THE LANCET Respiratory Medicine ## Supplementary appendix This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors. Supplement to: Tan SH, Allicock O, Armstrong-Hough M, et al. Saliva as a gold-standard sample for SARS-CoV-2 detection . *Lancet Respir Med* 2021; published online April 19. http://dx.doi.org/10.1016/S2213-2600(21)00178-8. Table 1. Studies describing salivary diagnosis of SARS-CoV-2 have greatly varying methods with large discrepancies between results. Sample populations also vary in proportion of symptomatic and asymptomatic cases, which can influence reported sensitivities. To encourage standardization in COVID-19 saliva testing, researchers should replicate a method that is high in sensitivity and sultide to their available resources. From top to bottom are the newest to oldest papers of 2020 (from 12/h Feb - 1st Nov). Across the studies (n=50), saliva sensitivity ranged from 22.4-100% but had a high specificity (negative result agreement), narging from 95.7-100%, while NPS established present results are insplicitly result agreement), insplication of the substitution | | | | 1 | | | | Popu | lation | | | | | | T | No. Positive Cases | No. | | Cases | |----------------|--|---|-------------------|-------------------------------------|--|-----------|----------------------------|--|---------------------------|--|--|--|---|-------------------------------|---|----------------------------|---|------------------------------------| | Date
(2020) | Journal /
Preprint
Server | Title | Authors | Study Type | Cohort | Country | No. (males /
females) | Median Age
(Range) | Diagnostic
Test Method | Saliva Collection
Method | RNA Extraction
Method | PCR kit | Vol. Saliva Eluted | Reference
Standard
Test | Based on Reference
(% study
participants) | Matched
Sample
Pairs | Diagnostic Efficiency | Detected by
Saliva Alone
(%) | | 11/1 | MedRxiv | Saliva as a testing
specimen with or
without pooling for
SARS-CoV-2
detection by multiplex
RT-PCR test | Sun et al. | Clinical
evaluation | Asymptomatic individuals and known positive clinical samples | USA | 20 | NI | RT-PCR | HCW supervised
self-collection of
saliva (2 mL) into
tube with (2 mL)
viral
transport media
(VTM) | PureLink™ Viral
RNA/DNA Mini Kit
(Invitrogen,
Carlsbad, CA, USA)
on the MGISP-960
High-throughput
Automated Sample
Preparation System | QuantiVirusTM
SARS-CoV-2
Multiplex Test kit | Extracted RNA from 200 µL, 5.5 µL used for PCR per test | NPS | 17 (85%) | 20 | Sensitivity: Saliva = 95%,
NPS = 85%. Agreement =
80%. | 15 | | 10/27 | MedRxiv | Performance of At-
Home Self-Collected
Saliva and Nasal-
Oropharyngeal
Swabs in the
Surveillance of
COVID-19 | Braz-Silva et al. | Consecutive case series | Suspected positive individuals | Brazil | 201 (74m /
126f / 1 NI) | NI | RT-PCR | Home self-collection
using cotton pad
device (place
pad/swab in mouth,
chew 1 min to
stimulate salivation,
place swab in tube) | NucliSENS EasyMag
(BioMérieux,
Durham, North
Carolina, USA)
automated DNA/RNA
extraction platform | Altona RealStar®
SARS-CoV-2 RT-
PCR Kit 1.0 | Extracted RNA from 200 μL | Combined
NPS + OPS | 52 (26%) by reference,
70 (35%) by both
samples | 201 | Sensitivity: Saliva = 78.6%,
NPS + OPS = 74.2%.
Agreement = 83.6% | 26 | | 10/27 | MedRxiv | Saliva is a promising
alternative specimen
for the detection of
SARS-CoV-2 in
children and adults | Yee et al. | Prospective | Suspected positive individuals and family members | USA | 300 | NI | RT-qPCR | HCW supervised
self-collection by
spitting (3 mL) in
container | MagMAX
Viral/Pathogen
Nucleic Acid Isolation
Kit on the Thermo
Fisher KingFisher
Flex platform
(Thermo Fisher,
Waltham, MA, USA) | TaqPath COVID-19
Combo Kit | Extracted RNA from 250 μL, eluted in 50 μL | NPS | 87 (29%) | 300 | Sensitivity (overall): Saliva = 81.4%, NPS = 89.7%. Sensitivity of Asymptomatic children: both Saliva and NPS = 78.6%; Adults: Saliva = 83.3%, NPS = 90.7%; Symptomatic adults: both Saliva and NPS = 98.8% | 10 | | 10/27 | MedRxiv | A scalable saliva-
based, extraction-free
rt-lamp protocol for
sars-cov-2 diagnosis | Asprino et al. | Prospective validation | COVID-19 patients | Brazil | 244 | NI | RT-LAMP | Self-collected by
spitting (~1 mL) in
container | N/A | N/A | N/A | NPS with RT-
PCR | 65 (27%) | 244 | Sensitivity: Saliva = 78.9%,
NPS with RT-PCR = 85.5%.
Specificity = 100% | 14 | | 10/21 | Journal of
Clinical
Microbiology | Self-Collected
Anterior Nasal and
Saliva Specimens.
versus Healthcare
Worker-Collected.
Nasopharyngeal.
Swabs for the
Molecular Detection
of SARS-CoV-2 | Hanson et al. | Prospective | Suspected positive individuals | USA | 354 (~ 188m
/ 166f) | 35 mean
(18-75) | RT-PCR | HCW supervised
self-collection by
pooling saliva in
mouth (Wo
coughing) then
repeatedly spitting
(min. 1 mL) in tube | Diluted saliva 1:1 in
ARUP Laboratories
transport medium
(ATM) then
homogenation using
Hologic Aptima lysis
tube | Hologic Aptima
SARS-CoV-2
transcription-
mediated
amplification (TMA)
assay | NI | NPS | 80 (22.5%) | 354 | Sensitivity: Saliva = 94%.
NPS = 93%.
Agreement: Positive =
93.8%, Negative = 97.8% | 7 | | 10/21 | MedRxiv | Saliva as testing
sample for SARS-
CoV-2 detection by
RT-PCR in low
prevalence
community setting | Gavars et al. | Prospective | General
population | Latvia | NI | NI | RT-qPCR | Self-collected by spitting in container | NI | NI | NI | NPS or OPS | 68 (65%) | 104 | Sensitivity (samples taken 0 - 70 days after symptom onset + asymptomatic samples): Saliva = 76%, NPS = 92%. Sensitivity (samples taken 0 - 14 days of symptom onset): Saliva = 90%, Specificity = 100% | 6 | | 10/13 | MedRxiv | Evaluation of saliva
sampling procedures
for SARS-CoV-2
diagnostics reveals
differential sensitivity
and association with
viral load | Mestdagh et al. | Prospective | Suspected positive individuals | Belgium | 2884 | NI, most
(59%)
participants
31-60 y | RT-qPCR | Self-collected by saliva spitting in tube with preservatives (Norgen Biotek's Dx 3800). Self-collected by oral swabbing device (ORE-100). | Total RNA
Purification Kit
(Norgen Biotek, ON,
Canada) | TaqPath COVID-19
Combo Kit | Extracted RNA from
200 μL, eluted in 50
μL | NPS | 117 (4.0%) | 2884 | Sensitivity: spitting = 30.8%, saliva swabbing = 22.4%. Sensitivity of individuals with medium - high viral load: spitting (symptomatic + asymptomatic cases) = 100%, swabbing (symptomatic) = 77.8%, swabbing (asymptomatic) = 100%. | NI | | 10/5 | MedRxiv | Validation of self-
collected buccal swab
and saliva as a
diagnostic tool for
COVID-19 | Ku et al. | Cross-
sectional | Positive health care workers | Singapore | 42 (40m, 2f) | 45 mean | RT-PCR | Cough deeply x 5,
pool saliva in mouth
(1-2 mins), then
gently spit (1-2 mL)
into container | 1ml of Cobas Omni
Lysis Reagent | Superscript III one step RT-PCR system | NI | NPS | 30 (71%) | 42 | Sensitivity: Saliva = 70%,
NPS = 97%.
