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S.1. MRI data and processing 
 

MRI data was acquired on eight different MRI scanners: 1) a 1.5T GE Optima MR450w, 2) a 1.5T 

GE Signa Excite, 3) a 1.5T Signa Excite HDxt, 4). A 3T GE Discovery MR750, 5) a 1.5T Siemens Aera, 

6) a 1.5T Siemens Espree, 7) a 3T Siemens Prisma, and 8) a 3T Siemens TrioTim. We used four MRI data 

types in our analysis that were acquired at each scan session: 1) a pre-contrast T1-weighted image, 2) a 

post-contrast T1-weighted image, 3) T2-FLAIR, 4) DWI.  In this retrospective cohort, the scan settings 

(e.g., TR, TE, acquisition matrix) for each sequence were not identical across patients, therefore the 

individual scan settings for each sequence is not reported. However, the images were all acquired based 

on standard-of-care, diagnostic quality, images used at the time of acquisition. A Gadolinium based 

contrast agent (Gadovist) was used for the contrast-enhanced, T1-weighted image series. A rigid 



registration algorithm (imregister in MATLAB (Mathworks, Natick, MA)) was used to provide intra- and 

inter-visit registration.  For intra-visit registration, each image and parameter map were registered to the 

T2-FLAIR image collected at that visit. The intra-visit registration consisted of resampling of images to 

match the image resolution of the T2-FLAIR image. For the inter-visit registration, each image and 

parameter map acquired at post-baseline image sessions were registered to the T2-FLAIR image acquired 

at baseline.  Panel A in Figure 1 shows an example of the registration process for a given patient.  

 For each patient, the gross tumor volume (GTV) was defined as the enhancing tumor on the post-

contrast T1-weighted images and clinical tumor volume (CTV) defined as non-enhancing, T2-hyperintense 

region on the T2-FLAIR images were segmented using a semi-automated approach using thresholding 

methods in combination with manual adjustments by a radiation oncologist and secondary quality review 

by a second senior radiation oncologist.   A k-means clustering of signal intensity was used to segment 

the white matter, gray matter, and cerebrospinal fluid from T2-FLAIR images [1]. The brain-skull interface 

was manually segmented from the T2-FLAIR image. Panel B in Figure 1 shows an example of this 

segmentation process. 

 The ADC calculated from DWI data was used to estimate the tumor cell volume fraction at each 

imaging visit.  ADC was estimated voxel-wise from an echo planar imaging based DWI sequence using 

Eq. (1): 

   , (1) 

 where b1 and b2 are the b-values of 0 and 1000 s/mm2, respectively, and and are the signal intensities 

corresponding to b1 and b2, respectively. The tumor volume fraction at 3D position  and time t , 

, was then estimated on a voxel-specific basis as described in [2–5], using the ADC of free water (ADCw) 

[6], the minimum ADC measured (ADCmin), and Eq. (2): 

ADC=
ln Sb1 Sb2( )
b2−b1

Sb1 Sb2

x φT x ,t( )



   . (2) 

We have used this approximation previously to provide non-invasive estimates of tumor cellularity [3–

5,7,8]; however, we note that this approximation is a simplification of all the biological aspects that 

contribute to changes in ADC.  This point is discussed further in [3,9].  Within the GTV, we assumed that 

the primary cellular contribution is from tumor cells, therefore was calculated using Eq. (2).  

However, within the CTV the cell density or relationship to imaging features is less clear, thus we used a 

fixed value of 0.16 [10] everywhere within that region.  An alternative approach for assigning celluarity 

in the non-enhancing regions (used in [10,11] and elsewhere) is to assume a spatially varying value of 

cellularity decreasing from the value observed at the interface of the enhancing region to a fixed value at 

the periphery of the non-enhancing region. For the two-species model, the tumor volume fraction within 

the enhancing or GTV region was calculated using Eq. (2) and set to zero outside the GTV, while in the 

non-enhancing or CTV region, it was set to a fixed value of 0.16.  

