

Supplementary Information for

Global warming is causing a more pronounced dip in marine species richness around the equator

Chhaya Chaudhary^{1,2}, Anthony J. Richardson^{3,4}, David S. Schoeman^{5,6}, Mark J. Costello⁷

Institute of Marine Science, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand¹.

School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077².

School of Mathematics and Physics, The University of Queensland, St Lucia, 4072, Queensland, Australia³

CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia 4072, Queensland, Australia⁴

Global-Change Ecology Research Group, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia⁵.

Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Port Elizabeth 6031, South Africa⁶.

The School of Environment, The University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand, and Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway⁷

Chhaya Chaudhary* **Email:** <u>ccha961@aucklanduni.ac.nz;</u> chhayachaudhary44@gmail.com

This PDF file includes:

Figures S1 to S6 Tables S1 to S7 SI References

Figures

Fig. S1. Time series plot of SST (°C) averaged across 5° latitudinal bands in each decade (n= 34). The 25th and 75th percentiles are indicated by the lower and upper boundaries of the boxes, respectively. The black line inside the boxes represents the medians. The points outside the boxes are outliers.

Fig. S2. Comparison of density plots of the extreme latitudes of observation records in three time periods (1955—1974, 1975—1994, 1995—2015) of cosmopolitan species found in both the hemispheres, with (A) their extreme northern latitude and (B) their extreme southern latitude illustrated, and species found predominantly in the (C) northern hemisphere and (D) southern hemisphere. Species were classified as northern and southern, when >=75% of observations fell in one hemisphere or the other; the remaining species were classified as cosmopolitan. Note: this comparison was based on species common to all three time periods.

Fig.S3. Sampling coverage (black dots) in the time period: (A) 1955—1974, (B) 1975—1994 and (C) 1995—2015.

Fig. S4. The latitudinal distribution of species richness in marine taxa at the scale of 5° latitudinal bands based on the GAMs (the effect of Latitude adjusting for shelf area), where the degree of smoothness for each parameter was estimated using generalised cross validation, for (A) All species; (B) Pelagic species; (C) Benthic species; (D-E) organisms in the pelagic environment; and (F-M) organisms living near, on or in the seabed. The shaded region in each graph shows the ±95% confidence envelope for the fit.

Fig. S5. The relationship between species richness and sea surface temperature (SST) based on the GAMs, where the degree of smoothness for each parameter was estimated using generalised cross validation, for (A) All species; (B) Pelagic species; (C) Benthic species; (D-E) organisms in the pelagic environment; and (F-M) seabed associated organisms. The shaded region in each graph shows the ±95% confidence envelope for the fit.

Fig. S6. Latitudinal distribution in species richness using GAMs (the effect of Latitude adjusting for shelf area in each 5° latitudinal band), where the degree of smoothness for each parameter was estimated using generalised cross validation, for (A) All species, (B) Pelagic, and (C) Benthic species in three time periods: 1955—1974 (green), 1975—1994 (purple), and 1995—2015 (red). Shaded regions represent ±95% confidence envelopes for models fit to each of the periods, with shades (from green to red) reflecting progression of time periods from older to more recent.