Agreement: Positive =
63.3%, Negative = 91.7% | 3.2 | | 10/01 | Clinical
Virology | Saliva specimens for
detection of severe
acute respiratory
syndrome
coronavirus 2 in
Kuwait: A cross-
sectional study | Altawalah et al. | Prospective,
Cross-
sectional | Suspected positive individuals | Kuwait | 891 | NI | RT-PCR | Self-collected by
expelling whole
saliva (~1.5 mL)
after deep cough
into container with
300 uL VTM. | MagMax
Viral/Pathogen
Nucleic Acid Isolation
Kit (Thermo Fisher
Scientific, Waltham,
MA, USA) on
KingFisher (Thermo
Fisher Scientific,
Waltham, MA, USA) | TaqPath™ COVID-
19 multiplex RT-PCR | Extracted RNA from 200 μL | NPS | 344 (38.6%) | 891 | Detection rate (based on population) = 89%. Sensitivity (based on positive NPS) = 83.43%. Specificity = 96.71% | NI | Table 1. Studies describing salivary diagnosis of SARS-CoV-2 have greatly varying methods with large discrepancies between results. Sample populations also vary in proportion of symptomatic cases, which can influence reported sensitivities. To encourage standardization in COVID-19 saliva testing, researchers should replicate a method that is high in sensitivity and suited to their available resources. From top to bottom are the newest to oldest papers of 2020 (from 12th Feb - 1st Nov). Across the studies (n=58), saliva sensitivity ranged from 22.4-100% but had a high specificity (negative result agreement), ranging from 95.7-100%, while NPS sensitivity ranged from 52.5-100%. The
sensitivities were measured based on the assumption that all positive results were true positives, unless studies indicated the proportion of false positive results. Studies showing greater or similar saliva sensitivities to reference tests are highlighted green (n=40), lower saliva sensitivities are highlighted green (n=40), lower saliva sensitivities are highlighted red (n=14), and mixed-finding studies are rehiphlighted (with a notable proportion of COVID-19 saliva testing. The new studies in the subject of the sensitivity ranged from 22.4-100% but had a high specificity (negative results sensitivity ranged from 22.4-100% but had a high specificity (negative results are highlighted green (n=40), lower saliva sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), high specificity (negative results subjective), high specificity (negative results subjective), high specificity (negative results subjec | | Journal / | | | | | | Popul | ation | | | | | | Reference | No. Positive Cases | No. | | Cases | |----------------|---|--|------------------------------|--------------------------------------|--|----------------------------|---|---|----------------------------|--|---|---|--|---|---|---|---|------------------------------------| | Date
(2020) | Preprint
Server | Title | Authors | Study Type | Cohort | Country | No. (males / females) | Median Age
(Range) | Diagnostic
Test Method | Saliva Collection
Method | RNA Extraction
Method | PCR kit | Vol. Saliva Eluted | Standard
Test | Based on Reference
(% study
participants) | Matched
Sample
Pairs | Diagnostic Efficiency | Detected by
Saliva Alone
(%) | | 10/01 | Infection and
Drug
Resistance | Saliva as an
Alternative Specimen
for Molecular COVID-
19 Testing in
Community Settings
and Population-
Based Screening | Senok et al. | Prospective | Suspected positive individuals and family members | United
Arab
Emirates | 401 (329m /
72f) | 35.5 mean
(± SD 9.5) | RT-PCR | Self-collected by
pooling in mouth (1-
2 mins) then gently
splt (2-4 mL) in
container | Chemagic viral RNA
extraction kit on the
automated
Chemagic™ 360
Nucleic Acid
Extractor
(PerkinElmer,
Baesweiler,
Germany) | NeoPlex COVID-19
kit | Extracted RNA from
300 µL then 5 µL
sample added to
total vol. 20 µL in
PCR tube | NPS | 26 (6.5%) | 401 | Sensitivity: Saliva = 73.1%,
NPS = 67.9%. Specificity =
97.6% | 26 | | 09/28 | Med | SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity | Vogels et al. | Prospective | COVID-19
patients and
healthcare
workers | USA | 3779 | NI | RT-qPCR | Self-collected by pooling in mouth (at least 500 µL) then spit in container | N/A | ThermoFisher
Scientific TaqPath
COVID-19 combo kit | Extracted RNA from 200 μL, eluted in 50 μL | Anterior
nares/OPS | 19 (0.5%) | 3779 | Sensitivity: Saliva = 89.5%,
AN/OPS = 89.5%.
Agreement: Positive =
89.5%, Negative = >99.9%,
Overall = 99.9% | 10 | | 09/24 | MedRxiv | Prospective. comparison of saliva and nasopharyngeal swab sampling for mass screening for COVID-19 | Nacher et al. | Prospective,
Consecutive
Cases | Suspected
positive
individuals and
high-risk
asymptomatic
individuals | French
Guiana | 776 (478m /
298f) | 40 mean (±
SD 16.8) | RT-PCR | HCW collected
salivary sputum
sample in container.
Samples taken after
eating breakfast and
teeth brushing
(potential
interference) | QIAamp DSP viral kit
on the QIAsymphony
96 RGQ (Qiagen
GmbH, Germany) | GeneFinderTM
COVID-19 kit | Eluates obtained from 200 μL saliva | NPS | 152 (20%) | 776 | Sensitivity: Saliva = 53%,
NPS = 94% | 6.2 | | 09/25 | Clinical
infectious
Diseases | Mass screening of asymptomatic persons for SARS-CoV-2 using saliva | Yokota et al. | Prospective | Asymptomatic
high-risk
individuals | Japan | 1924 (971 m
/ 858 f / 95
unknown) | Contact-
tracing (CT)
cohort: 44.9
(IQR 29.8-
66.4).
