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Supplementary Note 1 Notes on active learning and

Pareto dominance

Problem setting considered in this work

In this work, we are interested in classifying with confidence a set of ob-
servations in objective space as (approximate)-Pareto optimal points or as
non-dominating points, with particular focus on sampling from regions of
design space near the Pareto optimal points.

Order theory

A partial order is a binary relation1 � on a set Ω that satisfies

1. reflexivity : x � x

2. antisymmetry: x1 � x2 and x2 � x1 imply x = y

3. transitivity: x1 � x2 and x2 � x3 imply x1 � x3

for all x1, x2, x3 ∈ Ω.

The Pareto dominance relationship defines a partial order that is addition-
ally scale and translation invariant as follows:

1. translational invariance: ∀x ∈ Rm : x1 � x2 ⇒ x1 + x � x2 + x

2. scale invariance: ∀α ∈ R+ : x1 � x2 ⇒ αx1 � αx2

In contrast, a total order is a partial order that fulfills the comparability
axiom:

∀x1, x2 ∈ Ω : x1 � x2 ∨ x2 � x1

A set with a total order defines a chain. To induce a total order one hence
needs to introduce a bias.

Clearly, we want to remove any form of bias in (computational) materials
discovery. In the initial design and discovery stage we are interested in
identifying a set of possible candidates to enter the next design stage. That
is, we first want to identify the partially ordered set (poset) of optimal candi-
dates, ideally with confidence, without weighting our different objectives.
In principle, this can also provide additional insights into whether certain
objectives need to be weighted differently. It is important to realize that for

1A binary relation, R between sets X and Y, XRY, is a subset of the Cartesian product X×Y
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the extreme case when the number of iterations equals the number of design
points, we will also be able to identify the unbiased partial order using
any approach. However, in typical applications, enumerating through all
iterations is unfeasible, and thus we want to use an active learning approach
to keep the number of iterations as minimal as possible.

In the following sections, we illustrate how the biases in popular ac-
quisition functions such as expected improvement can affect the resulting
optimization outcome. For more detail, we refer the reader to Zitzler et al.1,
Wagner et al.2, del Rosario et al.3, and Moffaert and Nowé4 (in the context
of reinforcement learning).

Improvement measures

In the single-objective case it is clear how to measure improvement; it
is directly given by the ranking of scalar objective values. In the multi-
dimensional case, this improvement measure is no longer well-defined.
Commonly used improvement measures introduce a total order in the search
space and hence bias the search.

Expected Improvement

There has been an effort to generalize expected improvement (EI) measures,
that are probabilistically optimal under some assumptions (see below) for
multiobjective optimization. In general, expected improvement measures
take the form of an integral over the product of the improvement and
the probability of improvement over the non-dominated area A, which is
represented by factorized normal distributions.

EI =
∫

y∈A
I(y, P)︸ ︷︷ ︸

improvement

m

∏
i=1

1
ŝi(x)

φ

(
yi(x)− ŷi(x)

ŝi(x)

)
︸ ︷︷ ︸

probability of improvement

dyi(x) (1)

Biases with improvement measures

Only defined on a subset of the Pareto set

The simplest approach to deal with a multiobjective problem is linear scalar-
ization, i.e., mapping the multiobjective problem into a single-objective
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optimization problem. Here, we develop a weighted sum of our objectives
and use this as our overall objective function:

L =
m

∑
i

wiyi. (2)

This defines a convex function. Therefore, this approach will fail for cases
when parts of a Pareto front are non-convex. One can imagine perform-
ing multiple searches with different weighting functions, but this can be
burdensome and it is not clear how to define such weighting functions.5

Dimensional imhomgenity

The first (trivial) bias is dimensional imhomegenity. This can be nicely
exemplified by choosing the improvement measure as the Euclidean distance
from a Pareto optimal point to the closet point in the non-dominating set as
proposed by Keane6 and also implemented by Janet et al.7:

I(y, P) =
k

min
j=1

√
m

∑
i=1

(
yi(x)− yj

i

)2
, (3)

where k iterates over the set of non-dominating points with the current
Pareto front P. Here, we can see that the summation can include distance
metrics between observables in different dimensions. The Euclidean norm
shares sensitivity to various scaling of the different objectives for all Lp>0

metrics (i.e., metrics based on a norm ∑i ‖xi‖p). This can be problematic, as
we can imagine that one objective (e.g., i = 1) might be on the order 10−3,
whereas another (e.g., i = 2) might be on the order of 106. Without re-scaling,
the second objective would be given a much higher weight. Hence, unless
we have a priori knowledge of the range of values for different objectives,
such re-scaling can be nontrivial. Wagner et al.2 have shown that such a
metric does not preserve the Pareto dominance relation.
In Supplementary Figure 1, we illustrate additional examples of how EI can
be sensitive to such re-scaling methods.
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(a) Unscaled objective spaces.
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(b) Scaled objective spaces.

Supplementary Figure 1 | Improvement landscape for two fictitious Pareto
frontiers using eq. 3. The color coding indicates the value of the improvement
function in each grid point. In a Bayesian optimization scheme, we would choose
the sample with the highest value of the improvement function, assuming that the
variance is equal for all points. In a material discovery setting, however, there will
not be a material on each grid point. A material with a certain combination of
objectives might not exist, in which case there would be regions of space in the
figure where the improvement is unknown. Note that this improvement function
landscapes include “rifts” that distort the Pareto dominance relation. Also note that
the improvement landscape changes when we change the scales. This is evident by
comparing a with b. For example, we see for Pareto front 0 that in the unscaled
space improvements in directions of objective 2 get a higher weight, wherefore the
aspect ratio of the red region changes upon scaling of the objectives.

Choice of reference point

The hypervolume indicator is known as the only quantitative indicator that
is strictly increasing with respect to Pareto dominance.1 However, it can be
sensitive to the choice of a reference point.
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(a) Reference point [-10,-10].
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(b) Reference point [-60,-3].
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(c) Reference point [-3,-60].

Supplementary Figure 2 | Improvement function landscape based on the
improvement in hypervolume, computed with different reference points for
the integration of the area below the Pareto frontier. The color coding indicates
the value of the improvement function in each grid point. In a Bayesian
optimization scheme we would choose the sample with the highest value of the
improvement function, assuming that the variance is equal for all points. In a
materials discovery setting, however, there will not be a material on each grid
point. A material with a certain combination of objectives might not exist,
wherefore where would be blank spots in the figure.
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Moreover, by construction, the hypervolume indicator gives higher weight
to the convex part of the Pareto front.1 As shown in Supplementary Figure 2,
we show how improvement measures are greatest (red regions) in the top
right portions of the figure panels. Regions within this space that solely
improve one objective can contribute to the hypervolume indicator quite
drastically depending on the reference point.8

Optimization vs. active learning

Expected improvement measures are probabilistically optimal under the
assumption that the current sample is in the evaluated set and that the
current evaluation is the final evaluation.9 In our problem setting, however,
we do not assume that the current evaluation is the final evaluation and
that this evaluation will be part of the output set.9;10 For our active learning
approach, we are interested in expediting the classification of points in objec-
tive space as (approximate) Pareto-dominating points and non-dominating
points. Moreover, we aim to perform this classification with tunable cer-
tainty, i.e., we want to be sure that the points we discard are with high
certainty worse than the those we classify as Pareto optimal (or those that
are still unclassified).

In contrast, popular optimization techniques such as Bayesian optimiza-
tion and efficient global optimization (EGO) aim to find numerical solutions
to a set of objective functions or a single, overall objective function obtained
through scalarization. An illustration of a typical problem under Bayesian
optimization with expected improvement is shown in Supplementary Fig-
ure 3. In this example, sampling the point with the highest expected im-
provement is likely not the optimal decision in the long run. However, this
point is considered the most (locally) optimal due to the overly greedy (i.e.,
exploitative) nature of EI. For this reason, other metrics such as “lookahead
EI” have been suggested.11
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Supplementary Figure 3 | Expected improvement and predictive (posterior)
distribution for a Gaussian process regression (GPR) model (Matérn-5/2 with
automatic relevance determination (ARD)) on noisy samples from the Branin
function.5 Dotted line indicates the feature value that we would sample next based
on the maximum value EI. In this particular case, it seems more intuitive though to
take a sample in the undersampled regions with high uncertainty. Figure based on
illustrations in Wu and Frazier.11