Study	Taxa (species)	Region	Explanation
Rex et al. (1)	Deep-sea benthos (97 enibenthic sled samples)	Atlantic	Seasonal sinking of organic matter (availability of food)
Bolton (2)	Seaweeds (> 1 700)	Global	Climate and historical events
Flessa and Jablonski (3)	Bivalves (600 genera)	Global	Mass extinction
Roy et al (A)	Marine prosobranch	Western Atlantic	Sea surface temperature
	astropode (3.916)	and eastern	(SST)
	gastropous (3,910)	Pacific Ocean	(551)
		from the tropics	
		to the Arctic	
Rutherford et al. (5)	Planktonic foraminifers (33)	Global	Temperature variation with
		Clobal	depth
Rov et al. (6)	Bivalves (930)	North-eastern	SST
		Pacific marine	
		shelf	
Crame (7)	Marine bivalves (29)	Global (shallow	Productivity
		water)	,
Rex et al. (8)	Deep-sea benthos (isopods.	North Atlantic	Seasonal sinking of organic
	gastropods, and bivalves) (93)		matter (availability of food)
Culver and Buzas (9)	Benthic foraminifera (< 25)	Atlantic Ocean	Ecological and historical
		(Norwegian Sea	factors related to food supply
		to the Weddell	
		Sea)	
Willig (10)	Crustaceans, molluscs, corals,	The coastal	Geographic area,
	brachiopods, foraminifers,	areas of North	evolutionary speed, Rapoport
	vascular plants, mammals,	and South	effect, and geographic
	birds, reptiles, amphibians,	America	constraint
	fish, tunicates (review)		
Macpherson (11)	Fish and invertebrates (6,643)	Atlantic Ocean	SST (best predictor for
			benthic taxa) and nitrate
			concentration (pelagic taxa)
Woodd-Walker et al. (12)	Copepod diversity (47 genera)	Atlantic Ocean	Temporal patterns of primary
			and secondary production
Connolly et al. (13)	Reef corals (727) and	IWP	Geographic constraints,
	associated reef fish (1,766)		environmental variables,
			speciation, and extinction
Mora et al. (14)	Reef fish (1,970)	Indian and	Dispersal
		Pacific oceans	
Valdovinos et al. (15)	Marine molluscs (629)	Pacific South	Shelf area
C_{add} at al. (16)	Cumanan (22E)	American shelf	Diagoography
Witmon et al. (17)	Marina banthia communities (Clobal	Coloniaction
		Giubai	Coloriisation
Gratwicke and Speight	Caribbean fish (530)	South shore of	Habitat complexity
(18)	Calibbean IIsh (550)	Tortola	
Rex et al. (19)	Benthic molluscs (189)	Global	Nutrient input
Worm et al. (20)	Tuna and bill fish (145)	Global	Thermoregulation dissolved
		Ciobai	oxygen and temperature
Bravard et al. (21)	Foraminifers (33)	Atlantic Ocean	SST and sea surface current
Dolan et al. (22)	Tintinnids (30)	Global	Food resources
Kerswell (23)	Benthic marine micro algae	Global	Competition among corals
(),	and Bryopsidales (191)		and variation in speciation
			and extinction
Fuhrman et al. (24)	Planktonic marine bacteria	Global (57	SST
	(103 samples, 1,129	locations,	
	genotypes)	coastal and	
		deep sea)	
Rombouts et al. (25)	Marine copepod diversity (~70)	Global	Ocean temperature, salinity,

Table S1. Examples of explanations given for the latitudinal gradients in marine species richness in the literature, listed chronologically.

Tittensor et al. (26)	Fish and sharks (coastal and oceanic), cephalopods, corals, pinnipeds, euphausiids, foraminifers, cetaceans, mangroves (11,567)	Global	and energy (Chlorophyll a) SST
Kaschner et al. (27)	Marine mammals (115)	Global	Global warming (temperature)
Beaugrand et al. (28)	Foraminifers and copepods (~70)	Global	Thermal tolerance and fluctuation in temperature and season, Mid Domain Effect (MDE), and niche space
Saeedi et al. (29)	Solenidae (~60)	Global	ŠST

Table S2. Information on the full GAM models for Figure 1.

Group	Model summary	Plots	
All	<pre>Family: Negative Binomial(17.38) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	15000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 10000 - 10000 - 10000 - 10000 - 10	20000 5000 5000 0 1000000 5000 0 1000000 5000
Pelagic species	<pre>Family: Negative Binomial(30.955) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	2500 - 2000 - 30	2500 - 500 - 1500 - 1500 - 0 1000000 2000000 3000000 ShelfArea

Benthic species	<pre>Family: Negative Binomial(13.164) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	12000 10000 10000 2000 0 -50 0 50 Latitude	20000 5000
Pelagic chordates	<pre>Family: Negative Binomial(102.859) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	$\begin{bmatrix} 1000 & - & & & & \\ 800 & - & & & \\ 900 & - & & & \\ 200 & - & & & \\ 0 & - & & & \\ -50 & 0 & 50 \\ \\ Latitude \end{bmatrix}$	1200 - 1000 - 1000000 2000000 3000000 600 - 1000000 2000000 3000000 ShelfArea

