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Appendix A
This document contains complementary data to replicate our results. In the following sections, details about data preprocessing,
parameters, threshold tuning procedure, web-based labeling tool, and imaging setup information are provided.

A.1 Imaging Setup
The camera sensor used for imaging has the following specifications: Aptina 1/2.3 inch color CMOS with a resolution equal to
4912x3684 pixels (18 megapixels) with pixel size about 1.25um x 1.25um; Complementary details for the mentioned camera
are as follows: SNR: 36.3 dB; Dynamic Range: 65.8 dB; Frame speed: 5.6 FPS at 4912x3684, 18.1 FPS at 2456x1842, 32.2
FPS at 1228x922.

Figure 1. Gaussian Distribution as Label.
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Method Label Type F1 Score
IHC Positive IHC Negative TILs Total

Proposed Method (PathoNet) Center pixel 0.814 0.713 0.401 0.736
Gaussian (center 255) 0.852 0.781 0.379 0.792

Modified U-Net Center pixel 0.815 0.745 0.412 0.758
Gaussian (center 255) 0.843 0.762 0.438 0.778

Table 1. Effect of Label Type Ablations. Results reported on the test set. Center pixel shows the case only one pixel picked
as the GT. Gaussian (center 255) illustrates when Gaussian distribution is employed as the GT.

A.2 Data Label Representation
The motivation behind using a distribution over the center pixel as ground truth (GT) is to prevent the data from becoming
unbalanced. This motivation is further investigated in Table. 1 that shows the effect of label type on the models’ performance.
To obtain GT, after determining a center pixel by experts, a Gaussian distribution fits on the center with a variance of 9 pixels
and the maximum value equal to 255. Figure. 1 represents discrete Gaussian distribution used in this study.

A.3 SHIDC-Lab Software
In this study, experts used SHIDC-Lab to annotate the images. SHIDC-Lab is designed to provide flexibility, speed, easy
monitoring capability, and revision ability that can be run on any device with a web browser so that experts can perform labeling
in their spare time. In SHIDC-Lab software, the process starts by uploading images to the server and defining annotation
classes, corresponding signs, and colors. In our case, immunopositive, immunonegative, and TILs types are defined. Afterward,
the head expert assigns images to each expert to perform labeling. Finally, head-experts revise annotations and mark images as
the accepted version or re-assign them for another round of labeling.

A.4 Pre-processing and training
In order to prepare data, we first crop the 4912× 3684 image and its corresponding label to non-overlapping 1228× 1228
regions. Next, cropped images are resized to 256× 256 pixels. Then the dataset, is split into two parts; 0.7 of the data for
training and 0.3 for the test. Further, data augmentation is performed by flipping images with respect to x and y coordinates as
well as 90, 180, and 270 degrees rotations. The final data after performing data augmentation has 8,280 images and 566,130
cells.

In training PathoNet, the simple MSE loss function by means of the ADAM optimizer is used. The learning rate is set to
0.0001 and decreases with a 0.1 rate every ten epochs. Keras framework was used in this study to train the network using two
NVIDIA Geforce GTX 1060 and an Intel Core-i5 6400 processor.

A.5 Threshold Tuning
As explained in the Methodology section, to extract cell center pixels from the network’s density map, thresholding is applied.
To tune this threshold for each model, all values from 0 to 255 with a step size of 5 have been evaluated in terms of the F1-score
of the cell predictions and the best threshold picked for each model. Table. 2 shows the tuned thresholds in this study.

Model Cell Type
Positive Negative TIL

Modified DeepLabv3-Mobilenetv2 25 25 5
Modified DeepLabv3-Xeption 55 40 45

Modified FCRN-A 70 65 40
Modified FCRN-B 60 65 40

Modified Unet 40 30 45
Ours (PathoNet) 60 55 40

Table 2. Threshold values used in this study. Tuned values are provided to help replicate the same results as this study.

A.6 Backends Evaluation on Different sets.
In Table. 3, the proposed framework with different backends trained on the train set and evaluated on the train set, test set, and
train+test set. Our method shows to perform better on the test set compared to other methods. U-Net obtains higher scores on
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Backend Testing
Data Immunopositive Immunonegative Lymphocytes Average Model

Params

Modified DeepLabv3-Mobilenetv2
Test 0.832 0.733 0.234 0.750

3,236,907Train 0.849 0.758 0.227 0.771
Train+Test 0.844 0.749 0.229 0.764

Modified DeepLabv3-Xeption
Test 0.851 0.770 0.445 0.787

41,253,587Train 0.875 0.819 0.492 0.827
Train+Test 0.867 0.803 0.476 0.814

Modified FCRN-A
Test 0.841 0.752 0.402 0.771

2,142,019Train 0.875 0.799 0.451 0.813
Train+Test 0.864 0.784 0.435 0.799

Modified FCRN-B
Test 0.849 0.762 0.431 0.781

1,365,888Train 0.867 0.789 0.451 0.804
Train+Test 0.861 0.781 0.445 0.797

Modified Unet
Test 0.842 0.761 0.437 0.778

31,036,323Train 0.924 0.891 0.540 0.891
Train+Test 0.898 0.849 0.510 0.855

Ours (PathoNet)
Test 0.852 0.781 0.379 0.792

3,142,208Train 0.876 0.829 0.466 0.833
Train+Test 0.868 0.813 0.440 0.820

Table 3. F1 Scores on Different Sets. All backends trained using the train set and further tested on the test, train, and
train+test sets.

the train and test+train sets but performs poorly on the test set. The results indicate that U-Net couldn’t generalize well on the
task that may come from 1) the high number of parameters 2) simple architecture compared to the rest of the models. Results of
DeepLabv3-Xeption puts the first hypothesis aside because DeepLabv3-Xeption has approximately 32% more parameters than
the U-Net. We believe that the U-Net structure is a powerful yet simple structure that needs modifications to be utilized in more
complex tasks. In this study, by designing a U-Net architecture with residual and dilated inception modules, we demonstrated a
candidate for such a method with fewer parameters yet capable of generalizing complex tasks.

A.7 Watershed Algorithm Parameters.
In this study, the implementation of the Watershed algorithm from the Skimage library was used. To improve the Watershed
algorithm’s accuracy, the maximum points of the density map passed to the algorithm as the initial minimum points. As another
parameter to this algorithm, the minimum distance between two maximum points is picked as 5.

3/3


	
	Imaging Setup
	Data Label Representation
	SHIDC-Lab Software
	Pre-processing and training
	Threshold Tuning
	Backends Evaluation on Different sets.
	Watershed Algorithm Parameters.