Quarantine
Airport (QA)
cohort: 33.5
(IQR 22.6-
47.4) | RT-qPCR
and RT-
LAMP | Self-collected in sputum tube | Saliva was diluted 4-
fold with phosphate
buffered saline, then
was extracted using
QlAsymphony DSP
Virus/Pathogen kit
and QlAamp Viral
RNA Mini Kit
(QlAGEN, Hilden,
Germany) | qRT-PCR:
THUNDERBIRD®
Probe One-step Kit
and 7500 Real-time
PCR Systems. RT-
LAMP: Loopamp®
2019-SARS-CoV-2
Detection Reagent
Kit | Extracted RNA from 200 µL: PCR - 5µL used as a template, RT-LAMP - 10 µL used in reaction tube | NPS | 46 (2.4%) | 1924 | Sensitivity: Saliva = 92%,
NPS = 86%. Specificity =
>99.9% | 16 | | 09/18 | MedRxiv | The Accuracy of
Healthcare Worker
yersus Self Collected
(2-in-1).
Oropharyngeal and.
Bilateral Mid-
Turbinate (OPMT).
Swabs and Saliva.
Samples for SARS-
CoV-2 | Tan et al. | Prospective | COVID-19
patients and
healthy
volunteers | Singapore | 501 (+ve:
n=401, all
malesve:
n=100) | NI | RT-PCR | Self-collected by
spitting
oropharyngeal
sputum into VTM
tube | PerkinElmer Nucleic
Acid Extraction Kits
on the Pre-Nat II
Automated
Workstation
(PerkinElmer®,
United States) | PerkinElmer® SARS-
CoV-2 Real-time RT-
PCR Assay | NI; Extraction
involved saliva
viscosity-reducing
process | Combined
OPS + mid-
turbinate
(OPMT)
swab | 336 (83.8%) | 501 | Sensitivity: Saliva = 83.6%,
Combined OPMT self-swab
+ Saliva = 92.3%,
Specificity: both OPMT self-
swab and Saliva = 100%. | NI | | 09/16 | Clinical
Chemistry and
Diagnostic
Laboratory
Medicine | SARS-CoV-2 identification and IgA antibodies in saliva: One sample two tests approach for diagnosis | Aita et al. | Prospective | COVID-19 patients | Italy | 369 (+ve:
n=43
ve: n=326) | Pts. +ve: (25
- 94) | RT-PCR | Collected for 1 min using a cotton swab | NI | One-Step RT-ddPCR
Advanced Kit for
Probes (Bio-Rad) | NI | NPS | 9 (2%) | 369 | Sensitivity: Saliva = 100%,
NPS = 87.5%.
Specificity = 100% | 13 | | 09/14 | Clinical
infectious
Diseases | Saliva is not a useful diagnostic specimen in children with Coronavirus Disease 2019 | Chong et al. | Prospective | COVID-19
patients | Singapore | 18 (10m / 8f) | 6.6 mean
(IQR 1.8-
11.1) | RT-PCR | Self-collected by
spitting into
container (min. 0.5
mL) or HCW
syringing saliva from
mouth for children
unable to spit | NI | Superscript III one
step RT-PCR system
or QIAGEN One-
Step RT-PCR Kit | NI | NPS | 18 (100%) | 53 | Sensitivity: Saliva Day 1-3 = 46.7%, Day 4-7 = 52.9%, Day 8-10 = 25%, Day 11-15 = 33.3%. NPS: NI | NI | | 09/11 | MedRxiv | Saliva as a potential clinical specimen for diagnosis of SARS-CoV-2 | Bhattacharya
et al. | Prospective | Suspected positive individuals | India | 74 | NI | RT-qPCR | Self-collected by spitting in container | QIAamp Viral RNA
Mini Kit (Qiagen) | Assay unknown,
used Cobas 6800
instrument (Roche) | NI | NPS | 58 (78%) | 74 | Sensitivity: Saliva = 91.37%.
Specificity = 100% | 0 | | 09/09 | Boletín Médico
del Hospital
Infantil de
México | Saliva as a promising
biofluid for SARS-
CoV-2 detection
during the early
stages of infection | López-
Martínez et
al. | Prospective | COVID-19 patients | Mexico | 5 (4m / 1f) | 15 (4-56) | RT-PCR | Self-collected by
gently spitting (~2
mL) in tube | NI | GeneFinder COVID-
19 PLUS RealAmp
Kit | NI | NPS | 5 (100%) | 5 (for just
the 1st
samples of
each Pt.) | Sensitivity = 100% | N/A | Table 1. Studies describing salivary diagnosis of SARS-CoV-2 have greatly varying methods with large discrepancies between results. Sample populations also vary in proportion of symptomatic and asymptomatic cases, which can influence reported sensitivities. To encourage standardization in COVID-19 saliva testing, researchers should replicate a method that is high in sensitivity and sultide to their available resources. From top to bottom are the
newest to oldest papers of 2020 (from 12/h Feb - 1st Nov). Across the studies (n=50), saliva sensitivity ranged from 22.4-100% but had a high specificity (negative result agreement), narging from 95.7-100%, while NPS established present results are insplicitly result agreement), insplication of the substitution | | | | | | I | | Popu | lation | | 1 | | 1 | 1 | I | No. Positive Cases | No. | | Cases | |----------------|--|---|--------------------|---------------------------------------|--|-----------|---|---|---------------------------|---|--|---|--|-------------------------------|---|-------------------------------|---|------------------------------------| | Date
(2020) | Journal /
Preprint
Server | Title | Authors | Study Type | Cohort | Country | No. (males / females) | Median Age
(Range) | Diagnostic
Test Method | Saliva Collection
Method | RNA Extraction
Method | PCR kit | Vol. Saliva Eluted | Reference
Standard
Test | Based on Reference
(% study
participants) | Matched
Sample
Pairs | Diagnostic Efficiency | Detected by
Saliva Alone
(%) | | 09/03 | MedRxiv | Equivalent SARS-
CoV-2 viral loads
between
nasopharyngeal swab
and saliva in
symptomatic patients | Yokota et al. | Prospective | COVID-19 patients | Japan | 42 (25m /
17f) | 73 (27-93) | RT-qPCR | Self-collected by spitting in container | Saliva was diluted 4-
fold with phosphate
buffered saline (PBS)
QIAsymphony DSP
Virus/Pathogen kit
and QIAamp Viral
RNA Mini Kit
(QIAGEN, Hilden,
Germany) | THUNDERBIRD®
79 Probe One-step
qRT-PCR Kit | Extracted RNA from
200 µL, 5 µL used
for one step PCR | NPS | 34 (81%) | 42 | Sensitivity = 90% | 11 | | 09/01 | European
Journal of
Clinical
Microbiology &
Infectious
Diseases | Practical challenges. to the clinical. implementation of. saliva for SARS-CoV- 2 detection | Matic et al. | Prospective | COVID-19
patients and
healthcare
workers | Canada | NI | NI | RT-PCR | Self-collected saliva
by pooling saliva
from throat and
spitting (~ 1mL) into
container | Saliva was diluted 1:
2 with sterile
phosphate-buffered
saline (PBS) then
MagNA Pure 96
System (Roche
Molecular
Diagnostics, CA,
USA) | LightMix®
ModularDx SARS-
CoV (COVID19) E-
gene assay | Extracted RNA from 500 µL, eluted in 50 uL | NPS | 74 (100%) | 74 | Sensitvity = 91.9% | 1.4 | | 09/01 | MedRxiv | SalivaAli: Clinical validation of a sensitive test for saliva collected in healthcare and community settlings with pooling utility for SARS-CoV-2 mass surveillance | Sahajpal et
al. | Prospective
clinical
validation | Suspected positive individuals | USA | 344 | NI | RT-PCR | Self-collected by
spitting in container
then HCW added
VTM | Chemagic 360
instrument,
PerkinElmer Inc. OR
Omni bead mill
homogenizer (Omni
International, USA) | TaqMan-based RT-
PCR assay + FDA-
EUA assay | Extracted RNA from 300µL, eluted in 60µL | NPS | SalivaAll: 75 samples
(40%). Other protocol:
61 samples (25%) | 429 (n=189
SalivaAll) | SalivaAll (saliva homogenized before RNA extraction) Sensitivity: Saliva = 97.8%, NPS = 78.9%. Algreement = 76.8%, Also showed protocols with more processing challenges can reduce sensitivity: Wohomogenization Saliva = 50.0%, NPS = 89.7%. Positive agreement = 39.7% | 21 | | 08/31 | Brazilian
Journal of
Infectious
Diseases | Saliva is a reliable,
non-invasive
specimen for SARS-
CoV-2 detection | Vaz et al. | Prospective validation | Suspected positive individuals | Brazil | 155 (46m /
109f) | 40 (IQR
33-48.5) | RT-PCR | Self-collected by
repeatedly spitting
(~2 mL) in
container, avoiding
sputum | Homogenization
followed by QIAGEN
QIAamp® RNA Mini
Kit | BIOMOL OneStep/
COVID-19 Kit | Extracted RNA from
140 µL, eluted in 60
µL | NPS and/or
OPS | 67 (43%) | 155 | Sensitivity = 94.4%.