Bathypelagic fish	<pre>Family: Negative Binomial(66.802) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	$\begin{bmatrix} 600\\500\\400\\200\\100\\0\\-50\\0\\50\\Latitude \end{bmatrix}$	800 700 600 400 300 0 1000000 ShelfArea
Bathydemersal fish	<pre>Family: Negative Binomial(10.303) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	700 600 500 400 200 100 0 -50 0 Latitude	1000 - 800 - 400 - 200 - 0 1000000 2000000 3000000 ShelfArea

Demersal fish	<pre>Family: Negative Binomial(20.49) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	$2000 - \frac{1500}{500} - \frac{1000}{500} - \frac{1000}{50} - \frac{1000}{50$	5000
	Approximate significance of smooth terms: edf Ref.df Chi.sq p-value s(Latitude) 8 8 1039 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.932 Deviance explained = 97% -REML = 212.09 Scale est. = 1 n = 34	Latitude	ShelfArea
Reef-associated fish	<pre>Family: Negative Binomial(44.303) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	2500 2000 3000 3000 500 -50 0 -50 500 -50 500	5000 - 4000 - 3000 - 1000 - 1000 - 0 500000 1500000
	Approximate significance of smooth terms: edf Ref.df Chi.sq p-value s(Latitude) 8 8 1562 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.97 Deviance explained = 99% -REML = 160.1 Scale est. = 1 n = 28	Latitude	ShelfArea

Benthic chordates	<pre>Family: Negative Binomial(8.386) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	$\begin{array}{c} 6000 \\ 5000 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	20000
	Approximate significance of smooth terms: edf Ref.df Chi.sq p-value s(Latitude) 8 8 626.9 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.879 Deviance explained = 93.5% -REML = 258.51 Scale est. = 1 n = 35	Latitude	ShelfArea
Benthopelagic fish	<pre>Family: Negative Binomial(13.414) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	350 250 250 150 100 50 -50 0 Latitude	500
	-REML = 143.94 Scale est. = 1 n = 30		

Bivalves	<pre>Family: Negative Binomial(8.783) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	800 - 600	$\begin{array}{c} & & \\$
Gastropods	<pre>Family: Negative Binomial(5.844) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients: Estimate Std. Error z value Pr(> z) (Intercept) 5.671e+00 2.314e-01 24.506 <2e-16 *** ShelfArea 3.492e-07 2.388e-07 1.462 0.144 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Approximate significance of smooth terms: edf Ref.df Chi.sq p-value s(Latitude) 8 8 267.6 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 R-sq.(adj) = 0.737 Deviance explained = 88.5% -REML = 239.23 Scale est. = 1 n = 35</pre>	2500 2000 1500 500 0 -50 0 Latitude	4000 3500 3000 522500 1000 500 1000 500 100000 500 100000 500 5

Group			Parametric	coefficients	Rsq.(adj)	-REML	Deviance explained	n
	Estimate	Std.Error	Z value	Chi. sq			•	
All Species	7.87	0.08	92.4	151.0	0.863	297.6	77.8%	35
Pelagic species	5.81	0.07	73.1	182.2	0.889	224.4	79.7%	35
Benthic species	7.81	0.07	107.5	175.2	0.839	175.2	81.6%	34
Bathydemersal fish	5.45	0.06	88.53	119.8	0.619	142.6	81.9%	25
Demersal fish	6.22	0.06	95.44	350.8	0.843	170.0	91.7%	26
Reef associated fish	6.08	0.09	66.96	221.4	0.836	142.9	91.5%	22
Benthic Chordates	7.01	0.05	128.3	362.4	0.858	220.5	91.6%	30
Benthopelagic fish	4.73	0.08	56.97	69.4	0.622	110.7	84.2%	22
Bivalves	5.51	0.06	81.77	118.4	0.611	189.9	77.5%	32
Gastropods	6.31	0.07	85.45	134.4	0.707	225.2	79.1%	33
Benthic arthropods	6.76	0.07	88.61	75.0	0.671	248.3	66.0%	34
Pelagic Chordates	5.71	0.07	73.26	200.8	0.887	221.0	80.8%	35
Bathypelagic fish	5.60	0.04	113.5	260.8	0.799	141.7	91.2%	25

Table S3. Summary of GAM results obtained from the model of species richness as a function of SST (Figure 2). All models were significant with P < 2e-16, edf = 4, Ref.df = 4, scale estimate = 1.

