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METHODS S1 – FIGURES AND TABLES, RELATED TO STAR METHODS 
 

Here we have collected figures and tables referenced in STAR methods - method details. 

 
Dataset 

 

 

Fig. 1 Ploidy (a) and purity (b) values across cancer types, sorted by median ploidy. 
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Fig. 2 Proportion of tumors with a whole genome duplication per cancer type. 

 

 

Fig. 3 SNV validation results. The figure shows the number of validated calls for each variant allele frequency bin (a) and the obtained 
precision (b). The consensus achieves the highest precision of all pipelines with a minimum of 90% of positive calls (lowest VAF bin) 
and over 94% in all other VAF bins.  
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Copy number consensus 
 
JaBbA 
 

 

 

Fig. 4 The full JaBbA pipeline depicted graphically. 
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Copy number consensus approach 
 

Copy-number-calling methods differ in genome segmentation 

 

Fig. 5 Cumulative distribution of the number of samples with the indicated number of breakpoints predicted for each tumor by the six 
copy-number-calling methods. ACEseq and cloneHD (the “liberal” methods) often predicted an order of magnitude more breakpoints 
per tumor than ABSOLUTE, JaBbA, Sclust, and Battenberg (the “conservative” methods). While the four conservative methods 
characterized only approximately 7% of cancers as having more than 1000 breakpoints, ACEseq and cloneHD found 17% and 24%, 
respectively, crossing this threshold. 
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Method for determining consensus segment breakpoints 

 

Fig. 6 Individual genome segmentation methods A, B, and C report segments of constant copy number. In this example, we determine 
the consensus segmentation Σ, requiring that all three methods A, B, and C contribute to the intersection that yields consensus 
breakpoints. Each segment from methods A, B, and C is composed of a start locus Si and end locus Ei. Depicted here for each method 
is the end point of one segment, Ei, and the start point of the next segment, Si+1. Note that the methods may differ in the copy number 
state they assign to each segment, as the consensus breakpoint method is concerned only with where segments occur, not what the 
status of each segment is. By proceeding through steps one to three, the consensus breakpoint algorithm selects a single breakpoint 
supported by the input segments from the individual methods. In step four, the breakpoints supported by the individual segmentation 
methods are refined and augmented using the PCAWG consensus structural variants, as well as knowledge of where centromeres 
and telomeres occur on each chromosome. 

 



 

8 
 

 

Fig. 7 Cumulative distribution of the number of samples with the indicated number of breakpoints produced for each cancer by different 
consensus strategies. Given the six copy-number-calling methods, the anyN strategies required N of six methods to agree on a 
breakpoint’s placement to establish a consensus breakpoint at that location. The strategy we selected, any3_any2_conservative, 
required agreement between any three methods, or agreement between any two of the four "conservative" methods (i.e., ABSOLUTE, 
Battenberg, JaBbA, and Sclust). This avoided calling consensus breakpoints supported by only the two "liberal" methods (ACEseq 
and cloneHD). Relative to any3, the any3_any2_conservative strategy introduced only a few extra breakpoints, but corrected false 
negatives where we failed to obtain support for a breakpoint from three methods despite clear evidence of its existence in the 
underlying data. 
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Most consensus breakpoints obtain support from SVs 
 

 

Fig. 8 Cumulative distribution across cancers of the log-ratio of the number of breakpoints without support from SVs, to the number of 
breakpoints with SV support. As virtually all copy number events should generate associated structural variants, most consensus 
breakpoints should be able to find a nearby supporting SV. Under the any3_any2_conservative consensus breakpoint strategy, only 
20% of cancers had more unsupported breakpoints than SV-supported breakpoints (i.e., a log ratio greater than zero). 