Specificity = 97.62%.
Agreement = 96.1% | 3 | | 08/28 | Annals of
Internal
Medicine | Salivary detection of COVID-19 | Caulley et al. | Prospective | Asymptomatic,
high-risk and
suspected
positive
individuals | Canada | 1939 | NI | RT-PCR | Self-collected (at
least 1 mL) by
spitting in tubes
(OMNIgene+ORAL
OM-505) | STARMag Universal
cartridge kit on a
Nimbus or Starlet
extractor (Seegene,
South Korea) | An RT-PCR assay
targeting E gene only | NI | NPS or OPS | 70 (3.6%) | 1939 | Sensitivity: Saliva = 68.6%,
NPS = 80.0%. Positive
agreement = 48.6%.
Disagreement = 31.4% | 20 | | 08/28 | New England
Journal of
Medicine | Saliva or
Nasopharyngeal
Swab Specimens for
Detection of SARS-
CoV-2 | Wyllie et al. | Prospective | Asymptomatic
health care
workers | USA | 70 (41m /
29f) Pts. + 9
asymptomati
c healthcare
workers
(AHW) | 61.4 mean
(13-91) | RT-qPCR | Self-collected by
pooling saliva in
mouth then
repeatedly spitting
in container | MagMAX
Viral/Pathogen
Nucleic Acid Isolation
kit (Thermo Fisher,
Waltham, MA, USA)
with modifications | US CDC real-time
RT-PCR
primer/probe sets | Extracted RNA from 300 μL, eluted in 75 μL | NPS and/or
OPS | 79 (100%) | 79 (n=70
Pts., n=9
AHW) | Pts: Sensitivity (1 - 5 d after Dx): Saliva = 81%, NPS = 71%. AHW: Saliva = 9/9 (100%), NPS = 2/9 (22%) | 25 | | 08/14 | MedRxiv | Validation of Saliva
and Self-
Administered Nasal
Swabs for COVID-19
Testing | Teo et al. | Prospective validation | Asymptomatic
and suspected
positive
individuals | Singapore | 200 (all
male) | Group 1
(n=149): 32
(8-37).
Group 2
(n=51): 38
(IQR 36-41) | RT-PCR | HCW supervised self-collection: 1. Gargling then spitting saliva from back of throat. 2. Clearing nose to expel sputum into container (steps repeated until 1 - 2 mL collected). 3. RNA Stabilization fluid (2 mL) added | GeneAid Biotech Ltd | US CDC real-time
RT-PCR
primer/probe sets or
Fortitude 2.1 kit | Saliva viscosity-
reducing process,
then xtracted RNA
from 200 µL | NPS (PCR kit
= CDC) | 150 (44.5%) | 337 | Sensitivity: Saliva (CDC assay) =>100% (209+ve), Saliva (Fortitude kit) = 100% (167+ve). | 28 | | 08/08 | Clinical
infectious
Diseases | Posterior
oropharyngeal saliva
for the detection of
SARS-CoV-2 | Otto et al. | Prospective | Suspected positive individuals | France | 92 | NI | RT-PCR | Self-collected by coughing in container | MagNA pure
compact (Roche,
Switzerland) or
GenoXtract
(Biocentric, France) | Light-Cycler 480
Real-Time PCR
System | NI | NPS | 45 (49%) | 92 | Sensitivity: Saliva = 100%,
NPS = 92%. Specificity =
100%. Agreement = 91.3% | 8 | | 08/06 | Clinical
Infectious
Diseases | Comparing nasopharyngeal swab and early morning saliva for the identification of SARS-CoV-2 | Rao et al. | Prospective | Asymptomatic
COVID -19
individuals | Malaysia | 217 (all
male) | 27 (IQR 18-
36) | RT-PCR | Self-collected deep
throat saliva in
container upon
waking | MagNA Pure 96 DNA
and Viral NA Small
Volume extraction kit
on MagNA Pure 96
system (Roche
Diagnositc GmBH,
Germany) | One-step RT-PCR of
Real-Q 2019 nCoV
detection | Extracted RNA from 200 μL saliva, eluted in 50 μL | NPS | 160 (74%) | 217 | Sensitivity: Saliva = 93.1%,
NPS = 52.5%. Agreement =
45.6%. Disagreement =
47.5%. | 47.5 | Table 1. Studies describing salivary diagnosis of SARS-CoV-2 have greatly varying methods with large discrepancies between results. Sample populations also vary in proportion of symptomatic and asymptomatic cases, which can influence reported sensitivities. To encourage standardization in COVID-19 saliva testing, researchers should replicate a method that is high in sensitivity and sultide to their available resources. From top to bottom are the newest to oldest papers of 2020 (from 12/h Feb - 1st Nov). Across the studies (n=50), saliva sensitivity ranged from 22.4-100% but had a high specificity (negative result agreement), narging from 95.7-100%, while NPS established present results are insplicitly result agreement), insplication of the substitution | | Journal / | | | | | | Popu | lation | | | | | | Reference | No. Positive Cases | No. | | Cases | |----------------|---|---|------------------------
--|--|---------|--------------------------|-------------------------|-----------------------------------|---|---|--|--|---|---|--|---|------------------------------------| | Date
(2020) | Preprint
Server | Title | Authors | Study Type | Cohort | Country | No. (males /
females) | Median Age
(Range) | Diagnostic
Test Method | Saliva Collection
Method | RNA Extraction
Method | PCR kit | Vol. Saliva Eluted | Standard
Test | Based on Reference
(% study
participants) | Matched
Sample
Pairs | Diagnostic Efficiency | Detected by
Saliva Alone
(%) | | 08/04 | MedRxiv | SalivaDirect: Simple and sensitive molecular diagnostic test for SARS-CoV-2 surveillance | Vogels et al. | Prospective
diagnostic test
validation
(granted FDA
EUA) | COVID-19
patients and
healthcare
workers | USA | NI | NI | RT-qPCR | Samples from Yale
IMPACT
biorepository | N/A | ThermoFisher
