Supplementary Information for

Structural Basis for GTP-induced Dimerization and Antiviral Function of Guanylate-binding Proteins

Wen Cui[#], Elisabeth Braun[#], Wei Wang[#], Jinhong Tang[#], Yanyan Zheng[#], Benjamin Slater, Na Li, Cheng Chen, Qingxiang Liu, Bin Wang, Xiu Li, Yinkai Duan, Yunjie Xiao, Ruijiao Ti, Dominik Hotter, Xiaoyun Ji, Lei Zhang, Jun Cui, Yong Xiong, Daniel Sauter^{*}, Zefang Wang^{*}, Frank Kirchhoff^{*}, Haitao Yang^{*}.

*corresponding authors **Email:** yanght@shanghaitech.edu.cn; frank.kirchhoff@uni-ulm.de; zefangwang@tju.edu.cn; daniel.sauter@med.uni-tuebingen.de

This PDF file includes:

Figures S1 to S7 Tables S1 to S2

Fig. S1. Structural comparison of the monomeric state of hGBP5₁₋₄₈₆ and hGBP1^{FL}.

A) Superposing the structures of hGBP5₁₋₄₈₆ (blue) with hGBP1^{FL} (PDB: 1DG3, yellow and grey) based on LG domain shows a swing of MD around the hinge region by 30°. The GED of hGBP1^{FL} is shown in grey surface. The frame indicates region shown in more detail in panel B). B) The interface between LG domain and MD is shown.

Fig. S2. Mutation R356A does not affect the ability of hGBP5 to reduce furin activity, HIV-1 Env processing or HIV-1 particle infectivity.

A) Western blot analysis of HIV-1 Env and Gag in cells and viral particles when HEK293T cells were co-transfected with an HIV-1 proviral construct and various GBPs (upper panel). The C588A and C583A variants represent previously characterized isoprenylation-deficient mutants of hGBP2 and hGBP5, respectively, that fail to restrict HIV-1 (1). They were included as negative controls. Green arrows indicate an increase of unprocessed Env (gp160) in viral particles. Orange arrows indicate a reduced apparent molecular weight of mature processed Env (gp120) in the presence of some GBP variants. The ratio of mature gp120 to total Env in viral particles was quantified and is shown below a representative western blot as well as the mean of three independent experiments (lower panel). B) Infectious HIV-1 yield in the presence of various GBPs was measured by infection of TZM-bl reporter cells and normalized to the amount of HIV-1 capsid (p24) to calculate particle infectivity. C) Furin activity was measured by Pyr-Arg-Thr-Lys-Arg-7-amino-4-methylcoumarin (AMC) cleavage assay upon co-expression with various GBPs.

Fig. S3. Structural comparison of the LG domains in hGBP5₁₋₄₈₆ dimer and that in hGBP5^{LG} dimer.

A) Two regions at the LG domain which are stabilized by interacting with the MD from the pairing molecule (green) are shown in yellow. B) Superposing the structures of the LG domains in hGBP5₁₋₄₈₆ dimer (orange and green) and hGBP5^{LG} dimer (gray) shows that they are highly similar.

Fig. S4. Effects of mutations in the catalytic core on the GTPase activity of hGBP5. GTPase activity of WT and mutant hGBP5 were determined as previously described (2). The assays were performed in triplicate, with mean values and standard deviations plotted. Unpaired t-test was performed between WT and each of hGBP5 mutants. "***" indicates p<0.001 and "ns" indicates p>0.05.

С

MDDM-C MDDM-F MDDM-A MDDM-B MDDM-D MDDM-E K466 S465 K464 90 S465 E417 S468 H471 K421 V469 S468 E417 K466 N V469 Q475 T476 H471 Q475 T476 9 0 K421 1 1 1 1 1 A479 A479 ø) 1 1 È 1

Fig. S5. Sequence alignment of hGBP1/2/5 with mutations in different domains marked. A) Protein sequence alignment of hGBP1, hGBP2 and hGBP5. Dashes indicate gaps that were introduced to improve the alignment. LG domain, hinge region, MD and GED are shaded in blue, green, yellow/orange and grey, respectively. Mutants generated and analyzed in this study are highlighted by symbols below the alignment and listed. B) and C) Positions of mutated residues are shown as spheres in the three-dimensional structure of hGBP5.

A) Western blot analysis of the expression of all GBPs. HEK293T cells were co-transfected with an HIV-1 proviral construct and various GBPs. The C588A and C583A variants represent previously characterized isoprenylation-deficient mutants of hGBP2 and hGBP5, respectively, that fail to restrict HIV-1. They were included as negative controls. B) Infectious HIV-1 yield in the presence of various GBPs. It was determined by infection of TZM-bl reporter cells and normalized to the amount of HIV-1 capsid (p24) to calculate particle infectivity. Mean values of four to seven independent experiments are shown.

Fig. S7. Crystal Structure of hGBP2^{FL} in nucleotide-free state and a model of hGBP2^{FL} in nucleotide-bound state.