 
S.2. Numerical implementation  
 

The spatial-temporal evolution of  was determined using a 3D finite difference 

approximation implemented in MATLAB R2019b (Mathworks, Natick, MA) using a fully explicit in time 

differentiation and central difference spatial differentiation. The numerical time step was selected to 

maintain numerical stability based on the grid spacing and diffusion coefficient values.  No flux 

(Neumann) boundary conditions were used for  at the skull boundary. The boundary condition for 

 was assumed to be zero displacement in the normal direction, while it was assumed that the tissue in 

the tangential directions was free to move (i.e., slip condition). Identical numerical approaches were also 

used for  and .  For a complete description of the numerical implementation of these 

techinques, the interested reader is referred to [12]. 
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Supplemental Table 1: Model combinations 

Model number Coupling approach Model number Coupling approach 
1 CRT = C1    CCT = C4 6 CRT = C4    CCT = C3 
2 CRT = C2    CCT = C4 7 CRT = C1    CCT = C1 
3 CRT = C3   CCT = C4 8 CRT = C2    CCT = C2 
4 CRT = C4   CCT = C1 9 CRT = C3    CCT = C3 
5 CRT = C4   CCT = C2 10 CRT = C4    CCT = C4 

 
 

S.3 Model parameter calibration 

 A total of 40 models (Figure 1C) were developed from two base models (i.e., one-species or two-

species), 10 therapy coupling combinations (i.e., C1 to C4), and two proliferation parameterization 

approaches (described below). First, we assumed kp,T and kp,E were uniform throughout the domain.  

Second, we assumed that kp,T and kp,E varied as a field within the tumor regions of interest.  When the 

proliferation rates were calibrated as a field, we only calibrated for a subset of points within the tumor and 

then interpolated elsewhere.  For example, for a given 3 × 3 voxel sub-region within the tumor, the 

parameter values were calibrated at the corner and center positions while the remaining four points were 

interpolated from the nearest calibrated values [9]. This parameter calibration approach significantly 

reduces the number of individual parameters and results in a spatially smooth parameter field. To reduce 

the number of model parameters for the two-species model, we assumed that the DN,w and DN,g are 

proportional to DE,w and DE,g, respectively, by a single calibrated scalar factor. Likewise, we assumed kp,N 

is proportional to kp,E.  bNE and bEN were empirically determined and assigned to values of 4 and 1, 

respectively. The remaining calibrated model parameters (in Table 2) were fit as a global variable. Model 

parameters are bounded as shown in Supplemental Table 2 based on their physical definition, numerical 

stability, or within an order of magnitude of values reported in literature. 

 



 

Supplemental Table 2: Model parameter bounds for calibration 

Model parameter Parameter bounds 
[Lower Upper] 

kp,T, kp,E  kp,N 
(day-1) [0 10] 

qT, qE, qN [0 1] 
DT,w, DT,g, DE,w, DE,g, DN,w, DN,g 

(mm2/day) [0 Dstability] 

l1 [0 10] 
SFRT,min [0 1] 
SFCT,min [0 1] 

 
 

The upper bound for the diffusion coefficients was assigned as Dstability. Dstability is the maximum allowable 

diffusion coefficient to maintain numerical stability and must satisfy the condition below:   

   ,  (3) 
where Dt is the simulation time step, Dx is the image resolution in the x-direction, Dy is the image resolution 

in the y-direction, and Dz is the image resolution in the z-direction.  

 Panel D in Figure 1 depicts the calibration approach used in this study. For each patient, we 

considered three different calibration/prediction scenarios. For the first scenario, we calibrated each model 

to all of the available data to see how well the models describe that data. For the second and third scenarios, 

we calibrated each model to a subset of the available data (baseline and 1-month  for scenario 2; baseline, 

1-month, and 3-month for scenario 3) and then those calibrated parameters are used to run the model 

forward in time to predict the tumor response at that patient’s remaining imaging visits (i.e., the 3-month 

and 5-month visits).    