It is important to realize that in the limit of many samples, all optimization
and active learning techniques will allow us to construct a good Pareto front;
however different techniques will take different paths toward reaching
this goal. Active learning techniques are more concerned with the overall
information gain needed to improve the classification of optimal vs non-
optimal points, whereas the aforementioned optimization approaches try to
balance information gain with exploitation via an acquisition function. In
the case of ε-Pareto active learning (PAL) the “exploitation” occurs implicitly
in the “discarding” classification step (cf. Figure 4c).
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Supplementary Note 2 Design space

For our design space, we considered 4 monomer types and chain lengths
between 16 and 48. Furthermore, we need to consider that the reverse
sequence equals the forward sequence.

The total number of polymers in our design space is then given by

n =
1
2

48

∑
i=16
i+=1

i4 = 5.361 189 0× 107. (4)

This results in more than 53 million possible sequences.
Enumeration is impossible for so many polymers. For example, assuming

an average memory requirement of 62 kB per monomer sequence the mem-
ory footprint would correspond to 3.3 TB. This huge number of polymers
also justifies our decision to use design of experiments (DoE) as an initial
sampling scheme of the design space. Here, we considered increments of
two, which results in a smaller design space of

n =
1
2

48

∑
i=16
i+=2

i4 = 1.406 675 2× 107. (5)
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degree of polymerization

20 40

Supplementary Figure 4 | Two-dimensional projection of our polymer design
space. We used the uniform manifold approximation and projection (UMAP)
technique to project our design space, which we sampled using DoE, onto two
dimensions. Points are colored according to the degree of polymerization.
Cartoons illustrate the composition of some copolymers.
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Supplementary Note 3 Influence of composition and

sequence

Supplementary Figure 5 shows histograms of the standard deviation of each
of the polymer descriptors at a fixed polymer composition and varying
sequence. From the distributions we see that the sequence is secondary
compared to the composition of the polymer as the majority of points fall
within 1 standard deviation of the mean.
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Supplementary Figure 5 | Histograms show the standard deviation of the
descriptors for fixed polymer composition and varying sequence. The black solid
line shows the standard deviation between the means of the descriptors for fixed
composition. The dashed vertical line gives the mean standard deviation for fixed
composition (means of the histograms).
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Supplementary Note 4 Coarse grained model

In dissipative particle dynamics (DPD) for polymers, the force is usually
computed as

Fij = FC
ij + FD

ij + FR
ij + Fspring

ij . (6)

With soft repulsive force

FC
ij =

aij

(
1− rij

rc

)
r̂ij rij < rc

0 rij ≥ rc,
(7)

with repulsion parameter aij, cutoff radius rc and unit vector r̂ij.
The dissipative force is given as

FD
ij = −γ

(
1−

rij

rc

)2 (
r̂ij · vij

)
r̂ij, (8)

with friction coefficient γ, the velocity difference between the particles, vij,
and θ being a random number between 0 and 1.

The random force is computed as

FR
ij =

σθij√
δt

(
1−

rij

rc

)
r̂ij, (9)

with noise parameter σ.
The Frenkel spring force term is

Fspring
ij = −Ks

(
rij − R0

)
r̂ij. (10)

Following Smit and co-workers12 we chose the spring constant Ks = 100kBT
and equilibrium distance R0=0.80 DPD units, which was found in previous
studies to be the first maximum of the pair correlation function of a pure
monomer system.13 All simulations were run using a number density set to
3 and an integration timestep of 0.025.

Espanõl and Warren14 have shown that DPD will sample the canonical
ensemble if

γ =
σ2

2kBT
. (11)

Here we chose γ = 4.5.
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Supplementary Table 1 | DPD cross interaction parameters. “S” denotes the
solvent beads, “S2” denotes the beads belonging to the attractive layer of the
surface, “S1” denotes the beads belonging to the repulsive core and “R”, “Ta”, “Tr”,
“W” represent the monomer beads.

bead i bead j aij

S R 30
S Ta 27.25
S Tr 27.25
S W 20
S S1 25
S S2 25
R Ta 25
Ta Tr 25
Tr W 25
R W 25
R Tr 25
Ta W 25
S2 R 15
S2 Ta 15
S2 Tr 20
S2 W 20
S1 R 75
S1 Ta 75
S1 Tr 75
S1 W 75
S2 S1 25