	Table S4	Information or	the full	GAM models	for Figure	3.
--	----------	----------------	----------	------------	------------	----

Group	Period	Model summary	Plots	
All species	1955- 1974	<pre>Family: Negative Binomial(17.398) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	7000	8000
		R-sq.(adj) = 0.79 Deviance explained = 94.6% -REML = 280.08 Scale est. = 1 n = 35	Lande	oneinnea
All species	1975- 1994	<pre>Family: Negative Binomial(12.922) Link function: log Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	$ \begin{array}{c} 8000 \\ 8000 \\ 9 \\ 9 \\ 9 \\ 4000 \\ 2000 \\ 0 \\ -50 \\ 10 \\ 50 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	12000

All	1995-			
species	2015	Family: Negative Binomial(6.043)		14000 -
•		Link function. log	8000 -	12000 -
		Formula:	v 6000 -	w10000 -
		Richness ~ s(Latitude, $k = 9$, $fx = T$) + ShelfArea		
		Parametric coefficients:	· 특 4000 -	5 8000 7
		Estimate Std. Error z value Pr(> z)		∝ 6000 -
		(Intercept) 7.227e+00 2.190e-01 32.993 <2e-16 ***	2000 -	4000 -
		ShelfArea 3.860e-07 2.267e-07 1.703 0.0886 .		2000 -
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	0 - [
		Approximate significance of smooth terms:	-50 0 50	0 1000000 2000000 3000000
		edf Ref.df Chi.sq p-value	Latitude	ShelfArea
		s(Latitude) 8 8 224.8 <2e-16 ***	Lainude	SheliAlea
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1		
		R-sq.(adj) = 0.746 Deviance explained = 85.7%		
		-REML = 293.59 Scale est. = 1 n = 35		
Pelagic	1955-	Family: Negative Binomial(12,064)		2500 -
species	1974	Link function: log	1500 -	2500 -
		<u> </u>	\land	2000 -
		Formula:	88 1000 I	S 2000
		Richness ~ s(Latitude, $k = 9$, $fx = T$) + ShelfArea		ب ب 1500 –
				Ĭ
		Parametric coefficients:	500 -	1000 -
		$(\text{Intercent}) = 5.875 \pm 0.01 + 610 \pm 0.01 + 36.497 < 2 \pm -16 + **$		
		ShelfArea 2.099e-07 1.664e-07 1.261 0.207	0 - 1	
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0	1 -50 0 50	0 100000 200000 300000
		Approximate significance of smooth terms:	Latitude	ShelfArea
		edf Ref.df Chi.sa p-value		
		s(Latitude) 8 8 398 <2e-16 ***		
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0	1	
		R-sq.(adj) = 0.834 Deviance explained = 92.1%		
		-REML = 233.42 Scale est. = 1 n = 35		

Pelagic	1975-				
species	1994	Family: Negative Binomial(18.16)	1500 -		1000
000000	1001	Link function: log	1500		
		Formula	<i>(</i>)		
		Richness ~ s(latitude, $k = 9$, $fx = T$) + ShelfArea	ő 1000 –		800 – 008 X
		Realiness scenerade, k s, ik ij i snerinked	ĥ		Ē
		Parametric coefficients:	Ric		. <u>0</u>
		Estimate Std. Error z value Pr(> z)	_ 500 -		- 800 -
		(Intercept) 5.893e+00 1.346e-01 43.770 <2e-16 ***			
		ShelfArea 8.915e-08 1.391e-07 0.641 0.522			400 -
			0 -		
		Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1			
		Approximate significance of smooth terms:		-50 0 50	0 100000 200000 300000
		edf Ref. df (hi sa p-value		Latitudo	ShelfArea
		s(Latitude) 8 8 574.1 <2e-16 ***		Lainude	SheliAlea
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1			
		R-sq.(adj) = 0.896 Deviance explained = 94.6%			
		-REML = 225.83 Scale est. = 1 n = 35			
Pelagic	1995-	Family: Negative Binomial(12 523)	1200 -		
species	2015	Link function: log	1000		
			1000 -		800 -
		Formula:	x 800 -		so ooo
		Richness ~ s(Latitude, $k = 9$, $fx = T$) + ShelfArea	nes		
		Denemetrie coefficiente:	등 600 -		- ⁶⁰⁰ –
		Parametric coefficients:	<u>د</u> 400 –		Ē
		(Intercent) = 5.627e+00 = 1.579e-01 = 35.643 < 2e-16 ***	100		400 -
		ShelfArea 2.014e-07 1.631e-07 1.235 0.217	200 –		
			0 -		200 -
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	0 1		
				-50 0 50	0 1000000 2000000 3000000
		Approximate significance of smooth terms:			
		eat ket.at Lhi.sq p-value c(latituda) = 8 = 8 = 282.6 = -26 = 16 ***		Latitude	ShelfArea
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1			
		R-sq.(adj) = 0.824 Deviance explained = 89.1%			
		-REML = 224.82 Scale est. = 1 n = 35			

