Supplementary Information for "Gas-particle partitioning and SOA yields of organonitrate products from NO₃-initiated oxidation of isoprene under varied chemical regimes," Brownwood et al.

Table S1: Experimental parameters. Specified here are the reaction conditions for each experiment, and the chemical regime favored. The chamber reactant concentrations are listed as well other descriptors of the experiment. The total amount of isoprene consumed was modeled and predicted by Philip Carlsson (Forschungszentrum Jülich, IEK-8). The final alkyl nitrate concentration was measured by the TD-CRDS. Reactants were periodically reinjected throughout the experiment for a batch mode experiment. These injections tried to maintain a general concentration of NO₂ or O₃ in the chamber at all times and so the approximate maximum concentration of each injection is listed here. The total amount of isoprene injected by NO₃, the latter of which is used to determine yields in this paper. Gasphase experiments have white background; seeded have grey background.

Date	Favore d Regime	Reactant Conc's in chamber (ppbv)	Expt Length (hours)	Chamber Conditions/ Description	RH (%)	Isopren e Consume d by NO ₃ (ppbv)	Final Alkyl Nitrate Build Up (ppbv)	Maximum Wall Loss Correction %
3		O ₃ : 100 NO ₂ : 5 Isoprene: 11.1	6	humid	40	2.3	2.13	7
6	RO ₂ enhanc ed	0 ₃ : 100 NO ₂ : 5 Isoprene: 6	4 (before roof open)	Night-to- day, humid	30	4.0	Before roof open: $2.8 \pm$ 0.1 After roof open: $1.39 \pm$ 0.02	17
7	RO ₂ isom	$O_3: 50$ NO ₂ : 5 Isoprene: 6	7	Slow RO ₂ , low humidity, HCl contam	10	4.2	1.9 ± 0.15	3
8	RO ₂ enhanc ed	O ₃ : 100 NO ₂ : 25 Isoprene: 30	5	High NO ₃ , dry, HCl contam	0	14.4	11.1 ± 0.3	21
9	$RO_2 + HO_2$	$O_3: 100$ NO ₂ : 5 Isoprene: 7.5	5.5	120 ppm of CO, 100 ppb of propene, dry	0	3.2	3.3 ± 0.2	20
10	RO ₂ isom	O ₃ : 50 NO ₂ : 5 Isoprene: 3.5	6.5	dry	0	2.5	1.75 ± 0.08	26
12	RO ₂ enhanc ed	$O_3: 100$ $NO_2: 5$ Isoprene: 9.5	4.5	Night-to- day, 120ppm CO added when roof open, dry	0	4.8	Before roof open: $3.9 \pm$ 0.2 After roof open: $2.5 \pm$ 0.2	21

13	RO ₂	0 ₃ : 100	5.5	dry	0	11.6	10.5 ± 0.14	24
	enhanc	NO ₂ : 25						
	ed	Isoprene:						
		27						

Date	Favore d Regime	Reactant Conc's in chamber* (ppbv)	Experim ent Length (hours)	Chamber Conditions/ Description	RH (%)	Isopren e Consume d by NO ₃ (ppbv)	Final Alkyl Nitrate Build Up (ppbv)	Maximum Wall Loss Correction %
14 Aug 201 8	RO ₂ enhanc ed	O ₃ : 100 NO ₂ : 25 Isoprene: 20	4	High NO ₃ , dry, AS seed	0	10.3	9.23 ± 0.09	19
15	RO ₂ enhanc ed	O ₃ : 100 NO ₂ : 25 Isoprene: 18	5	High NO ₃ humid, AS seed	0 to 30	10.2	8.39 ± 0.09	25
16	isom enhanc ed	0 ₃ : 100 NO ₂ : 5 Isoprene: 5	5	Photolysis (Night-to- day) humid, AS seed	30	4.2	2.7 ± 0.2	16
18	isom enhanc ed	O ₃ : 100 NO ₂ : 5 Isoprene: 7	4	AS seed with organic coating (β - caryophylle ne + O ₃), humid	60	4.0	2.1 ± 0.1	13