Surface model

The adsorption surface is modeled as face-centered cubic (fcc) lattice struc-
ture with an equilibrium bond length of 0.707 and a lattice cell length of
3
√

4/3 ∼ 1.1 DPD length units. The surface model consists of an inner and
outer layer region: The outer layers are one DPD length unit thick and
constitute the attractive surface (S2), whereas the inner-layer (8 DPD length
units) represents the repulsive core (S1). Note that the simulations are set
up symmetrically and thus contain two outer layers for both sides of the
surface. All fcc surfaces consisted of 10,240 DPD beads, corresponding to
a total thickness of ∼10 DPD length units. The bond constant of the lattice
was set to 100 kBT.
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Supplementary Note 5 Molecular Simulations

Free energy of adsorption

Adsorption free energy simulations were initially prepared by solvating the
fcc lattice surface model with 25,000 solvent beads (S) and the single chain
polymer. This yielded a box dimension of approximately 17.6× 17.6× 37.8
cubic DPD length units for each polymer system (3125 systems in total).
Simulations were set up using Enhanced Monte Carlo (EMC) and run using
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
code. Standard molecular dynamics (MD) simulations were performed for
1 M timesteps for all systems, prior to running steered MD and umbrella
sampling simulations.

Both steered MD and subsequent umbrella sampling simulations were
performed using the “ParticleSeparation” collective variable (CV) defined in
the Software Suite for Advanced General Ensemble Simulations (SSAGES)
code. The CV distance was defined as the distance between the fcc lattice
center-of-mass and polymer center-of-mass along the z (normal) dimension.
CV distances were set 1 DPD length units apart with minimum and maxi-
mum CV values of 1 to 12, respectively. This corresponded to 12 simulations
being performed for each polymer system (12 · 3125 polymers = 37,500 sim-
ulations in total). Steered MD simulations were first performed for 200,000
timesteps using a biasing spring constant of 15 kBT to steer the polymer into
the target CV windows. Umbrella sampling was then performed for 1 M
timesteps using a spring constant of 15 kBT for each umbrella. The weighted
histogram analysis method (WHAM) was used to obtain the final potential
of mean force (PMF) as a function of surface-polymer z center-of-mass sepa-
ration distances. We found that setting the spring constant to 15 kBT with
CV separation distances of 1 DPD length unit provided good overlap be-
tween CV distance histograms used in WHAM. The adsorption free energy
free energy of adsorption (∆Gads) was taken as the difference in free energy
between free energy minimum along the z-dimension and the free energy of
the polymer in the bulk phase, i.e., maximum z separation distance of 12.
Note that we assume the Helmholtz free energy and Gibbs free energy as
approximately equal (i.e., pV contributions are assumed negligible).
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Supplementary Figure 6 | Potential of mean force (W) as a function of surface and
polymer center-of-mass separation distance along the Z normal direction. ∆Gads is
taken as the difference in free energy between the bulk and minimum free energy.
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Supplementary Figure 7 | Umbrella sampling histograms obtained as a function
of surface-polymer COM separation distance (cv0). Target CV separation distances
were set to 1 DPD unit apart.

Dimer repulsion energy

Dimer repulsion energy simulations were prepared by solvating two iden-
tical polymers with 100,000 solvent beads, which corresponded to a box
dimension of 32.2× 32.2× 32.2 cubic DPD length units. Steered MD and
umbrella sampling simulations were performed using the “ParticleSepara-
tion” CV in the x, y, and z dimensions, i.e., radial dimension. CV distances
were set 1 DPD length units apart with minimum and maximum CV values
of 0 to 11, respectively. This again corresponded to 12 simulations being
performed for each polymer system (12 · 3125 polymers = 37,500 simula-
tions in total). Similar to the adsorption free energy calculations, steered MD
simulations and subsequent umbrella sampling simulations were performed
for 200,000 and 1.5 M timesteps, respectively, with biasing spring constants
of 15 kBT. WHAM was used to obtain the final PMF curve as a function of
polymer-polymer radial center-of-mass separation distance. Entropy correc-
tions of 2 log(r) were also applied to the PMF curve. The dimer repulsion
free energy repulsive free energy of polymer dimer (∆Grep) was taken as the
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difference in free energy between the free energy at CV separation distances
of 0 and the free energy at the maximum radial separation distances.
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Supplementary Figure 8 | Potential of mean force (W) as a function of polymer
and polymer center-of-mass separation distance along the radial (r) direction.
∆Grep is taken as the difference in free energy between those at the maximum and
minimum separation distances.