Scientific TaqPath
COVID-19 combo | 200 μL input eluted
in 50 μL | NPS | 37 (55%) | 67 | Sensitivity: Saliva = 94.1%,
NPS = 91.4%. Agreement:
positive = 94.1%, negative =
90.9% | 8 | | 08/04 | MedRxiv | Assessment of multiplex digital droplet RT-PCR as an accurate diagnosis tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples | Cassinari et al. | Prospective validation | Suspected positive individuals | France | 130 | NI | RT-qPCR
and 6 plex
RT-ddPCR | Self-collected by
drooling (~2 mL)
into tube | EZ1 DSP 96 virus kit
and EZ1 Advanced
XL machine (Qiagen,
Hilden, Germany) | RealStar® SARS-CoV-2 RT-PCR Kit 1.0. and One-Step RT-ddPCR Advanced Kit for Probes | Extracted RNA from 200 μL saliva | NPS | 13 (10%) | 31 | Sensitivity: Saliva (RT-ddPCR) = 87%, NPS = 87%, Saliva (RT-qPCR) = 67% | 13 | | 07/31 | Clinical
Virology | Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients | Landry et al. | Prospective | Suspected positive individuals | USA | NI | NI | RT-PCR | Assisted collection,
pool saliva in mouth
then spit in
container | bioMerieux
easyMAG® or
EMAG® (bioMerieux
Inc, Durham, NC,
USA) | US CDC real-time
RT-PCR
primer/probe sets | Extracted RNA from 200 μL saliva, eluted in 55 μL | NPS | 35 (27%) | 124 | Sensitivity: Saliva = 85.7%,
NPS = 94.3%. Agreement =
94.4% | 6 | | 07/29 | Molecular
Sciences | A rapid, simple, inexpensive, and mobile colorimetric assay COVID-19-LAMP for mass onsite screening of COVID-19 | Chow et al. | Consecutive case series | COVID-19
patients and
asymptomatic
COVID -19
individuals | China | 40 | NI | RT-LAMP | Unspecified, used sputum/deep throat salliva | QIAamp Viral RNA
Mini kit (QIAGEN,
Hilden, Germany) | N/A | Extracted RNA from
140 µL saliva,
eluted in 60 µL | NPS with RT-
qPCR | 160 samples (98%) | 163
unmatched
(saliva = 67,
NPS = 96) | Sensitivity: Saliva = 97.02%,
NPS = 98.96%. Specificity =
100% | NI | | 07/28 | MedRxiv | Does sampling saliva
increase detection of
SARS-CoV-2 by RT-
PCR? Comparing
saliva with oro-
nasopharyngeal
swabs | Dogan et al. | Cross -
sectional,
consecutive | Suspected positive individuals | Turkey | 200 (106m /
94f) | 54.9 mean
(SD ±16.1) | RT-PCR | HCW sampled by
Pts. drooling (~1
mL) into VTM tubes,
ensured to collect
saliva not sputum | N/A | Direct Detection of
SARS-CoV-2 Kit
(Coyote Bioscience
Co., Ltd) | N/A, kit did not
require separate
RNA extraction | NPS | 98 (49%) | 157 | Sensitivity (Day 0):
Saliva = 63%, NPS = 83%,
OPS = 83%.
Sensitivity (Day 5):
Saliva = 55%, NPS = 55%,
OPS = 60% | 7 | | 07/16 | Experimental
Biology and
Medicine | Direct on-the-spot
detection of SARS-
CoV-2 in patients | Ben-Assa et al. | Clinical
evaluation | Suspected positive individuals | Israel | 4 | NI | RT-qPCR
and RT-
LAMP | Self-collected by
spitting in sterile
cups | bioMerieux easyMAG® or EMAG® (bioMérieux, Durham, North Carolina, USA), magLEAD 5bL (Precision System Science) or MagEx (STARiet) | Allplex 2019-nCoV
(Seegene) or real-
time fluorescent RT-
PCR Kit for Detecting
SARS-2019-nCoV
(BGI)) | RT-qPCR: Extracted RNA from 0.5 mL saliva, eluted in 50 µL. RT-LAMP: 7 µL inactivated sample used for total reaction vol. 20 µL | Swab
(unspecified)
with RT-
qPCR | 3 (75%) | 4 | Sensitivity = 100%.
Positive and negative
agreement = 100% | N/A | | 07/12 | Clinical
Microbiology
and Infection | Non-invasive saliva
specimens for the
diagnosis of COVID-
19: caution in mild
outpatient cohorts
with low prevalence | Skolimowska
et al. | Prospective
cross-
sectional | Symptomatic
healthcare
workers and
household
contacts | UK | 132 (43m /
89f) | 39 (IQR 30-
51) | RT-PCR | Self-collected
spitting in container
w/o coughing | N/A | Roche,
AusDiagnostics,
ThermoFisher,
and Abbott assays | NI | NPS / OPS | 18 (14%) | 131 | Sensitivity: Saliva = 83.3%,
NPS = 93.8%. Specificity =
99.1% | 6 | | 07/11 | MedRxiv (and
CDC) | Saliva offers a sensitive. specific and non-invasive. alternative to upper respiratory swabs for SARS-CoV-2 diagnosis. Peer-reviewed version: Saliva Alternative to Upper Respiratory. Swabs for SARS-CoV-2 Diagnosis | Byrne et al. | Prospective | Suspected positive individuals | UK | 110 (49m /
61f) | NI | RT-qPCR | Self-collected pooling in mouth then spitting in tube (~200 µL) | RNA using the
QIAamp Viral RNA
Mini Kit (QIAGEN) | Genesig® Real-Time
Coronavirus COVID-
19 PCR assay | NI | Nasal/throat
(NT) swabs | 19 samples (13%) | 145 | Sensitivity = 100%.
Agreement: positive = 85%,
negative = 97.6% | 13 | | 07/07 | Clinical
Microbiology | Clinical evaluation of
self-collected saliva
by RT-qPCR, direct
RT-qPCR, RT-LAMP,
and a rapid antigen
test to diagnose
COVID-19 | Nagura-Ikeda
et al. | Clinical
evaluation | COVID-19
patients | Japan | 103 (66m /
37f) | 46 (18-87) | RT-qPCR +
RT-LAMP | Self-collected by spitting in tube (~0.5 mL) | QIAsymphony RNA
kit (Qiagen, Hilden,
Germany) | QuantiTect® Probe
RT-PCR Kit
(QIAGEN) | RNA extracted from
140 µL. If w/o RNA
extraction, Method
A: 8 µL sample + 2
µL prep buffer.
