11,677 mutually best hits in both runs and plotted
those genes such that the coordinates in the axolotl are on the X axis, while the coordinates in the gar
are on the Y axis.

The same principle was used to visualize the synteny between the axolotl and the chordate linkage
groups (CLG, Simakov et al, NEE, 2020). The CLG proteins (obtained from Oleg Simakov) were
blasted against the axolotl proteins and vice versa. Finally, 4,938 mutually best hits were plotted, while
different CLGs were colored according to the colors in Simakov et al, 2020. The Jupyter notebook as
well as any additional scripts that were wused for this analysis are available
at https://github.com/labtanaka/schloissnig_axolotl .

TAD prediction
The same Hi-C reads that were previously used for scaffolding were mapped to the scaffolds using
HiCUP pipeline(8). Due to the repetitiveness of the axolotl genome, the default exclusion criteria of the
pipeline were slightly relaxed as described in Hi-C data pre-processing.

The TADs were predicted using Homer(17) (v4.10). In brief, forward and reverse reads were
extracted from the SAM output file of the HICUP pipeline and makeTagDirectory was used to generate
the input for findTADsAndLoops.pl. The script was run for 4 different resolutions as follows:

for RES in 5 20 50 100; do RES KB=S((RES * 1000)); WND=$ ((RES *
3 * 1000)); findTADsAndLoops.pl find . -cpu 24 -res ${RES KB} -
window SWND -keepOverlappingTADs -minTADscore 20000000; done

Due to the size of the TADs it is important to keep overlapping TADs. In order to generate the final set
of TADs, the TADs generated at different resolutions were merged using merge2Dbed.pl, which is
shipped with Homer.

TAD size comparisons
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In order to assess the size difference between the TADs in axolotl and human, TADs were predicted in
both organisms using the same set of parameters described in TAD prediction. The human gene models
were downloaded from Ensebl
(ftp://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/Homo_sapiens.GRCh37.87 .chr.gtf.gz).

The axolotl gene models were annotated as described in Genome annotation. In order to identify
strongly homologous TADs, only putative Axolotl gene models were used. For each human gene, we
first found the smallest TAD that contained that gene. Next, we identified all other genes contained in
the same TAD. Finally, we found homologous axolotl genes based on the gene symbol and identified
the smallest axolotl TAD that contained all or most of those genes.

MHC cluster annotation and synteny analysis

To annotate the axolotl MHC, we first aligned the human MHC(18) (which is delimited from GABBR1
to KIFC1) obtained from the ENSEMBL(19) (Release 100) to the axolotl transcriptome using BLAST
and the e-value threshold 1e-10. Once we identified the region where the axolotl MHC was likely to
be, we aligned all the transcripts obtained from the locus to the human proteome obtained from
ENSEMBL using BLAST and the e-value threshold 1e-10.

To classify some of the proteins whose families have expanded over large distances (MR1 and TRIM
related genes), we obtained a set of orthologous protein sequences for Anolis carolinensis, Mus
musculus, Gallus gallus, Homo sapiens, Lepisosteus oculatus and Danio rerio from ENSEMBL
(Release 100) through the BioMart tool. The sequences for Xenopus tropicalis(20), Nanorana
parkeri(21) and Lithobates catesbeianus(22) were obtained from Xenbase (assembly JGI-10.0), and
NCBI assemblies GCF_000935625.1 and GCA_002284835.2, respectively. We then used the human
proteins as query for BLAST searches with the e-value threshold 1e-10. After this, we aligned the HLA
nucleotide sequences using MACSE (v2.03) aligner(23), while using MAFFT(24) (v7.427) to align the
TRIM39 amino acid sequences.

Phylogenetic trees were generated using IQTree(25) (v1.6.12). For the HLA protein family tree, we
annotated the protein domains using HMMER(26) (v3.2.1) and Pfam(27) (v33.1) as the database, with
the e-value threshold le-5. After we identified the Ig and the MHC-I domains for all the proteins, we
partitioned the analysis for the protein alignment. Finally, we constructed the phylogenetic tree using a
fast-bootstrap of 1000 replicates and the ModelFinder Plus mode to find the most appropriate
substitution model.

For the tripartite motif (TRIM) family, we used the protein alignment produced by MAFFT, however,
we did not make a search for protein domains due to the TRIM protein family being very structurally
diverse. Thus, we created a phylogenetic tree using a fast-bootstrap of 1000 replicates and the
ModelFinder Plus mode to find the most appropriate substitution model.