 While the salient details of the calibration approach are highlighted here, a more complete 

description of the calibration algorithm can be found in the referenced publication  [12]. Figure 2 provides 

a schematic of our model calibration approach. Briefly, we used the Levenberg-Marquardt [12,13] 
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algorithm to minimize the sum of the squared errors between the measured and simulated tumor growth 

(i.e.,  in Eq. (2), or  and  in Eqs. (5) – (6))).  First, an initial guess of model 

parameters and the initial conditions at baseline are used in a finite difference simulation of either the 

single or two-species model above.  Second, the finite difference simulation of tumor growth is sampled 

at the imaging visits used for model calibration (i.e., 1-month and 3-month visits for scenario 1 for this 

patient). Third, model error is assessed and used within the Levenberg-Marquardt algorithm to update 

model parameters to minimize the sum squared error.  The algorithm ceases when either the error in the 

objective function stagnates (less than 0.5% change in successive iterations) or when 1000 iterations are 

reached.  For the second and third calibration scenarios, the calibrated parameters were then used to run 

the model forward in time to predict tumor growth at the remaining time points not used for model 

calibration. For the single species model our objective function is defined as: 

  ,  (4) 

where  is the model estimated tumor volume fraction for a given set of parameters b at 3D 

position  and time t, ti is the index for the first time point used in the calibration, tf is the index for the 

final time point used in the calibration, and  is the measured tumor volume fraction from DW-

MRI. For the two species model, the objective function is defined as the summation of the error in the 

enhancing region and the non-enhancing region as shown below:  

   ,  (5) 
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where  and are the model estimated tumor volume fractions for a given set of 

parameters b for the enhancing and non-enhancing region, respectively, and  and  

are the measured tumor volume fractions for the enhancing and non-enhancing regions, respectively. We 

note that in Eq. (5) the residuals between both species are normalized by their carrying capacity to account 

for magnitude differences in the two volume fractions.    

 
S.4 Sensitivity of model calibration to measurement noise 

 We evaluated the model calibration approach using an in silico tumor (i.e., a tumor whose growth 

is governed by the models above with user-selected parameter values).  The purpose of this in silico study 

was to evaluate the ability of our parameter calibration approach to accurately determine the true model 

parameter governing the in silico tumor’s growth and response. For this in silico study we assessed the 

robustness of the parameter calibration in the presence of 10% measurement noise. For the model with 

the most parameters (i.e., the two-species model with a calibrated proliferation field), 250 noisy datasets 

were generated by adding random noise from a Normal distribution with a standard deviation of 10%.   (In 

our study, the largest variation we observed for a given patient in voxel-wise values of ADC  for normal 

appearing white matter was a mean difference of -2.9% with a standard deviation of 9.7% compared to 

the baseline image. Thus, the 10% value is appropriate.) Model parameters were then estimated from the 

noisy datasets and then compared to the known parameters used to “grow” the in silico tumor. Initial 

guesses for model parameters for each calibration scenario were selected randomly from a uniform 

distribution with lower and upper bounds shown in Supplemental Table 2 to ensure parameter guess were 

not near the true values. We observed that less than 5.6% error was observed when two time points were 

used for calibration or less than 3.33% when three or more time points were used for calibration. 

Supplemental Table 3 reports the full results for this exercise. 

φE x ,t,β( ) φN x ,t,β( )

φE ,meas x ,t( ) φN ,meas x ,t( )



Supplemental Table 3: In silico parameter estimation error 
 Calibration Scenario 

Parameter 1-month 1-month & 3-month 1-month, 3-month, 
& 5-month 

kp,E 2.17 ± 0.42 0.21 ± 0.37 0.07 ± 0.36 
DE,W -0.16 ± 6.46 -2.33 ± 2.16 -1.17 ± 0.71 
DE,G -3.36 ± 2.23 -3.33 ± 3.24 -1.78 ± 0.96 

kp,N -5.60 ± 1.01 -1.31 ± 0.36 1.05 ± 0.82 

DN -0.58 ± 1.39 -0.18 ± 0.75 -0.06 ± 2.57 

l1 4.54 ± 3.15 -0.49 ± 1.03 0.53 ± 0.97 

qE 2.55 ± 3.11 1.01 ± 0.98 1.19 ± 0.23 
SFRT  0.52 ± 0.21 0.12 ± 0.06 -0.10 ± 0.13 

SFRT 0.04 ± 0.09 0 ± 0.98 -0.68 ± 0.05 
Mean  ± 95 confidence interval   
 

 This in silico study indicates that for a range of noise expected from standard-of-care MRI data, 

we are able to calibrate for voxel-wise parameters and accurately estimate treatment effects for 

individual patients.  