Method B: 5 µL
sample + 5 µL
buffer | NPS | 103 (100%) | 103 | Sensitivity of various methods: RNA extraction = 81.6%, Automated PCR = 80.6%, A = 76.7%, B = 78.6%, RT- LAMP = 70.9% | NI | Table 1. Studies describing salivary diagnosis of SARS-CoV-2 have greatly varying methods with large discrepancies between results. Sample populations also vary in proportion of symptomatic cases, which can influence reported sensitivities. To encourage standardization in COVID-19 saliva testing, researchers should replicate a method that is high in sensitivity and suited to their available resources. From top to bottom are the newest to oldest papers of 2020 (from 12th Feb - 1st Nov). Across the studies (n=58), saliva sensitivity ranged from 22.4-100% but had a high specificity (negative result agreement), ranging from 95.7-100%, while NPS sensitivity ranged from 52.5-100%. The sensitivities were measured based on the assumption that all positive results were true positives, unless studies indicated the proportion of false positive results. Studies showing greater or similar saliva sensitivities to reference tests are highlighted green (n=40), lower saliva sensitivities are highlighted green (n=40), lower saliva sensitivities are highlighted red (n=14), and mixed-finding studies are rehiphlighted (with a notable proportion of COVID-19 saliva testing. The new studies in the subject of the sensitivity ranged from 22.4-100% but had a high specificity (negative results sensitivity ranged from 22.4-100% but had a high specificity (negative results are highlighted green (n=40), lower saliva sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), while NPS sensitivity ranged from 22.4-100% but had a high specificity (negative results subjective), high specificity (negative results subjective), high specificity (negative results subjective), high specificity (negative results subjec | Date | Journal / | | | | | | Popu | ation | Diagnostic | Saliva Collection | RNA Extraction | | | Reference | No. Positive Cases
Based on Reference | No.
Matched | | Cases
Detected by | |--------|------------------------------------|--|---------------------------------|--
---|---------|-----------------------|-----------------------|------------------------------|---|--|---|--|--------------------------------|--|--|---|----------------------| | (2020) | Preprint
Server | Title | Authors | Study Type | Cohort | Country | No. (males / females) | Median Age
(Range) | Test Method | Method | Method | PCR kit | Vol. Saliva Eluted | Standard
Test | (% study
participants) | Sample
Pairs | Diagnostic Efficiency | Saliva Alone
(%) | | 07/04 | Medical
Virology | Deep throat saliva as
an alternative
diagnostic specimen
type for the detection
of SARS-CoV-2 | Leung et al. | Retrospective | COVID-19
patients | China | 62 | NI | RT-PCR | Self-collected deep
throat saliva into
container | MagMAX Viral RNA
isolation kit (Applied
Biosystems, Foster
city, CA, US) | LightMix Modular
SARS-CoV E-gene
detection kit | Extracted 50 μL
RNA from 200 μL
sample | NPS | 29 (47%) | 95 (n=61
positive,
n=36
negative) | Sensitivity: Saliva = 83.6%,
NPS = 73.8%. Agreement:
positive = 67.2%, negative =
100% | 21 | | 07/01 | bioRxiv | Saliva sampling is an excellent option to increase the number of SARS CoV2 diagnostic tests in settings with supply shortages | Moreno -
Contreras et
al. | Prospective | COVID-19
patients and
healthcare
workers | Mexico | 253 (115m /
137f) | 41 (IQR 26-
55) | RT-qPCR | Self-collected by
spitting (2-3 mL) on
several occasions in
containers | N/A | StarQ One-Step RT-
qPCR (Genes 2 Life) | 50 µL saliva mixed
with 50 µL DNA
extraction Quick
Extract reagent | NPS and/or
OPS | 114 (45%) | 253 | Sensitivities: One-swab group (n=182) Saliva = 86.2%, OPS = 65%. Two-swab group (n=71) Saliva = 73.5%, NPS+OPS = 82.3%. | 30 | | 06/25 | Clinical
Infectious
Diseases | Sensitivity of nasopharyngeal swabs and saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | Jamal et al. | Prospective | COVID-19
patients | Canada | 91 (52m /
39f) | 66 (23-106) | RT-PCR | Self-collected by
spitting 1 tsp (5 mL)
saliva in container.
Diluted with 2.5 mL
of PBS | NI | Allplex™
2019-nCoV Assay
(100T) | NI | NPS,
midturbinate,
or NS | 91 (100%) | 91 | Sensitivity: Saliva = 72%,
NPS = 89%. Positive
agreement = 61% | 9 | | 06/21 | Clinical
Infectious
Diseases | Posterior oropharyngeal saliva for the detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) | Wong et al. | Retrospective cohort | COVID-19
patients | China | 95 (57m /
38f) | 36 (4-92) | RT-PCR | Self-collected deep
throat saliva by
clearing saliva from
back of throat into
container | MagNA Pure LC 2.0
or MagNA Pure 96
(Roche, Switzerland) | LightMix® Modular
SARS + Cobas z480
real-time PCR
analyzer (Roche) | 20 µL reaction
mixture containing
10 µL extracted
RNA from saliva
received in 1 mL
VTM | NPS | 51 (54%) | 229 | Sensitivity: Saliva = 100%
NPS = 86.5%. Agreement =
76.0% | 23 | | 06/18 | MedRxiv | Evaluation of
specimen types and
saliva stabilization
solutions for SARS-
CoV-2 testing | Griesemer et al. | Cross-
sectional | Suspected positive individuals | USA | 227 | (14-77) | RT-PCR | HCW assisted saliva collection in tubes | bioMerieux
easyMAG® or
EMAG®
(BioMérieux,
Durham, North
Carolina, USA) | CDC 2019 nCoV
Real-Time RT-PCR
Diagnostic Panel | System 1 (EMAG®):
110 µL added to 2
mL lysis buffer,
extracted into 110
µL eluate. System 2
(MagNA Pure 96):
100 µL added to
350 µL lysis buffer,
eluted into 100 µL | NPS | 93 (41%) | 227 | Sensitivity: Saliva = 87.1%,
NPS = 97.9%, NS = 87.1%,
Combined saliva + NS =
94.6% | 1 | | 06/18 | BioRxiv | Saliva based
molecular testing for
SARS-CoV-2 that
bypasses RNA
extraction | Ranoa et al. | Prospective | Healthy
individuals | USA | 100 | NI | RT-qPCR | Self-collected by
drooling (1 mL) into
container | Heat inactivation OR
MagMax
Viral/Pathogen II
Nucleic Acid Isolation
Kit (Applied
Biosystems, Foster
city, CA, US) | TaqPath RT-PCR
COVID-19 Kit | W/o RNA extraction:
buffer addition for
final [sample] of
0.5%. RNA
extraction: 200 µL
saliva, eluted with
50 µL | NPS | 9 (9%) | 100 | Single sample testing:
Sensitivity = 88.9%.
Specificity = 98.9%.
Duplicate testing: Sensitivity
= 100%. Specificity = 100%.