Identification of axolotl Fgf8 conserved non-coding elements

multiVISTA software (http://www-gsd.lbl.gov/vista/) was used to test the axolotl Fgf8 genomic
sequence. All CNEs of axolotl Fgf8 were tested based upon their conservation score with the reported
human and mouse highly conserved sequences(28). mVISTA was required to have at least 70% identity
over a 100-bp window. The tested genomic sequences surrounding AxfgfS were in the range of chr8q:
630,000,000-660,000,000. The identified genomic coordinates of axolotl Fgf8 CNEs are listed in
Dataset S5.

Generation of transgenic axolotls

Plasmid construction

The plasmid [S-axCNE80-bEGFP was generated by standard PCR procedures and cloning into the IS-
bEGFP vector, which harbors the chicken beta-actin minimal promoter upstream of the coding
sequence. The genomic sequence of axCNE80 was tested by mVISTA program (As explained in 9.
“Identification of axolotl Fgf8 conserved non-cording elements”) and located at chr8q:641,235,321-
641,235,453 (v.6.0-DD assembly). The axCNE80 DNA fragment was amplified by 2xQ5 PCR mix
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(NEB) with the following PCR primers: forward 5’-
GGGgeggecgcATAATAGCGGGTAACGAGAAGTTTCTCTC and reverse 5’-
GGGtctagaTTAACGGTTCTTAAATGTCAAGACGGACC), and cloned into the IS-bEGFP vector
between the Notl and Xbal sites.

I-Scel-mediated transgenesis

IS-axCNES80-bEGFP (AxCNE80-GFP) axolotls were generated by I-Scel meganuclease-mediated
transgenesis, according to previously described methods (29). Briefly: de-jellied one-cell stage d/d
axolotl eggs were each injected with ~5nl of injection mix containing 0.5ng IS-axCNE80-bEGFP and
0.005U I-Scel meganuclease (NEB) diluted in 1X CutSmart buffer (NEB). Injected axolotl eggs were
maintained in 0.1X MMR/tap water at room temperature until initiation of limb bud outgrowth (~15
days after egg laying). Transgenic animals were identified by screening for EGFP fluorescence in the
early limb bud using a Zeiss AXIOzoom V16 stereo microscope. Axolotls were anaesthetized in
benzocaine (Sigma) diluted in tap water prior to imaging. FO transgenic animals were used for IS-
axCNE80-bEGFP experiments. A total of 7 animals showed similar EGFP expression patterns to that
shown in Fig. 4G.

Image acquisition
Images were acquired using a Zeiss AXIOzoom V16 stereo microscope and ZEN software (blue

edition). Images were adjusted for brightness and contrast using Fiji (30) and Adobe Photoshop
software.

HCR in situ hybridization for Axfgf8 mRNA

Whole mount HCR fluorescent in situ hybridization was performed for axolotl limb buds according to
previously published methods (31). The following reagents were purchased from Molecular
Instruments: Fgf8 probes, hybridization buffer, wash buffer, amplification buffer, HCR hairpins. Figf§
probes were coupled with B1 initiator sequences. B1-Alexa 546 h1l and h2 hairpins were used for
signal amplification.

Larvae were fixed overnight (14 to 16 hours) in 4% PFA at 4 degrees, then washed in PBS. Limb
buds were harvested from the fixed larvae, dehydrated in 100% Methanol and stored in 100%
Methanol at -20 degrees until use (2 to 8 weeks).

Prior to staining, samples were progressively rehydrated in 75% Methanol 25% PBST (0.1% v/v
Tween 20), 50% Methanol 50% PBST, 25% Methanol 75% PBST and 100% PBST. Samples were
pre-hybridized in hybridization buffer for 30 minutes at 37 degrees and subsequently hybridized for
14 to 16 hours at 37 degrees in 500ul of hybridization buffer containing 2 pmol of Fgf8 probes.

Four stringent washes were performed at 37 degrees for one hour each in wash buffer, samples were
then washed twice for 30 minutes in 5x SCCT (0.1% v/v Triton X-100) at room temperature. Samples
where then incubated in amplification buffer for 30 minutes at room temperature. H1 and h2 hairpins
were snap cooled separately (90 seconds at 95 degrees and 30 minutes at room temperature) before
adding them to a new aliquot of amplification buffer. Samples were incubated overnight (14 to16
hours) at room temperature in 500ul of amplification buffer containing 30 pmol of h1 and h2 hairpins.
Samples were washed twice for 10 minutes in 5x SCCT, incubated with DAPI (Sigma, #D9542) in 5x
SCCT for 40 minutes and washed again 2 times 30 minutes in 5x SCCT.

Samples were mounted for imaging in 35 mm imaging dishes (Ibidi, #81156) in 5x SCCT. Imaging
was performed using a Zeiss LSM 880 Axio Observer (inverted) with Airyscan (Airyscan fast mode,
excitation wavelength 561nm). Single plane images were adjusted for brightness and contrast using
Fiji (30) and Adobe Photoshop software.
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