 

S.5  Model selection 

 The Akaike Information criterion (AIC, [14]) was used to select the model that optimally balances 

model complexity and model-data agreement.  The AIC was calculated using:  

   , (6) 

where k is the number of parameters calibrated for a given model, n is the number of data points used to 

calibrate the model, and RSS is the residual sum squares between the measured and model estimated tumor 

growth.  We calculated the AIC for each model over the timepoints used for model calibration. We then 

selected the model with the lowest average AIC across all patients as the most parsimonious model. We 

then calculated the Akaike weights for each model defined as: 

AIC= 2k+ n ln RSS
n
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   ,  (7) 

where wi is the weight for the i-th model, is equal to AICi - AICmin, and AICmin is the minimum observed 

AIC. The model with the lowest average AIC was the two species model, with a locally varying 

proliferation rate and radiation and chemotherapy both coupled to approach C2 (i.e., coupled to ER).  This 

model will be used in all of the model calibrations and predictions reported in the results.  Supplemental 

Table 4 reports the ten model combinations with the lowest AIC.  Of these ten models, six were the two-

species model, four were the single-species model, and seven had a spatially varying proliferation rate.   

 

Supplemental Table 4: Model selection results 

Model rank 1 2 3 4 5 

Model 2s/field/8 2s/field/1 1s/field/6 2s/field/2 1s/global/5 

Average AIC -35.56 -35.30 -23.38 -22.75 -22.57 

Weight 0.54 0.45 0.0012 0.0009 0.0008 

Model rank 6 7 8 9 10 

Model 2s/global/5 1s/field/2 2s/field/6 2s/global/1 1s/field/8 

Average AIC -22.34 -22.07 -20.91 -19.39 -18.84 

Weight 0.0007 0.0006 0.0003 0.0002 0.0001 

Single species (1s) or two species (2s) model / field or global proliferation rate / coupling combination 
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S.6 Individual patient results for the prediction phase  

 Supplemental Figure 1 reports prediction results for the selected model to an assumed “no-growth” 

or static model. That is, for the no-growth model we assume that the tumor growth at the 3-month and 5-

month visits are assumed to be identical to the 1-month visit tumor. At the three-month visits there are 

some patients who experience very little change in tumor volume compared to baseline (left panel in 

Supplemental Figure 1); however, it is clear that a no-growth model would be insufficient for 5-month 

predictions.  The median percent error for no-growth predictions exceeds that of the model-based 

predictions (right panel in Supplemental Figure 1). 

 

Supplemental Figure 1: Comparison of tumor growth predictions to a “no-grow” or static model. 
The above figures compare tumor growth predictions from the selected model to a “no-grow” or static 
model of response.  The static or “no-grow” model assumes that the tumor does not change from the final 
time point used for calibration (1-month) to the prediction time points (3-month and 5-month). The left 
panel shows the predict percent change in volume from the 1-month time point to the 3-month (orange) 
and 5-month (blue) versus the measured percent change in volume.  While there are a few patients near 
0% change in volume from 1-month to 3-month, there are more patients with either large increases  or 
decreases in tumor volume.  The right panel, shows the percent error in tumor volume predictions the 
selected model versus the static or no grow model.  At the 3-month and 5-month predictions, the static 
model has a higher median error and interquartile range. 
 



  

Supplemental Figure 2 reports the effects of domain discretization on Dice similarity coefficients. 

A coarseness factor of 1 corresponds to the acquired image resolution while a coarseness factor of 4 

corresponds to a down-sampling of the image domain by a factor of 4. Increasing coarseness does not 

significantly change the Dice values for either the 3-month or 5-month predictions. 

 

 

Supplemental Figure 2: Effect of discretization on Dice similarity coefficients. The above figure 
compares tumor growth predictions from four different discretization approaches. The coarseness factor 
is the is the factor by which the in-plane resolution is down sampled relative to the acquired image 
resolution.  In the manuscript, we report results for a coarseness factor of 1 so that model estimates are on 
an identical grid to the image measurements. The above panels shows the prediction results when the 
model is calibrated to the 1-month visit and used to predict the 3-month (left panel) and 5-month (right 
panel) visits.  For the 3-month predictions, the median Dice values range from 0.77 to 0.82, while for the 
5-month predictions the median Dice values range from 0.51 to 0.66. For 3-month predictions, varying 
the coarseness does not appear to significantly change the results. However, a larger range of Dice values 
are observed for the 5-month predictions.  
 