Agreement: positive =
88.9%, negative = 98.9% | N/A | | 06/16 | MedRxiv | Field-deployable, rapid diagnostic testing of saliva samples for SARS-CoV-2 | Wei et al. | Prospective diagnostic test validation | Suspected positive individuals | USA | 149 NPS
samples | NI | High-
Performance
LAMP | Collected from mouth directly or by spitting in container | N/A | N/A | NI | NPS | 4 Pts. (2.7%) | 18 | Pt samples: Sensitivity = 100%. Specificity = 100%. Spiked saliva samples (n=30 +ve, n=30 -ve): Sensitivity = 98.3%. Specificity = 100%. Specificity = 100% = 96.7%, negative = 100% | 20 | | 06/10 | Infection and
Chemotherapy | A case report of
SARS-CoV-2
confirmed in saliva
specimens up to 37
days after onset:
Proposal of saliva
specimens for
COVID-19 diagnosis,
and virus monitoring | Tajima et al. | Case Report | COVID-19
patient | Japan | 1 (1m) | 71 | RT-PCR | Self-collected early
morning saliva by
spitting in container
(600 µL) | SMGNP to
concentrate the
virus, then 0.1%
sodium lauryl sulfate
aqueous solution
was added to elute
the RNA | NI | NI | NPS | 1 (100%) | 6 | Sensitivity (of samples taken days 28 - 37 after symptom onset): Saliva = 4/6, NPS = 5/6 | 0 | Table 1. Studies describing salivary diagnosis of SARS-CoV-2 have greatly varying methods with large discrepancies between results. Sample populations also vary in proportion of symptomatic and asymptomatic cases, which can influence reported sensitivities. To encourage standardization in COVID-19 saliva testing, researchers should replicate a method that is high in sensitivity and suited to their available resources. From top to bottom are the newest to oldest papers of 2020 (from 12th Feb - 1st Nov). Across the studies (n=58), saliva sensitivity ranged from 22.4-100% but had a high specificity (negative result agreement), ranging from 95.7-100%, while NPS sensitivity ranged from 52.5-100%. The sensitivities were measured based on the assumption that all positive results were true positives, unless studies indicated the proportion of false positive results. Studies showing greater or similar saliva sensitivities to reference tests are highlighted green (n=40), lower saliva sensitivities g | | Journal / | | | | | | Popu | lation | | | | | | Reference | No. Positive Cases | No. | | Cases | |----------------|---|---|-----------------------|--|---|----------|-----------------------|-----------------------|---------------------------|---|--|---|--|----------------------|--|----------------------------|---|------------------------------------| | Date
(2020) | Preprint
Server | Title | Authors | Study Type | Cohort | Country | No. (males / females) | Median Age
(Range) | Diagnostic
Test Method | Saliva Collection
Method | RNA Extraction
Method | PCR kit | Vol. Saliva Eluted | Standard
Test | Based on Reference
(% study
participants) | Matched
Sample
Pairs | Diagnostic Efficiency | Detected by
Saliva Alone
(%) | | 06/09 | MedRxiv | Validation of a Self-
administrable, Saliva-
based RT-qPCR Test
Detecting SARS-
CoV-2 | Miller et al. | Clinical and
analytical
validation
(granted FDA
EUA) | Suspected positive individuals | USA | 91 samples | NI | RT-qPCR | HCW observed self-
collection by spitting
in OGD-510 tube | MagMAX Viral/Pathogen Nucleic Acid Isolation Kit (ThermoFisher Scientific) or Maxwell HT Viral TNA Kit using the Maxwell RSC TNA Viral Kit (Promega Corporation) | CFX384 Touch Real-
Time PCR Detection
System with 2019-
nCoV CDC EUA
Authorized qPCR
Probe Assay
primer/probe mix | NI | NPS | 34 (37%) | 91 | Sensitivity
= 97.1%.
Specificity = 96.5 - 98.2%.
Agreement: positive =
97.1%, negative = 96.5-
98.2% | N/A | | 06/04 | Infection | Comparison of
SARS-CoV-2
detection in
nasopharyngeal swab
and saliva | lwasaki et al. | Prospective cohort | Suspected positive individuals and COVID patients | Japan | 76 | 69 (30-97) | RT-qPCR | Self-collected by spitting in container | HT Viral TNA Kit (Promega Corporation) and automated extraction using the Maxwell RSC TNA Viral Kit (Promega Corporation) | TepOnePlus Real
Time PCR System
(Thermo Fisher
Scienttfic) | 200 μL saliva added
to 600 μL PBS, then
140 μL supernatant
used as sample | NPS | 10 (13%) | 76 | Sensitivity: Saliva = 80%,
NPS = 80%. Agreement =
97.4% | 10 | | 06/04 | Clinical
Infectious
Diseases | The natural history
and transmission
potential of
asymptomatic SARS-
CoV-2 infection | Chau et al. | Prospective | COVID-19
patients and
high risk
individuals | Vietnam | 30 (15m /
15f) | 29 (16-60) | RT-PCR | Self-collected by spitting in container | QIAamp viral RNA
kit (QIAgen GmbH,
Hilden, Germany) | Superscript III one
step RT-PCR system
(ThermoFisher) | Extracted RNA from
140 µL saliva,
eluted with 50 µL | NPS | 30 (100%) | 27 | Sensitivity: Saliva = 74%.
(asymptomatic = 64%,
symptomatic = 81%) | 4 | | 05/30 | MedRxiv | EasyCOV : LAMP
based rapid detection
of SARSCoV-2 in
saliva | L'Helgouach
et al. | Prospective diagnostic test validation | Symptomatic
healthcare
worker and
COVID patients | France | 123 (42m /
81f) | 43 mean
(19-84) | RT-LAMP | Assisted collection
by pipette under
tongue (200 µL) | N/A | N/A | 3 µL treated saliva
added to 17 µL
reaction mix | NPS with RT-
PCR | 19 (15%) | 123 | Sensitivity = 78.9%.
Specificity = 95.7% | N/A | | 05/22 | FDA EUA
Summary | P23 Labs TagPath
SARS-CoV-2 Assay | FDA.gov | Prospective diagnostic test authorization | Clinical samples | USA | 42 | NI | RT-PCR | At-home self-
collection and/or
HCW assisted
collection in OM-505
tube | MagMAX Viral/Pathogen Nucleic Acid Isolation Kit on the KingFisher Duo Primer Purification System (Thermo Fisher, Waltham, MA, USA) | Applied Biosystems
(AB) TaqPath
COVID-19 Combo
Kit | Extracted RNA
from 400 µL saliva,
eluted with 50 µL | NPS | 31 (74%) | 42 | Sensitivity: Saliva = 100%,
NPS = 100%. Agreement =
100% | N/A | | 05/17 | MedRxiv | Saliva is less
sensitive than
nasopharyngeal
swabs for COVID-19
detection in the
community setting | Becker et al. | Prospective cohort | Suspected positive individuals and COVID patients | USA | 112 | NI | RT-PCR | Self-collected by
spitting in tubes
containing different
preservatives (OM-
505 or OGD-610
DNA) for Pts. to add
after | Acid Isolation Kit on
the automated
KingFisher Dur
Primer Purification
System (v4.0) | TaqPath Multiplex
RT-PCR COVID-19
kit (Thermo) and
PrimerDesign
COVID-19 assay | Extracted RNA from
400 μL, eluted with
50 μL | NPS | Diagnostic cohort = 88
(100%). Recovering
cohort (>8 d, <21 d
since 1st symptom) =
9 (37.5%) | 112 | Diagnostic cohort
Sensitivity: Saliva = 69.2%,
NPS = 98.9%.