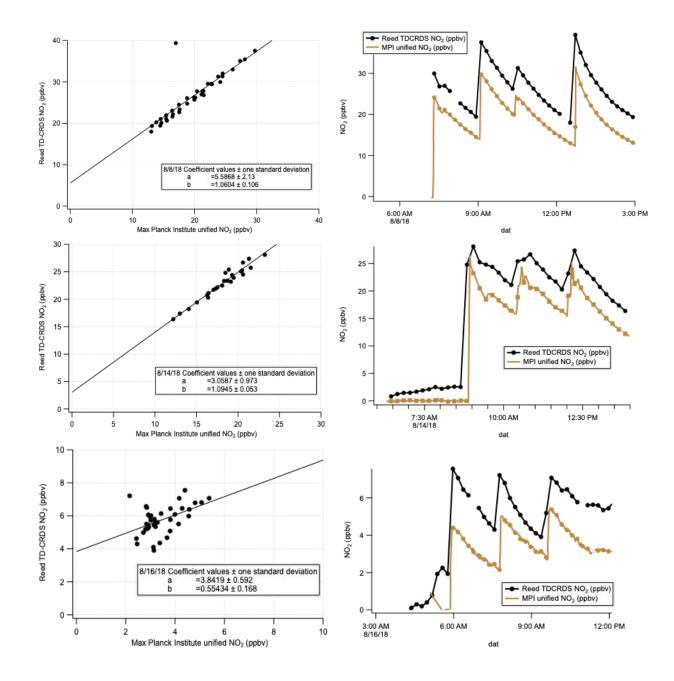
19	RO ₂ enhanc ed, no O ₃	O ₃ : NO ₂ : Isoprene: 9.5	4	N ₂ O ₅ source, later MVK addition, dry	0	3.0	6.04 ± 0.06	~0
20	RO ₂ enhanc ed	0 ₃ :120 NO ₂ : 5 Isoprene: 9	5.5	AS seed with organic coating (β - caryophylle ne + O_3), humid	60	5.5	3.55 ± 0.08	24
21	$RO_2 + HO_2$	0 ₃ : 100 NO ₂ : 5 Isoprene: 9	6	Plant emissions (propene addition), humid	60	3.6	4.3 ± 0.2	22

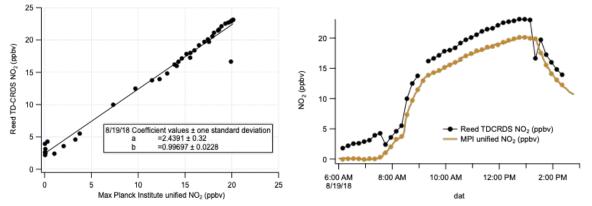
Table S2: Key instruments used for the alkyl nitrate and aerosol analysis herein.

Instrument	Relevant species measured for this study	Inlet description	Time resolution	Section where described
TD-CRDS (custom thermal dissociation + NO ₂ cavity ringdown)	gas-phase total alkyl nitrates (ΣANs)	5 meter long ¼" Teflon inlet line	8 minutes	3.2
3 independent NO ₂ monitors	NO ₂	4-6 meter long ¼" Teflon inlet line	1 minute	3.2
HR-ToF-AMS, Aerodyne Research Inc., USA	Aerosol-phase OA, total NO ₃ , and OrgNO ₃	4 meter long ¼" stainless steel inlet line	4 minutes	3.4
VOCUS	VOCUS isoprene		1 minute	3.3
SMPStotal particle volume concentration (size range between 10nm to 450 nm)		4-6 meter long ¼" stainless steel inlet line	7 minutes	3.5
FIGAERO HR-ToF- CIMS (I-Gas and particle-phaseionization), Aerodyne Research Inc.and organics		Gas inlet 4m long ¼" PFA. Particle inlet 4m long ½" stainless steel	1 second	4.1
HR-ToF-CIMS (Br— ionization), Aerodyne Research Inc.	HR-ToF-CIMS Br— ionization), gas-phase Aerodyne organonitrates		2 seconds	4.1

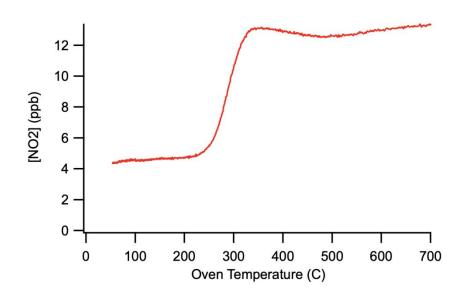
Table S3: Breakdown of the reactive fate of the initially formed nitrate peroxy radicals by day for four exemplary days, nomenclature and mechanism following Vereecken *et al.*, 2021 (ref. 46). Relative weight of 1-nitrate to 4-nitrate addition sites are modeled as 87/13. The equilibrium ratio of the site specific peroxy radicals was calculated to be 8% Z-ISOP1N400, 18% E-ISOP1N400, 74% ISOP1N200 and 20% Z-ISOP1004N, 40% E-ISOP1004N, 40% ISOP3004N, respectively. Only the Z-conformers have contributing unimolecular decomposition pathways.

09 August "HO ₂ "	unimolecular loss /%	reaction with HO ₂ /%	reaction with NO ₃ /%	reaction with RO ₂ /%
Z-ISOP1N400	37	54	1	8
E-ISOP1N400	-	86	2	12
ISOP1N2OO	-	98	2	0
all 1-nitrate RO2	3	92	2	3
Z-ISOP1004N	63	32	1	5
E-ISOP1004N	-	86	2	12
ISOP3004N	-	94	2	4
all 4-nitrate RO2	13	78	1	8
all nitrate RO2	4	91	2	4