Benthic	1955-	Family: Negative Binomial(13.623)	4000 -	7000
species	1974	Link function: log	4000	7000 -
		Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea	3000 -	6000 – Se 5000 –
		Parametric coefficients: Estimate Std. Error z value Pr(> z) (Intercept) 7.111e+00 1.493e-01 47.625 <2e-16 ***		2000 - 3000 -
		SHELTAREA 1.3610-07 1.5450-07 0.881 0.378 		2000 -
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	0 -1	
		Approximate significance of smooth terms:	-50 0 50	0 1000000 2000000 3000000
		s(Latitude) 8 8 607.3 <2e-16 ***	Latitude	ShelfArea
		Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1		
		R-sq.(adj) = 0.755 Deviance explained = 93.6% -REML = 273.04 Scale est. = 1 n = 35	_	
Benthic	1975-	Family: Negative Binomial(9.041)	8000	14000
species	1994	Link function: log	6000	12000 -
		Formula: Richness ~ s(latitude, k = 9, fx = T) + ShelfArea		م الم الم الم الم
			Ĕ 4000 −	e 8000 –
		Parametric coefficients: Estimate Std. Error z value Pr(> z)		·푼 6000 -
		(Intercept) 7.046e+00 1.801e-01 39.115 <2e-16 *** ShelfArea 4.343e-07 1.864e-07 2.331 0.0198 *	2000 -	4000 -
		 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	0	
		Approximate significance of smooth terms:	-50 0 50	0 1000000 2000000 3000000
		edf Ref.df Chi.sq p-value s(Latitude) 8 8 435.3 <2e-16 ***	Latitude	ShelfArea
		 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1		
		R-sq.(adj) = 0.808 Deviance explained = 91.9% -REML = 284.46 Scale est. = 1 n = 35		

Benthic species	1995- 2015	Family: Negative Binomial(4.733) Link function: log	8000 -	15000 -	
		<pre>Formula: Richness ~ s(Latitude, k = 9, fx = T) + ShelfArea Parametric coefficients:</pre>	8 6000 - 4000 - 2000 - 0 -	Source - Sou	
		Approximate significance of smooth terms: edf Ref.df Chi.sa p-value	-50 0 50		0 1000000 2000000 3000000
		s(Latitude) 8 8 217.2 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	Latitude		ShelfArea
		R-sq.(adj) = 0.722 Deviance explained = 84.4% -REML = 288.28 Scale est. = 1 n = 35			

Group	Phylum	Number of species	Number of records
Benthic species	Annelida	3,811	320,119
	Arthropoda	9,070	556,465
	Brachiopoda	30	1,330
	Bryozoa	676	32,466
	Cephalorhyncha	43	75
	Chaetognatha	6	9
	Chordata	11,046	2,830,730
	Actinopteri	9,299	2,502,226
	Ascidiacea	864	34,256
	Coelacanthi	1	20
	Elasmobranchii	786	268,787
	Holocephali	39	22,672
	Mammalia	2	2,001
	Myxini	38	563
	Petromyzonti	4	119
	Reptilia	13	86
	Cnidaria	3,262	116,104
	Ctenophora	6	37
	Echinodermata	2,950	132,509
	Entoprocta	13	129
	Gastrotricha	36	51
	Gnathostomulida	5	5
	Hemichordata	28	260
	Mollusca	9,810	323,838
	Nematoda	889	12,136
	Nemertea	63	1,941
	Platyhelminthes	37	655
	Porifera	1,393	51,726
	Rotifera	9	259
	Sipuncula	30	5,907
	Tardigrada	22	37
	Xenacoelomorpha	14	14
Pelagic species	Annelida	107	10,009
	Arthropoda	2,163	570,658
	Chaetognatha	56	50,777

Table S5. Summary of the number of species and records in each phylum grouped as Benthic and Pelagic. The words in italics represent classes of Chordates. For detailed information, metadata are available at https://figshare.com/s/befed3d16821d8bf1c11.