Recovering cohort
Sensitivity: Saliva = ~50%. | 1 | | 05/15 | Clinical
Microbiology
and Infection | Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study | Pasomsub et al. | Cross-
sectional | Suspected positive individuals | Thailand | 200 (69m /
131f) | 36 (28-48) | RT-PCR | Self-collected saliva
sample (no
coughing) into
container | Lysis buffer for viral inactivation (bioMerieux, Marcy-l'Etoile, France), then extracted using MagDEA® Dx reagents and platform (Precision System Science, Chiba, Japan) | CFX96 Real-Time
Detection System | Extracted RNA from 200 µL | NPS + throat
swab | 19 (9.5%) | 200 | Sensitivity: Saliwa = 84.2%,
NPS = 88.9%.
Specificity = 98.9%. Overall
agreement = 97.5% | 11 | | 05/07 | FDA EUA
Summary | Rutgers Clinical
Genomics Laboratory
TaqPath SARS-CoV-
2 Assay | FDA.gov | Prospective
diagnostic test
(granted FDA
EUA) | Clinical samples | USA | 60 | NI | RT-PCR | Self-collected under
HCW observation
by spitting in tube
containing
preservatives
(SDNA-1000) | PerkinElmer
Chemagic 360
automated specimen
processing system
with the Chemagic
Viral DNA/RNA 300
Kit H96. | Applied Biosystems
TaqPath
COVID-19 Combo
Kit | Extracted RNA from 300 µL, eluted in 50 µL | NPS / OPS | 30 (50%) | 60 | Sensitivity = 100%.
Agreement = 100% | N/A | | 04/22 | MedRxiv | Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs | Wyllie et al. | Consecutive case series | COVID-19
patients and
healthcare
workers | USA | 29 (16m /
13f) | 59 mean
(23-91) | RT-PCR | Self-collected by
pooling saliva in
mouth then
repeatedly spitting
in container | MagMAX
Viral/Pathogen
Nucleic Acid Isolation
kit (ThermoFisher,
Waltham, MA, USA) | US CDC real-time
RT-PCR
primer/probe sets | Extracted RNA from 300 µL, eluted in 75 µL | NPS and/or
OPS | 29 (100%) | 38 | Sensitivity: Saliva = 86.8%,
NPS = 73.7%.
Agreement: positive =
65.8%, negative = 100% | 21 | Table 1. Studies describing salivary diagnosis of SARS-CoV-2 have greatly varying methods with large discrepancies between results. Sample populations also vary in proportion of symptomatic and asymptomatic cases, which can influence reported sensitivities. To encourage standardization in COVID-19 saliva testing, researchers should replicate a method that is high in sensitivity and sultide to their available resources. From top to bottom are the newest to oldest papers of 2020 (from 12/h Feb - 1st Nov). Across the studies (n=50), saliva sensitivity ranged from 22.4-100% but had a high specificity (negative result agreement), narging from 95.7-100%, while NPS established present results are insplicitly result agreement), insplication of the substitution | Date | Journal /
Preprint Title
Server | | | | | | Popu | lation | Diagnostic | Saliva Collection | RNA Extraction | | | Reference | No. Positive Cases
Based on Reference | No.
Matched | | Cases
Detected by | |--------|---------------------------------------|--|-----------------|--|--------------------------------|-----------|---|-----------------------|------------|---|---|--|--|------------------|--|-----------------------------|---|----------------------| | (2020) | Preprint
Server | Title | Authors | Study Type | Cohort | Country | No. (males / females) | Median Age
(Range) | | Method | Method | PCR kit | Vol. Saliva Eluted | Standard
Test | (% study
participants) | Sample
Pairs | Diagnostic Efficiency | Saliva Alone
(%) | | 04/21 | Clinical
Microbiology | Saliva as a non-
invasive specimen for
detection of SARS-
CoV-2 | Williams et al. | Consecutive case series | Suspected positive individuals | Australia | 622 | NI | RT-PCR | Pool saliva in mouth
1-2 mins then gently
spit (1-2 mL) in
container | Saliva diluted 1:1
with Amies solution,
then extracted on
Qiagen EZ1 platform
(QIAGEN, Hilden,
Germany). | Coronavirus Typing
(8-well) assay | Extracted RNA from 200 µL, eluted in 60 µL | NPS | 39 (6%) | 522 | Sensitivity = 84.6% | 2 | | 04/14 | Infection | Saliva is a reliable
tool to detect SARS-
CoV-2 | Azzi et al. | Consecutive case series | COVID-19 patients | Italy | 25 (17m / 8f) | 61.5 mean
(39-85) | RT-PCR | Drooling saliva
samples or collected
by physician with
pipette if Pt.
compromised | QIAmp Viral RNA
mini kit (Qiagen,
Hilden, Germany) | Abi Prism 7000
sequence detection
system (Applied
Biosystems) | Extracted RNA from
140 μL, eluted in 60
μL | NPS | 25 (100%) | 33 | Sensitivity = 100% | 8 | | 03/23 | Lancet
Infectious
Diseases | Temporal profiles of
viral load in posterior
oropharyngeal saliva
samples and serum.
antibody responses
during infection by
SARS-CoV-2 | To et al. | Observational
Cohort | COVID-19
patients | China | 23 (13m /
10f) | 62 (37-75) | RT-qPCR | Self-collected
coughed up deep
throat saliva by
clearing throat | NUCLISENS®
easyMAG®
(bioMérieux,
Durham, North
Carolina, USA) | NI | NI | NPS /
sputum | 23 (100%) | 173
unmatched
samples | Sensitivity = 87% | NI | | 03/21 | Infection | Comparisons of viral
shedding time of
SARS-CoV-2 of
different samples in
ICU and non-ICU
patients | Fang et al. | Consecutive case series | COVID-19 patients | China | 32 (16m /
16f) | 41 (34-54) | RT-PCR | NI | NI | NI | NI | NS | 32 (100%) | NI | Sensitivity: Saliva = 78.1%,
NS = 100.0% | 0 | | 02/12 | Clinical
Infectious
Diseases | Consistent detection
of 2019 novel
coronavirus in saliva | To et al. | Prospective
diagnostic test
validation | COVID-19 patients | China | 12 (7m / 5f)
COVID
patients + 33
non-COVID | 62.5 (35-75) | RT-PCR | Self-collected by
coughing out saliva
(0.5 - 1 mL) from
throat in container | NucliSENS
easyMAG
(bioMérieux,
Durham,
North
Carolina, USA) | QuantiNova SYBR
Green (Qiagen) Kit | Extracted RNA from 250 μL, eluted in 55 μL | NPS /
sputum | 12 (23%) | | Sensitivity = 91.7% (11/12
Pts.). Specificity = 100% | 0 |