 

 

Fig. 9 A) Support of consensus breakpoints (BPs) from SVs as a function of number of BPs. Color indicates density. As the number 
of BPs increased, so too did the fraction of BPs that found a nearby supporting SV. The mean fraction of BPs with SV support was 
77%. B) Support of SVs from consensus BPs as a function of number of SVs. Color indicates density. There was no correlation 
between the number of SVs and the fraction with support from BPs. The mean fraction of SVs with BP support was 83%. 
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Resolving whole genome duplication uncertainty 
 

 

Fig. 10 Copy number review figure for sample SA414133. The figure contains copy number profiles for five methods (top), raw allele 
ratio’s for SNPs and multiplicity values (second row left and right respectively), raw B allele frequencies and copy ratio’s for SNPs 
(third row left and right) and normalized allele ratios (bottom). In this case the raw data shows there are no copy number alterations 
of note. Battenberg however (red copy number profile) calls a whole genome duplication. Adding the duplication does not allow for an 
increase in the proportion of the genome called with clonal copy number. In this scenario Battenberg was considered the outlier and 
the profile is flagged as no_WGD. This figure shows copy number profiles on the methods’ own segmentation. 
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Fig. 11 Example of copy number profile where noise affects the fit and causes disagreement on the ploidy. The copy number profiles 
called by cloneHD (green), Sclust (purple) and ACEseq (yellow) contain large numbers of small segments, compared to ABSOLUTE 
(blue) and Battenberg (red). The methods affected by the noise interpret it as signal, which cause it to fit the segments with a higher 
or lower copy number state, resulting in a ploidy discrepancy. This figure shows copy number profiles on the methods’ own 
segmentation. The call for this sample (SA529805) is no_WGD. 
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Subclonal architecture methods 
 

BayClone-C 
 

  

Fig. 12 An example of merging using a PCAWG sample SA6164. Left and right panels are CCF clusters before and after merging of 
Gaussian components. 

 

Ccube 
 

 

Fig. 13 Ccube results summary for sample SA518422. A) Scatterplot of VAF and CCF. Each point in the figure is a mutation color 
coded by its cluster membership. The grey dashed lines are all possible linear mappings (eq. 1) determined by copy number and 
multiplicity configurations in the sample. B) Histogram of observed CCFs. The red solid line shows the approximated posterior 
distribution of CCF cluster centers. The peak at CCF=1 corresponds to the clonal cluster. C) The number of variants assigned to each 
CCF cluster. Each CCF cluster is labelled by its cluster center. 

cloneHD 
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Fig. 14 Mapping between subclone genotypes and clusters. There is a correspondence between subclonal genotypes and mutation 
clusters. Each node in a tree is a cluster, and mutations are acquired along the edges of the tree, from the root (top) to the leaves 
(bottom). Each node is labelled by the cluster genotype. The ancestral node linking to the clonal cluster is also shown. SNV genotype 
priors that are compliant with the infinite sites assumption constrain the set of tree topologies. The examples show families of trees 
compliant with this assumption relating (A) 𝑁! = 1, (B) 𝑁! = 2 and, (C) 𝑁! = 3 genotypes, each of which contains 𝑁" mutation clusters. 
𝑁! = 1 corresponds to a scenario where there are no subclones in the sample, so all mutations belong to the clonal cluster denoted 
as a grey node. The 𝑁! = 2 scenario has a single subclone corresponding to one clonal and one or several subclonal clusters and 
𝑁! = 3	more than one subclone describing linear or branched evolution. For example, with 𝑁! = 2 subclones, genotype 𝑔 = 00 denotes 
all clonal mutations, 𝑔 = 10 mutations that are private to the blue cluster and 𝑔 = 01 mutations that are private to the red cluster. The 
tree prior extends cloneHD by inferring a prior for a mutation to belong to one of the clusters shown. Assuming a uniform mutation 
rate the prior weights can be interpreted to relate to the branch lengths of the tree leading to each node. 
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CTPsingle 

 

Fig. 15 Barplot of CTPsingle clustering result for sample SA530652. Different colors represent different subclones. Although clustering 
is performed in read counts space, for the sake of visualization, mutations are merged based on the ratios of variant and total reads 
shown on the x-axis and scaled to the interval [0,100]. For each integral value on the x-axis the number of mutations having the 
considered ratio is shown on the y-axis. 
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DPClust 
 

 

 

Fig. 16 Posterior density (purple) and confidence interval (cyan) of cluster locations in cancer cell fraction (CCF) space for sample 
SA518422. The number of mutation clusters is obtained by finding peaks in the density. The peak at CCF=1 represents the clonal 
SNVs carried by all tumor cells, the other two peaks represent two subclones. 

