
SUPPLEMENTARY INFORMATION  
 
Methods: 
 
Table S1a: Dataset Composition for RNFL-Map Model (RS4RNFL-Map for GSRNFL-Map) 

 
 
Table S1b: Dataset Composition for B-Scan Models (RS4B-Scan for GSB-Scan) 

 B-Scan Data Distribution (5050) B-Scan Data Distribution (2575) 
 DSB-Scan 

training 
DSB-Scan 

validation 
DSB-Scan 
testing 

GSB-Scan 

testing 
C-DSB-Scan 
training 

C-DSB-Scan 
validation 

C-DSB-Scan 
testing 

GSB-Scan 

testing 
NG 297 95 82 77 265 90 89 77 

G 178 59 60 50 154 52 53 50 

Totals 475 154 142 127 419 142 142 127 

 
Figure S1: B-Scan CNN Architectures Schematic 

 
 

Figure S2: Architecture Details of OCT-Trained B-Scan Model, CNN B 

 



We provide here the relative strengths of CNN B: 

(1) Good for custom dataset: CNN B can be trained from scratch using a custom 

dataset. Medical images are different from natural images of ImageNet.  Suppose a lab 

has a relatively small image training dataset, and the image modality is different from 

natural images in ImageNet; it is worth considering CNN B as a feasible approach to 

compare model performance with CNN C.  

(2) Efficiency: CNN B can be trained in a short time. It is an efficient approach due to 

its simple architecture. 

 

We provide here the relative weaknesses of CNN B: 

(1) Hyperparameter tuning: effective performance of CNN B requires tuning 

parameters (regularization/dropout, kernel filter size, activation functions, etc.) based on 

validation results. 

(2) Underfitting: There might be an underfitting problem due to the limited number of 

parameters. In contrast, CNN C may overfit the training set. 

 

Results:  
 
Table S2: Results of Training and Testing on Confident B-Scans 

 
 
Table S3: DSRNFL-Map/DSB-Scan and GSRNFL-Map/GSB-Scan Accuracies for all RS 



 
 

Discussion: 
Visualization Technique Helps to Explain False Positives and False Negatives 
Visualizing Features Used by CNNs to Detect Glaucoma in RNFL Maps to Speculate 

Reasons for False Positives and False Negatives: For RNFL maps, we used a 

visualization approach called Grad-CAMs (Gradient Weighted Class Activation Maps),1 

which highlight regions in images that contribute positively to a neural network’s 

classification decision.  To make Grad-CAMs more quantitative, we compared Grad-

CAMs to OCT images superimposed by visual field points showing regions of structure-

function agreement,2,3 we found that regions highlighted in Grad-CAMs are also regions 

with abnormal structure and abnormal function agreement (aS-aF).  Figure S3 below 

shows an example of both a Grad-CAM for an RNFL probability map (top left) and an 

aS-aF diagram (top right) with RNFL probability map, superimposed visual field (VF) 

points, and aS-aF locations marked by VF points circumscribed by diamonds (24-2 VF 

locations) or squares (10-2 VF locations).   

 



 
Figure S3: Above left panel shows a Grad-CAM (regions contributing to CNN 
classification of glaucoma highlighted in red and yellow); the corresponding RNFL map 
is shown in the upper right: OCT structural information is superimposed by VF functional 
information, and regions of abnormal structure and abnormal function agreement (aS-
aF) are shown by VF points circumscribed by squares and diamonds.  Bottom panel 
contains a histogram showing that the overwhelming number of aS-aF locations are in 
True Positive RNFL maps (detected as glaucomatous by AI and labeled as 
glaucomatous by the clinician), like this one.4  
 

We found that the number of aS-aF locations is significantly greater (p < 0.05, Mann-

Whitney Test) for True Positives (correctly identified glaucoma cases) than for False 

Negatives (missed glaucoma cases) across all RNFL maps in GSRNFL-Map studied here.4 

 
Below is a table of false positives and false negatives that are currently arrived at by our 

RNFL-map and b-scan models; they have a tendency currently to result in many more 

false negatives (misses) than false positives.  This can be explained by the Grad-CAM 

and structure-function analysis described above; many of these misses are subtle/edge 

cases, where damage is not extreme, so the models are missing regions where there is 

no significant structure-function agreement.  Therefore, the models may improve with 

the incorporation of more such ambiguous examples in training or by designing specific 



filters to enable our CNNs to recognize patterns of features characteristic of these 

subtle cases. 

 

Table S4: False Positives and False Negatives for RNFL-Map and B-Scan Models 

 
 
Table S5: Most Commonly-used Abbreviations for Experiments Conducted 

OCT Image 
Type 

Training 
Dataset 

(DS) 

Generalizability 
Set (GS) 

RS1 (Reference 
Standard based on 

single expert viewing 
Topcon reports for 

RNFL maps or 
Heidelberg cpRNFL 
reports for b-scans) 

RS4 (Reference 
Standard based on 

consensus of 
multiple experts 

viewing OCT and VF 
information) 

RNFL Maps DSRNFL-Map GSRNFL-Map RS1RNFL-Map RS4RNFL-Map 
B-Scans DSB-Scan GSB-Scan RS1B-Scan RS4B-Scan 

 

 
Figure S4: Images disagreed upon by RS1RNFL-Map and RS4RNFL-Map.  There are in fact 
only 3 RNFL maps for which the ratings are reversed between RS1RNFL-Map and 
RS4RNFL-Map; the left-most two are indeed subtle/mild cases, and the right-most one 
contains a pattern seen in both healthy controls and patients.  These 3 images were all 
categorized as nonglaucomatous by RS1RNFL-Map and were categorized as 
glaucomatous by RS4RNFL-Map.  
 



   

   
Figure S5: (Top) Two examples that RS1B-Scan labeled glaucomatous while RS4 B-Scan 
labeled non-glaucomatous; (bottom) two examples that RS1B-Scan labeled non-
glaucomatous while RS4B-Scan labeled glaucomatous.  The b-scans that RS1B-Scan and 
RS4B-Scan disagreed on are also suspects or mild cases. In the top row, the left example 
has some local defects, and the right example has a thinning retinal nerve fiber layer; 
these are typical glaucomatous features. In the bottom row, the glaucomatous defects 
are not very obvious in these b-scans. The extra information used by experts in RS4B-

Scan may have helped to clarify these boundary cases. 
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