A) The crystal structure of hGBP2^{FL} in its nucleotide-free state. LG domain, hinge region, MD and GED are depicted in pink, orange, green and blue, respectively. B) A model of hGBP2^{FL} in its nucleotide-bound state based on the crystal structure of hGBP5₁₋₄₈₆ in complex with GDP·AIF₃.

		hGBP5 ₁₋₄₈₆ -	hGBP5 ^{LG} -	
	hGBP5 ₁₋₄₈₆	GDP·AlF ₃	GDP·AlF ₃	hGBP2 ^{FL}
Data Collection				
Space group	P22121	P3221	P212121	P212121
Cell Dimensions				
a, b, c (Å)	90.9, 137.3, 203.3	114.3, 114.3, 168.5	65.3, 79.3, 140.2	42.2, 124.2, 355.7
a, b, c (°)	90.0, 90.0, 90.0	90.0, 90.0, 120.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0
Resolution (Å)	50.00-3.00	50.00-2.50	50.00-2.28	50.00-2.60
	(3.05-3.00)	(2.54-2.50)	(2.32-2.28)	(2.64-2.60)
Unique reflections	52289(2595)	44229(2199)	33591(1654)	55672(2117)
Completeness (%)	100.0(100.0)	98.7(98.6)	100.0(100.0)	92.4(70.8)
R _{merge}	0.127(1.883)	0.123(1.294)	0.221(1.758)	0.151(1.325)
Ι/σΙ	18.0(1.1)	16.9(1.5)	10.3(1.0)	10.6(1.3)
CC _{1/2}	0.998(0.592)	0.983(0.639)	0.999(0.634)	0.998(0.591)
Redundancy	9.1(9.0)	9.1(7.9)	12.7(12.6)	7.4(7.2)
Refinement				
Resolution (Å)	48.22-3.00	49.48-2.50	47.79-2.28	46.78-2.60
Number of reflections	51718	44127	33531	55160
R_{work}/R_{free}	0.220/0.260	0.211/0.250	0.211/0.258	0.255/0.271
Number of Atoms				
Protein	13005	7370	4033	8838
Ligand/ion	0	66	66	0
Water	0	110	230	37
B-factors				
Protein	107.85	85.30	45.65	71.83
Ligand/ion	-	52.38	39.65	-
Water	-	61.23	47.82	56.98
RMSDs				
Bond lengths (Å)	0.002	0.003	0.009	0.002
Bond angles (°)	0.44	0.64	1.1	0.47
Ramachandran Statistics (%)				
Favored	95.0	96.8	96.6	99.2
Allowed	5.0	3.2	3.4	0.8
Disallowed	0.0	0.0	0.0	0.0

Table S1. Data Collection and Refinement Statis	tics.
---	-------

Values in parentheses are for the highest-resolution shell.

Table S2. Primers used to g	enerate pCG IRES	S BFP expression	n plasmids.