10 August "isom enhanced"	unimolecular loss /%	reaction with HO ₂ /%	reaction with NO ₃ /%	reaction with RO ₂ /%
Z-ISOP1N400	78	9	5	8
E-ISOP1N400	-	40	22	38
ISOP1N2OO	-	64	36	0
all 1-nitrate RO2	6	55	31	8
Z-ISOP1004N	91	4	2	3
E-ISOP1004N	-	41	26	33
ISOP3004N	-	54	34	13
all 4-nitrate RO2	18	39	24	19


all nitrate RO2	53	30	9
-----------------	----	----	---

$\begin{array}{c} 12 \ August "RO_2 \\ enhanced" \ (slower \\ RO_2 \ production) \end{array}$	unimolecular loss /%	reaction with HO ₂ /%	reaction with NO_3 /%	reaction with RO ₂ /%
Z-ISOP1N400	65	14	9	13
E-ISOP1N400	-	38	24	38
ISOP1N2OO	-	61	38	0
all 1-nitrate RO2	5	53	33	8
Z-ISOP1004N	85	6	4	5
E-ISOP1004N	-	40	26	34
ISOP3004N	-	52	35	13
all 4-nitrate RO2	17	38	25	20
all nitrate RO2	7	51	32	10


$\begin{array}{ c c c } & 13 \ August "RO_2 \\ & enhanced" \ (faster \\ & RO_2 \ production) \end{array}$	unimolecular loss /%	reaction with HO ₂ /%	reaction with NO ₃ /%	reaction with RO ₂ /%
Z-ISOP1N400	45	20	11	24
E-ISOP1N400	-	34	19	47
ISOP1N2OO	-	64	36	1
all 1-nitrate RO2	4	55	31	11
Z-ISOP1004N	74	11	7	8
E-ISOP1004N	-	38	22	40
ISOP3004N	-	53	31	17
all 4-nitrate RO2	15	38	22	25

all nitrate RO2	5	53	30	13
-----------------	---	----	----	----

Figure S1. Scatterplot NO₂ comparisons from Figure 2 alongside corresponding timeseries comparisons.

Figure S2. Thermogram (oven temperature ramp) on a chamber mix of isoprene + NO₃ products. This supports the selection of 385 as the over temperature to measure alkyl nitrates. Collected on the SAPHIR chamber on 17. August 2018.

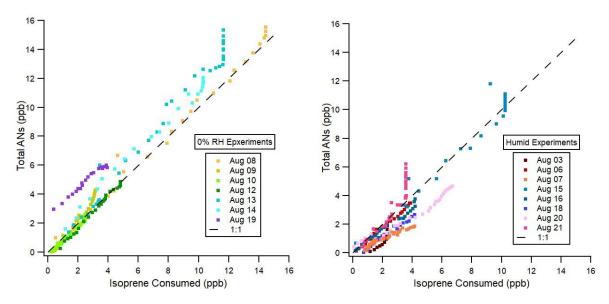
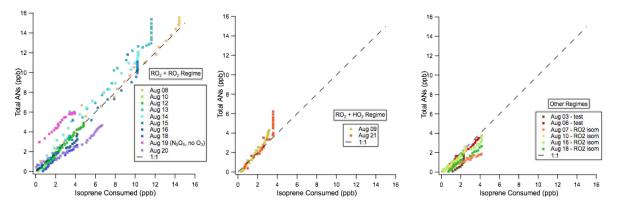
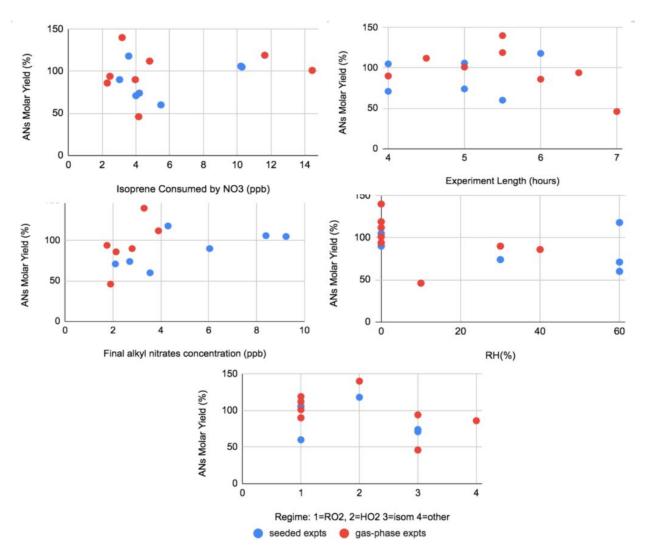




Figure S3. Total alkyl nitrate yield plots split out by humidity.

Figure S4. Total alkyl nitrate yield plots split out by RO_2 fate / reaction regime. The most common $RO_2 + RO_2$ enhanced regime has significant scatter, but $RO_2 + HO_2$ enhanced hints at higher yield and RO_2 isomerization at lower yields.

Figure S5. ANs yields plotted against several experimental variables in search of any dependencies. There are no clear dependences on isoprene consumed, alkyl nitrate formed, experiment length, %RH, or whether seeded. There is significant scatter within each chemical regime, but HO₂ regime experiments appear to have higher yields and isomerization experiments slightly lower yields.

Figure S6. SOA mass yield measurements (using values from OrgNO3 with R = 0.19) scattered against alkyl nitrate yield, for all experiments for which both measures are available. No clear trend is observed.