 



 Supplemental Figures 3-6 report the predictions for all of the patients not reported within the 

manuscript.  The calibrated model parameters for each patient for the selected model are reported in 

Supplemental Table 5. 

 

Supplemental Figure 3: Tumor growth predictions for second calibration scenario. Model 
parameters calibrated from the 1-month imaging visit were used to predict tumor growth at the 3-month 
image visit.  The eight central tumor slices are shown for patients 1, 4, 6, 7, and 8. The left column shows 
the measured tumor growth, while the middle column shows the model estimated tumor growth. The right 
column shows scatter plots of the tumor volume fraction at each imaging voxel. The black line represents 
the line of unity.  



 
 

 

Supplemental Figure 4: Tumor growth predictions for second and third calibration scenario.  Tumor 
growth predictions for patient 3 when calibrated to the 1-month image visit (first and second row) and 
when calibrated to the 1-month and 3-month image visit (third row).  For each prediction, the eight central 
tumor slices are shown. The left column shows the measured tumor growth, while the middle column 
shows the model estimated tumor growth. The right column shows scatter plots of the tumor volume 
fraction at each imaging voxel. The black line represents the line of unity.  
 
 
 



 

Supplemental Figure 5: Tumor growth predictions for second and third calibration scenario.  Tumor 
growth predictions for patient 5 when calibrated to the 1-month image visit (first and second row) and 
when calibrated to the 1-month and 3-month image visit (third row).  For each prediction, the eight central 
tumor slices are shown. The left column shows the measured tumor growth, while the middle column 
shows the model estimated tumor growth. The right column shows scatter plots of the tumor volume 
fraction at each imaging voxel. The black line represents the line of unity.  
 
 
 
 
 
 



 

Supplemental Figure 6: Tumor growth predictions for second and third calibration scenario.  Tumor 
growth predictions for patient 10 when calibrated to the 1-month image visit (first and second row) and 
when calibrated to the 1-month and 3-month image visit (third row).  For each prediction, the eight central 
tumor slices are shown. The left column shows the measured tumor growth, while the middle column 
shows the model estimated tumor growth. The right column shows scatter plots of the tumor volume 
fraction at each imaging voxel. The black line represents the line of unity.  
 
 
 
 
 
 
  



Supplemental Table 5: Calibrated model parameters for each patient 
 Patients  
 1 2 3 4 5 6 7 8 9  

kp,E  
(day-1) 0.91 0.83 0.76 0.95 0.96 0.50 0.89 0.49 1.42  

kp,N  

(day-1) 2.98 3.45 1.49 2.13 1.56 0.76 1.49 1.18 1.66  

qE 0.80 0.82 0.82 0.87 0.85 0.82 0.85 0.84 0.85  
DE,w 

(mm2/day) 0.02 0.01 0.13 0.01 0.07 0.03 0.02 0.18 0.05  

DE,g 
(mm2/day) 0.02 0.01 0.45 0.01 0.05 0.03 0.04 0.34 0.04  

DN,w 

(mm2/day) 0.29 0.31 0.12 0.12 0.28 0.29 0.06 0.18 0.29  

DN,g 

(mm2/day) 0.28 0.03 0.44 0.07 0.19 0.29 0.15 0.33 0.21  

l1  1.24 4.00 3.24 2.21 2.01 1.90 1.12 3.45 0.50  
SFRT,min 0.9 0.99 0.97 0.99 0.93 0.96 0.98 0.99 0.99  
SFCT,min 0.74 0.79 0.91 0.86 0.71 0.84 0.94 0.60 0.60  

These are the parameter values when the selected model is calibrated to the entire tumor growth time course. The 
model that was selected via the Akaike Information Criterion was the two species reaction-diffusion model, with 
a field proliferation rate, and coupling combination 8.  For the two-species model the following parameters are 
not calibrated: kp,T,, qT, DT,w, DT,g,. *kp,E is reported as an average of the parameters over that field. 
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