 
PhylogicNDT 
 

 

Fig. 17 PhylogicNDT clustering. The prior mutational CCF distributions (left) and posterior cluster densities (right). Colors represent 
the final subclonal assignment of mutations. Pie charts show distribution of clustered mutations across chromosomes. 
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Subclonal architecture consensus approaches 
 
Consensus approaches 

 

 

Fig. 18 Workflow of the consensus approaches. Input. On the left, inputs are represented by their respective solutions in the space 
defined by CCF and proportion of SNVs of the clusters. Each cluster is represented by a vertical colored bar. Each of the 11 methods 
also provides mutation assignments corresponding to these solutions.  Consensus. In the middle panels, illustration of the three 
consensus approaches. They take different aspects of the individual methods as input and obtain the consensus from it in different 
ways (see main text). Output. Right panels, the output solutions of the three consensus methods in the same space as Input. Both 
CSR and CICC also provide mutation assignments to the clusters, not shown in that space and not used by MutationTimer. 
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Weme (WM – Weighted Median) 
 

 

Fig. 19 Illustration of the WeMe algorithm. (Top left) CDF representation of a 1-d “clustering”. Stars indicate the cellular prevalence 
of the cluster centers; height of the CDF jumps corresponds to the proportion of mutations assigned to that cluster. (Top right) Two 
CDFs (orange and purple lines) indicate different clusterings of the same sample. Total area of grey region is equal to the Earth Mover 
Distance (EMD), also known as Wasserstein distance, between the two clusterings. (Bottom left) Three solid lines (orange, blue, 
purple) are CDFs for three different clusterings. The median clustering (dashed grey line) corresponds to the CDF made by taking the 
median in the x-axis direction of the three CDFs for each y-value. Note that the median clustering has four cluster centers. (Bottom 
right) The weighted median clustering corresponds to the CDF (red line) with the desired number of centers (i.e., jumps) that minimizes 
the EMD to the CDF for the median clustering (dashed grey line). 
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Results 
 

 

Fig. 20 Individual methods and their internal assumptions and models. Each method typically does not share 
assumptions/mechanisms with other methods. Even if they do, like PhylogicNDT and DPClust, they utilize the mechanism differently 
and there are substantial differences in pre-/post- processing. 

 

Fig. 21 Examples of subclonal reconstruction differences across methods. Results across methods are variable, but the consensus 
methods are able to reconstruct the subclonal structure robustly. Each individual method’s subclonal peaks are linked with a line. A) 
Most solutions agree except two. B) Methods agree on the clonal location and size, but they diverge for the subclonal position and 
size. C-E) Global agreement on the number of clusters but deviation in position and size. F) High variability and disagreement across 
methods still leads to stable consensus solutions. 
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Fig. 22 The overall scores of all individual (purple), random (red), consensus (green) subclonal architecture reconstruction methods 
on A) PhylogicSim500 and B) SimClone1000. 
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Fig. 23 Upper triangle: relative similarities between methods (individual methods are in purple, random methods are in red and 
consensus methods are in green). The size and transparency scale linearly with the similarity score. Lower triangle: heatmaps of 
relative ranks across simulations according to two grid parameters: number of subclones on the x-axis of each heatmap, nrpcc on the 
y-axis of each heatmap (the legend for these axes is on the top right). The scores are average across all simulations falling into the 
grid cell and a minmax normalization is then applied across the grid values, cells are then colored from red (method on the row is 
better) to blue (method on the column is better) with the intensity of the color scaling with the normalized score.  
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Fig. 24 Pairwise distributions of the similarities across samples (lower triangle; bar width was set to 10%) and median similarities 
across samples (upper triangle) for A) PhylogicSim500 and B) SimClone1000. 
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Fig. 25 Median performances of consensus methods on SimClone1000 with different numbers of methods included, from 1 (individual 
methods) to 11 (the reported consensus results), for clonal fraction, number of subclones and RMSE, from top to bottom. The green 
line connects the medians of the medians; the red and blue connect the extreme top and bottom values, respectively. Consensus was 
obtained using CSR (A), CICC on a subset of 680 out of 965 samples (B) or WM (C). 