Pelagic species	Chordata	2,392	1,777,118
	Actinopteri	1,905	619,610
	Appendicularia	21	8,395
	Ascidiacea	1	1
	Aves	317	872,822
	Elasmobranchii	12	10,055
	Leptocardii	7	1,064
	Mammalia	77	243,098
	Reptilia	6	19,635
	Thaliacea	46	2,438
	Cnidaria	194	25,753
	Ctenophora	28	3,905
	Mollusca	466	92,445
	Rotifera	6	189

Table S6. The number of species, and observation records in All species, Pelagic species, and Benthic species) in the three time periods.

Group	1955-1974	1975-1994	1995-2015
All Species			
Number of species	23,817	29,738	26,943
Number of records	568,554	2,736,154	3,534,959
Pelagic species			
Number of species	3,615	3,561	3,100
Number of records	233,711	947,201	1,319,885
Benthic species			
Number of species	20,202	26,177	23,843
Number of records	334,843	1,788,953	2,215,074

Table S7. Summary of models with Poisson and binomial error structures for Richness as the response and Latitude as the predictor for All species (*Number of species* ~ s(Latitude, k = 9); n = 35).

Error structur e	R ² (adj.)	Deviance explained (%)	AIC	Residual plots
Family: Poisson Link function: log	0.89	93.5	7021.04 (edf = 8)	Resids vs. linear pred.
				Histogram of residuals Response vs. Fitted Values
				Leader -20 0 20 40 -20 0 20 0 0 -20 0 -
5 1	0.00	00.5	040.44	Residuals Fitted Values
Family: Negative binomial Link function: log	0.86	93.5	618.44 (edf = 8)	deviance residuals deviance residuals residuals residuals -2 -5 -0 -5 -5 -2 -5 -2 -5 -5 -5 -5 -5 -5 -5 -5
				theoretical quantiles linear predictor
				Histogram of residuals Response vs. Fitted Values
				H_{-2}^{c} H_{-2}^{c
				Residuals Fitted Values