Construct name	Primer name	Primer sequence (5'-3')
		CTTCTAGACCATGTACCCA
	CDD2 N HA Vhalfer	TACGATGTTCCAGATTACG
CDD2	GBP2 N-HA Adal IW	CTGCTCCAGAGATCAACTT
ODF2 WI		GC
	CDD2 MluI roy	GAACGCGTTAGAGTATGTT
	OBF2 Milui lev	ACATATTGGCTCC
	GBP5 N-HA XbaI fw	CTTCTAGACCATGTACCCA
		TACGATGTTCCAGATTACG
		CTGCTTTAGAGATCCACAT
GBP5 wt		GTC
		CTACGCGTTTAGAGTAAAA
	GBP5 MluI rev	CACATGGATCATCGTTATT
		AAC
	GBP2 D306P rev	ATGGCATTGACGTAGGTC
GBP2 D306P	GBP2 D306P fw	CGGCAGTGGGCCTCTACCC
		TGCA
	GBD2 D306A ray	ATGGCATTGACGTAGGTCA
GBP2 D306A	GDI 2 D300/TTeV	GCAC
0DI 2 D300A	GRP2 D306A fw	CGGCAGTGGGGGCTCTACCC
	GDI2 D30011W	TGCA
	GBP2 L307A rev	CTCCATGCAGGGTGCATCC
GBP2 L307A		CCACTGC
	GBP2 L307A fw	GCAGTGGGGGATGCACCCTG
	GDI2 LS0// IW	CATGGAG
	GBP2 P308A rev	CGTTCTCCATGCAAGCTAG
GBP2 P308A		ATCCCCAC
		GTGGGGATCTAGCTTGCAT
		GGAGAACG
	GBP2 L307A/P308A rev	CGTTCTCCATGCAAGCTGC
GBP2 L307A/P308A		ATCCCCACTGC
	GBP2 L307A/P308A fw	GCAGTGGGGGATGCAGCTTG
		CATGGAGAACG
~~~	GBP2	GCAGCCCCACTGCCGATGG
GBP2	D306A/L307A/P308A rev	CATT
D306A/L307A/P308A	GBP2	AGCITGCATGGAGAACGCA
	D306A/L307A/P308A fw	GTC
GBP5 D306P	GBP5 D306P rev	ATGGCATTGACATAGGTC
	GBP5 D306P fw	CAGCAGTGGGGCCTCTGCCT
		TGCATAG
	GBP5 D306A rev	ATGGCATTGACATAGGTCA
GBP5 D306A		GCAC
GDI 5 DSOOA	GBP5 D306A fw	CAGCAGTGGGGGCTCTGCCT
		TGCA

Construct name	Primer name	Primer sequence (5'-3')	
GBP5 L307A	GBP5 I 307 A rev	CTCTATGCAAGGCGCATCC	
	OBI 5 E507A IEV	CCACTG	
	GBP5 I 307 A fry	CAGTGGGGGATGCGCCTTGC	
	ODI 5 E507A IW	ATAGAG	
	GBP5 P308A rev	GCATTCTCTATGCAAGCCA	
GBP5 P308A		GATCCCCAC	
UDFJ FJU0A	GBP5 P308A ftw	GTGGGGATCTGGCTTGCAT	
	GDISTSOUTIW	AGAGAATGC	
	GBP5 L307A/P308A rev	GCATTCTCTATGCAAGCCG	
GBP5 L307A/P308A		CATCCCCACTGC	
GDI 5 E507101 50011	GBP5 L307A/P308A fw	GCAGTGGGGGATGCGGCTTG	
		CATAGAGAATGC	
	GBP5	GCAGCCCCACTGCTGATGG	
GBP5	D306A/L307A/P308A rev	CATT	
D306A/L307A/P308A	GBP5	GGCTTGCATAGAGAATGCA	
	D306A/L307A/P308A fw	GTCC	
	GBP5 R356A rev	CCCTCTCACTGGTAGCGTG	
GBP5 R356A		CAGGTCCAGC	
GDI 5 R550R	GBP5 R356A fw	GCTGGACCTGCACGCTACC	
	GDI 5 RESOLTIW	AGTGAGAGGG	
	GBP5 MDDM rev	CACTGCTTCTGCCAGAGG	
	GBP5 MDDM fw	CCTCTGGCAGAAGCAGTG	
	GBP5 MDDM rev	CCAGCACTTGCAGCCTCCG	
GBP5 MDDM		CGGCCGCTAAATATTTC	
		GGAGGCTGCAAGTGCTGGA	
	GBP5 MDDM fw	ATATTAGCAGCTGACCAGG	
		GTCTCACAGAG	
	GBP5 MDDM-A rev	GAATAAATTCCCTGGGCCA	
GBP5 MDDM-A		CTGCTTCGGCCAGAGGAC	
	GBP5 MDDM-A fw	GTCCTCTGGCCGAAGCAGT	
		GGCCCAGGGAATTTATTC	
		GTAATATTGCATGACTGGC	
	GBP5 MDDM-B rev	GGCCTCGGCGGCGGCTAAA	
GBP5 MDDM-B		TATTICIG	
		CAGAAATATTTAGCCGCCG	
	GBP5 MDDM-B fw	CCGAGGCCGCCAGTCATGC	
		AATATTAC	
GBP5 MDDM-C	GBP5 MDDM-C rev	GICICIGIGAGGCCCIGGI	
	GBP5 MDDM-C fw	ACICACAGACIC	
	GBP5 MDDM-D rev		
GBP5 MDDM-D			
		UUUUUIAAATATTIUUU	

Construct name	Primer name	Primer sequence (5'-3')
	GPP5 MDDM D fry	CAGAAATATTTAGCCGCCG
	GBP3 MIDDM-D IW	CCGAGTCTGTGAGTCATG
	CDD5 MDDM E rox	GAATAAATTCCCTGGGCCA
	GBP3 MIDDM-E lev	CTGCTTCGGCCAGAGGAC
		GTCCTCTGGCCGAAGCAGT
CDD5 MDDM E	GBP3 MDDM-E IW	GGCCCAGGGAATTTATTC
GBP3 MDDM-E	GBP5 MDDM-E rev	CTGTAATATTGCGGCACTC
		ACGGCCTCCTTGGAC
	GBP5 MDDM-E fw	GTCCAAGGAGGCCGTGAGT
		GCCGCAATATTACAG
	GBP5 MDDM-F rev	GTCTCTGTGAGGCCCTGGT
		CGGCGGCTAATATGCCATG
CDD5 MDDM E		ACTGGCAGACTCCTTGGAC
GBP3 MIDDM-F	GBP5 MDDM-F fw	GTCCAAGGAGTCTGCCAGT
		CATGGCATATTAGCCGCCG
		ACCAGGGCCTCACAGAGAC

## SI References

- E. Braun *et al.*, Guanylate-Binding Proteins 2 and 5 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. *Cell* 1. *Rep* 27, 2092-2104.e2010 (2019).
  H. Tian *et al.*, Structural basis of Zika virus helicase in recognizing its substrates.
- 2. Protein Cell 7, 562-570 (2016).