Validation of subclonal reconstruction 
 

Simulation of subclonally heterogeneous samples – PhylogicSim500 
 

 

Fig. 26 Summary of subclonal reconstruction on simulation data. General consistency between individual methods and consensus 
method results: A) fraction of clonal mutations and B) number of subclonal clusters. 
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A grid approach to simulations of tumors – SimClone1000 
 

 

 

Fig. 27 The simulated data set was created as a grid with four axis. Each axis represents a type of measurement that can be obtained 
from real data. This figure shows the histogram of these four measurements from the PCAWG data and the colors represent bins 
along each grid axis. A simulated tumor falls somewhere on the grid, which amounts to a combination of 4 bins (one on each axis). 
The parameters for this sample are then generated by sampling a single value from each of the 4 bins. 
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Results of reconstructing the subclonal architecture of tumors 
 
Results by individual methods are consistent with consensus results 

 

Fig. 28. Fraction of subclonal mutations for all eleven subclonal reconstruction methods and the consensus is shown for 1,705 samples 
with sufficient power to detect subclones at CCF > 30%. Samples have been limited to those with less than 2% tumor contamination 
in the matched normal sample and no activity of any of the identified artefact signatures (Alexandrov et al., 2020). Only representative 
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samples (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020) from multi-sample cases are shown. Cancer 
types are ordered by median fraction of subclonal mutations in the consensus reconstruction. The distributions of the fraction of 
subclonal mutations per cancer type, as determined by the individual methods, are very similar to the reported consensus architecture. 

 
Selection and driver genes 
 
Subclonal driver genes and their unique sequence 
 

 

Fig. 29 Exclusively subclonal drivers might display lower VAF/CCF due to alignment ambiguities in their coding sequence. 
Scatter plot of the -log10(q-values) of the dN/dS for clonal (x-axis) vs. subclonal (y-axis) mutations. Each point represents a gene and 
is colored if part of its sequence presents high similarity with another genomic region in the reference genome. The size is proportional 
to the fraction of the non-unique sequence in the gene coding region. 

 
Gene set analysis of subclonally mutated genes 
 

Table 1 Table of the 10 top significant gene sets (q<0.1) in the subclonally mutated genes. The columns in order give: the gene set 
name, the number of genes in the gene set, the p-value of the hypergeometric test, the FDR q-value. 
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Tracking signature activities across cancer timelines 
 

 

Fig. 30 Timing of mutation signature changes between evolutionary periods. Overview of tumor evolution from zygote to diagnosis, 
with different measurable “epochs” indicated by colors. Activity changes of mutational processes between these different epochs have 
been queried both here (Dentro et al.) and by Gerstung et al. (Gerstung et al., 2020) using distinct approaches resulting in differing 
time resolution. 

 

 

Fig. 31 Changes in signature activities occur near subclone boundaries. Plot displays relative enrichment (y-axis) versus random 
control of activity change points at given time point offset (x-axis) from subclone boundaries. The smoothing window used when 
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computing activity trajectories spans three time points, so sub clone boundaries between offsets -3 to 3 are deemed coincident with 
the activity change points. 

 

Fig. 32 The distribution of the proportion of boundaries supported by randomly sampled points. The red line shows the proportion of 
boundaries supported by real change-points. 

SV analysis and fusion clonality detection 
 
Clonality analysis of recurrent structural variants 
 

 

Fig. 33 Comparison of the number of subclonal SVs observed in SRB loci annotated as fragile or non-fragile. * represents a significant 
difference (p<0.05) using the Wilcoxon rank sum test. 

 

 


