Vitamin D receptor inhibits EMT *via* regulation of epithelial mitochondrial function in intestinal fibrosis

Mengli Yu^{a,1}, Hao Wu^{b,1}, Jinhai Wang^{c,1}, Xueyang Chen^a, Jiaqi Pan^a, Peihao Liu^a, Jie Zhang^a, Yishu Chen^a, Wei Zhu^a, Chenxi Tang^a, Qi Jin^a, Chunxiao Li^d, Chao Lu^a, Hang Zeng^a, Chaohui Yu^{a,*},Jing Sun^{e,*}

 ^aDepartment of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
^bDepartment of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
^cDepartment of Colorectal Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
^dDepartment of Gastroenterology, Ningbo First Hospital, Ningbo, China.
^eDepartment of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Supplementary materials

Supporting tables

Supplementary Figure 1: VDR specific knockout in intestinal epithelium exacerbated mouse intestinal fibrosis. (A) PCR analysis of genomic DNA. VDR ^{IEC-KO} mice were generated by homologous recombined flox VDR allele, which removed by Cre-mediated recombination (VDR ^{IEC-KO}, 6 to 10; VDR^{fl/fl},1 to 5). (B) Survival rates of DSS-induced intestinal fibrosis model mice. (*P<0.05, two-tailed, Flox DSS vs VDR KO DSS). (C) Colon length of DSS-induced fibrosis. (D) Representative pictures of mice colons. (E) Quantitative PCR analysis of DSS administrated mice (*P<0.05, **P<0.01, two-tailed). (F) Colon length of TNBS experiment group. (G) Quantitative PCR analysis of TNBS administrated mice (*P<0.01, ****P<0.0001, two-tailed).

Supplementary Figure 2: VD dietary intervention influenced DSS-induced intestinal fibrosis. (A) Body weight change of VD dietary intervention experiment. (B) Colon length of each group. (C) Quantification of gene expression in RNA levels (*P<0.05, **P<0.01, ***P<0.001, ***P<0.001, two-tailed).

Supplementary Figure 3: VD dose-independent experiment in primary human intestinal fibroblasts and VDR partially modulated CCD-18Co cells activation *in vitro*. (A) Western blot analysis of VDR and fibrosis markers expression in primary human intestinal fibroblasts under different concentrations of VD. (B) VDR expression was measured by quantification PCR in VD-treated CCD-18Co cells (n=3, *P<0.05 **P<0.01, two-tailed). (C) Quantitative PCR analysis of genes in Calcitriol -treated CCD-18Co cells (n=3, *P<0.05 **P<0.05, **P<0.05, **P<0.01, two-tailed). (D) Quantitative PCR analysis of genes in VDR overexpression CCD-18Co cells (n=3, *P<0.05, **P<0.001, ***P<0.001, two-tailed). (E) Western blot analysis of VDR, SHH and fibrosis markers expression in primary human intestinal fibroblasts under the treatment of FBS or/and VD.

Supplementary Figure 4: EMT activated in mice chronic DSS-induced intestinal fibrosis. (A) Western blot analysis of mice colon tissues. (B) Quantification of western blot (NC=5, DSS=7, *P<0.05 **P<0.01, ****P<0.0001, two-tailed).

Supplementary Figure 5: VDR expression in different experiments of HT29 cells. (A) Quantitative PCR analysis of VDR gene after siRNA transfection (n=3, ***P<0.001, two-tailed). (B) Quantitative PCR analysis of VDR gene after VDR plasmid transfection (n=3, *P<0.05 **P<0.01, ****P<0.0001, two-tailed). (C) Quantitative PCR analysis of VDR gene after Calcitriol administration (n=3, **P<0.01, two-tailed).

Supplementary Figure 6: The expression of mitochondrial functional genes in mice. (A) Quantitative PCR analysis of isolated mice epithelial tissues (n=3, *P<0.05 **P<0.01, ***P<0.001, two-tailed). (B) Genes expression were measured by quantitative PCR (Flox NC n=4; Flox TNBS n=4; VDR KO NC n=4; VDR KO TNBS n=4, *P<0.05,***P<0.001, two-tailed).

Supplementary Figure 7: p62 regulated VDR to modulated intestinal fibrosis. (A) Representative Western blot images of p62 expression. (B) Quantitative PCR analysis of primary human intestinal fibroblasts (n=3, *P<0.05 **P<0.01). (C) HEK293 cells were infected with a FLAG-tagged VDR overexpression plasmid or the empty vector (NC) for 48h were collected, and total FLAG-tagged VDR was immunoprecipitated using FLAG beads. (B) Representative images of immunofluorescence staining of human colon sections. Magnification: $600 \times$.