References

- Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., & Wilson, G. D. (1993). Global-scale latitudinal patterns of species diversity in the deep-sea benthos. *Nature*, *365*(6447), 636.
- Bolton, J. (1994). Global seaweed diversity: Patterns and anomalies. *Botanica Marina*, 37(3), 241-246.
- 3. Flessa, K. W., & Jablonski, D. (1995). Biogeography of recent marine bivalve molluscs and its implications for paleobiogeography and the geography of extinction: A progress report. *Historical Biology: An International Journal of Paleobiology, 10*(1), 25-47.
- 4. Roy, K., Jablonski, D., Valentine, J. W., & Rosenberg, G. (1998). Marine latitudinal diversity gradients: Tests of causal hypotheses. *Proceedings of the National Academy of Sciences*, *95*(7), 3699-3702.
- Rutherford, S., D'Hondt, S., & Prell, W. (1999). Environmental controls on the geographic distribution of zooplankton diversity. *Nature*, 400(6746), 749-753.
- Roy, K., Jablonski, D., & Valentine, J. W. (2000). Dissecting latitudinal diversity gradients: Functional groups and clades of marine bivalves. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 267(1440), 293-299.
- 7. Crame, J. A. (2000). The nature and origin of taxonomic diversity gradients in marine bivalves. *Geological Society, London, Special Publications, 177*(1), 347-360.
- Rex, M. A., Stuart, C. T., & Coyne, G. (2000). Latitudinal gradients of species richness in the deepsea benthos of the North Atlantic. *Proceedings of the National Academy of Sciences*, 97(8), 4082-4085.
- 9. Culver, S. J., & Buzas, M. A. (2000). Global latitudinal species diversity gradient in deep-sea benthic foraminifera. *Deep Sea Research Part I: Oceanographic Research Papers*, *47*(2), 259-275.
- 10. Willig, M. R. (2001). Latitude, common trends within. Encyclopedia of Biodiversity (3), 701-714.
- 11. Macpherson, E. (2002). Large–scale species–richness gradients in the Atlantic Ocean. Proceedings of the Royal Society of London B: Biological Sciences, 269(1501), 1715-1720.
- Woodd-Walker, R. S., Ward, P., & Clarke, A. (2002). Large-scale patterns in diversity and community structure of surface water copepods from the Atlantic Ocean. *Marine Ecology Progress Series*, 236, 189-203.
- 13. Connolly, S. R., Bellwood, D. R., & Hughes, T. P. (2003). Indo-Pacific biodiversity of coral reefs: Deviations from a mid-domain model. *Ecology*, *84*(8), 2178-2190.
- 14. Mora, C., Chittaro, P. M., Sale, P. F., Kritzer, J. P., & Ludsin, S. A. (2003). Patterns and processes in reef fish diversity. *Nature*, *421*(6926), 933-936.
- 15. Valdovinos, C., Navarrete, S. A., & Marquet, P. A. (2003). Mollusk species diversity in the Southeastern Pacific: Why are there more species towards the pole? *Ecography*, *26*(2), 139-144.
- Gage, J. D., Lambshead, P. J. D., Bishop, J. D., Stuart, C. T., & Jones, N. S. (2004). Large-scale biodiversity pattern of Cumacea (Peracarida: Crustacea) in the deep Atlantic. *Marine Ecology Progress Series*, 277, 181-196.
- 17. Witman, J. D., Etter, R. J., & Smith, F. (2004). The relationship between regional and local species diversity in marine benthic communities: A global perspective. *Proceedings of the National Academy of Sciences*, *101*(44), 15664-15669.
- 18. Gratwicke, B., & Speight, M. R. (2005). Effects of habitat complexity on Caribbean marine fish assemblages. *Marine Ecology Progress Series*, 292, 301-310.
- Rex, M. A., Crame, J. A., Stuart, C. T., & Clarke, A. (2005). Large-scale biogeographic patterns in marine mollusks: A confluence of history and productivity? *Ecology*, *86*(9), 2288-2297.
- Worm, B., Sandow, M., Oschlies, A., Lotze, H. K., & Myers, R. A. (2005). Global patterns of predator diversity in the open oceans. *Science*, *309*(5739), 1365-1369.
- Brayard, A., Escarguel, G., & Bucher, H. (2005). Latitudinal gradient of taxonomic richness: Combined outcome of temperature and geographic mid-domains effects? *Journal of Zoological Systematics and Evolutionary Research*, 43(3), 178-188.
- Dolan, J. R., Lemee, R., Gasparini, S., Mousseau, L., & Heyndrickx, C. (2006). Probing diversity in the plankton: Using patterns in Tintinnids (planktonic marine ciliates) to identify mechanisms. *Hydrobiologia*, 555(1), 143-157.
- Kerswell, A. P. (2006). Global biodiversity patterns of benthic marine algae. *Ecology*, 87(10), 2479-2488.
- Fuhrman, J. A., Steele, J. A., Hewson, I., Schwalbach, M. S., Brown, M. V., Green, J. L., & Brown, J. H. (2008). A latitudinal diversity gradient in planktonic marine bacteria. *Proceedings of the National Academy of Sciences*, 105(22), 7774-7778.
- Rombouts, I., Beaugrand, G., Ibaňez, F., Gasparini, S., Chiba, S., & Legendre, L. (2009). Global latitudinal variations in marine copepod diversity and environmental factors. *Proceedings of the Royal Society of London B: Biological Sciences*, 276, 3053–3062.

- 26. Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. *Nature*, *4*66(7310), 1098-1101.
- 27. Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T., & Worm, B. (2011). Current and future patterns of global marine mammal biodiversity. *PLOS ONE*, *6*(5), e19653.
- 28. Beaugrand, G., Rombouts, I., & Kirby, R. R. (2013). Towards an understanding of the pattern of biodiversity in the oceans. *Global Ecology and Biogeography*, 22(4), 440-449.
- 29. Saeedi, H., Dennis, T. E., & Costello, M. J. (2017a). Bimodal latitudinal species richness and high endemicity of razor clams (Mollusca). *Journal of Biogeography*, *44*(3), 592-604.