Supporting Table S1

The characteristics of CD patients

Number of patients		19
Age [0-30]		1
[30-45]		12
[45-60]		3
[>60]		3
Male		14
Female		5
Localization	Terminal ileum	14
	Colon	2
	Terminal ileum and colon	3
Complications Obstruction		18
	Perforation	2
	Sinus formation	5
	Bleeding	1
Medcinine	Azathioprine	16
	Hormonotherapy	12
	Anti-TNFα	2

Supporting Table S2 Primers for mice identification

Primer name	Sequence 5'-3'		
EGE-LZX-019-5'loxP-F3	CAGTGACATTGTACTCACATACATGAC		
EGE-LZX-019-5'loxP-R3	TGCATGCGTCTGTGGGGGAGG		
Vil1-ProF1	GTGTTTGGTTTGGTTTCCTCTGCATAAGA		
Cre5R1	GCAGGCAAATTTTGGTGTACGGTCA		
Primers for Quantitative PCR dectection in mice			
Primer name	Sequence 5'-3'		
m-VDR-F	GAATGTGCCTCGGATCTGTGG		
m-VDR-R	ATGCGGCAATCTCCATTGAAG		
m-GAPDH-F	TGGCCTTCCGTGTTCCTAC		
m-GAPDH-R	GAGTTGCTGTTGAAGTCGCA		
m-αSMA -F	CCCAACTGGGACCACATGG		
m-αSMA -R	TACATGCGGGGGGACATTGAAG		
m-Fibronectin-F	ATGTGGACCCCTCCTGATAGT		
m-Fibronectin-R	GCCCAGTGATTTCAGCAAAGG		
m-mmp-9-F	CTGGACAGCCAGACACTAAAG		
m-mmp-9-R	CTCGCGGCAAGTCTTCAGAG		
m-TIPM-1-F	GCAACTCGGACCTGGTCATAA		
m-TIPM-1-R	CGGCCCGTGATGAGAAACT		
m-Collagen I-F	TGGGATTCCCTGGACCTAA		
m-Collagen I-R	GCTCCAGCTTCTCCATCTTT		

m-CTGF-F	GGGCCTCTTCTGCGATTTC
m-CTGF-R	ATCCAGGCAAGTGCATTGGTA
m-TGFβ1-F	CCACCTGCAAGACCATCGAC
m-TGFβ1-R	CTGGCGAGCCTTAGTTTGGAC
m-VDAC1-F	CCCACATACGCCGATCTTGG
m-VDAC1-R	GTGGTTTCCGTGTTGGCAGA
m-MCU-F	GAGCCGCATATTGCAGTACG
m-MCU-R	CGAGAGGGTAGCCTCACAGAT
m-OPA1-F	TGGAAAATGGTTCGAGAGTCAG
m-OPA1-R	CATTCCGTCTCTAGGTTAAAGCG
m-Vimentin-F	CGTCCACACGCACCTACAG
m-Vimentin-R	GGGGGATGAGGAATAGAGGCT
m-Twist-F	GGACAAGCTGAGCAAGATTCA
m-Twist-R	CGGAGAAGGCGTAGCTGAG
m-Snail-F	CACACGCTGCCTTGTGTCT
m-Snail-R	GGTCAGCAAAAGCACGGTT
m-Claudin1-F	GGGGACAACATCGTGACCG
m-Claudin1-R	AGGAGTCGAAGACTTTGCACT
m- E-Cadherin-F	CAGGTCTCCTCATGGCTTTGC
m- E-Cadherin-R	CTTCCGAAAAGAAGGCTGTCC
m-ZO-1-F	GCCGCTAAGAGCACAGCAA
m-ZO-1-R	TCCCCACTCTGAAAATGAGGA
m-Occludin-F	TTGAAAGTCCACCTCCTTACAGA
m-Occludin-R	CCGGATAAAAAGAGTACGCTGG
m-TNF-α-F	GCCACCACGCTCTTCTGTCT
m-TNF-α-R	GTCTGGGCCATAGAACTGAT
m-CXCL1-F	CTGGGATTCACCTCAAGAACATC
m-CXCL1-R	CAGGGTCAAGGCAAGCCTC
m-iNOS- F	GTTCTCAGCCCAACAATACAAGA
m- iNOS-R	GTGGACGGGTCGATGTCAC
Primers for Quantitativ	ve PCR dectection in human
Primer name	Sequence 5'-3'
h-VDR-F	GTGGACATCGGCATGATGAAG
h-VDR-R	GGTCGTAGGTCTTATGGTGGG
h-αSMA -F	AAAAGACAGCTACGTGGGTGA
h-αSMA -R	GCCATGTTCTATCGGGTACTTC
h-Fibronectin-F	CGGTGGCTGTCAGTCAAAG
h-Fibronectin-R	AAACCTCGGCTTCCTCCATAA
h-mmp-9-F	TGTACCGCTATGGTTACACTCG
h-mmp-9-R	GGCAGGGACAGTTGCTTCT
h-mmp-2-F	CCCACTGCGGTTTTCTCGAAT
h-mmp-2-R	CAAAGGGGTATCCATCGCCAT
h-Collagen Iα1-F	GAGGGCCAAGACGAAGACATC
h-Collagen Iα1-R	CAGATCACGTCATCGCACAAC

h-CTGF-F	CAGCATGGACGTTCGTCTG
h-CTGF-R	AACCACGGTTTGGTCCTTGG
h-Zeb1-F	GATGATGAATGCGAGTCAGATGC
h-Zeb1-R	ACAGCAGTGTCTTGTTGTTGT
h-Vimentin-F	ATGAAGGAGGAAATGGCTCGTC
h-Vimentin-R	GGGTATCAACCAGAGGGAGTGAA
h-Claudin-1-F	CCTCCTGGGAGTGATAGCAAT
h-Claudin-1-R	GGCAACTAAAATAGCCAGACCT
h- E-Cadherin-F	TGGAGGAATTGTTGCTTGC
h- E-Cadherin-R	CGCTCTCCTCCGAAGAAC
h-ZO-1-F	CAACATACAGTGACGCTTCACA
h-ZO-1-R	CACTATTGACGTTTCCCCACTC

Abbreviations: m-, mouse; h-, human