Radius of gyration

Radius of gyration simulations were prepared by solvating a single polymer
with 5000 solvent beads corresponding to a box dimension of 11.9× 11.9×
11.9 cubic DPD length unit. All simulations were run for 2 M DPD timesteps.

The radius of gyration (Rg) is computed as

Rg
2 =

1
M ∑

i
mi(ri − rcm)2, (12)

where M is the total mass, rcm the center of mass and the sum is over all
beads, using the gyration command in LAMMPS. Rg were output every
1000 steps and averaged over the entire simulation trajectory.
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Supplementary Figure 9 | Radius of gyration Rg as a function of simulation
timestep. 〈Rg〉 is taken as the average Rg over the entire simulation trajectory as
indicated by the horizontal orange line.
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Supplementary Note 6 Featurization

Polymer representation

Our text-based polymer notation uses the DPD bead types in place of atoms
used in standard “SMILES”. Parentheses can be used to reflect branching,
however, we only consider linear polymers for the scope of this work.

Features considered in this work

For the linear polymers, we computed the following features from the
monomer sequence. The feature names follow the ones we use in the dataset:

• length: degree of polymerization (number of beads)

• head_tail_{bead}: 1 if bead at head or tail of polymer, 2 if at head and
tail, 0 otherwise

• rel_shannon: Shannon entropy of the polymer chain relative to the
maximum possible entropy for a chain of the same length

• cluster statistics, describing clusters in which the same bead type is
repeated:

– num_{bead}: number of clusters for the bead type, relative total
the total number of clusters

– total_clusters: total number of clusters in a polymer chain

– max_{bead}: maximum cluster size for the bead type

– min_{bead}: minimum cluster size for the bead type

– mean_{bead}: mean cluster size for the bead type

• {bead}: the frequency of a bead type in the polymer chain

• Statistics of the DPD interaction parameters:

– total_solvent: the sum of the DPD interaction parameters of the
polymer chain with the solvent

– total_surface: the sum of the DPD interaction parameters of the
polymer chain with the surface

– std_solvent: the standard deviation of the DPD cross-interaction
parameters of the polymer chain with the solvent

– std_surface: the standard deviation of the DPD cross-interaction
parameters of the polymer chain with the surface

19



Feature selection for the GPR surrogate models

For the final models we used the following features: num_[W], max_[W],
num_[Tr], max_[Tr], num_[Ta], max_[Ta], num_[R], max_[R], [W], [Tr], [Ta],
[R], rel_shannon, length. We used the same features for every surrogate
model.
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Supplementary Note 7 GPR surrogate model

We used the GPy15 package to build and train the GPR and used the limited
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm for hyper-
parameter optimization.

For optimization of the hyperparameters we performed 20 random restarts
with different initializations and used hyperparameters corresponding to
the best maximum likelihood solution.

Utility of coregionalized models

Coregionalized models use multi-output kernels which have the following
form:

B⊗K =

 B1,1 ×K(X1, X1) · · · B1,D ×K(X1, XD)
... . . . ...

BD,1 ×K(XD, X1) · · · BD,D ×K(XD, XD)

 ,

where K is a kernel function, B is regarded as the coregionalization matrix,
and Xi represents the inputs corresponding to the i-th output. B allows the
model to share information between outputs, which would not be possible
for two independent kernels; it is hence especially valuable when one only
has training data and sparse response data (i.e., missing data for some of the
responses) for multiple objectives (see Supplementary Note 7). In case when
all objectives are independent one would find Bij = 0 ∀ i 6= j. However,
in the ε-PAL algorithm we are interested in learning any regularities that
might exist in our design space as fast as possible.

Therefore we investigated how the coregionalized models perform com-
pared to two separate GPR models given our training data. We chose Rg and
∆Gads as targets. For this analysis, we employed the Matérn-3/2 kernel and
intrinsic coregionalization model (ICM) for coregionalization. To remove
the degeneracy in the variance hyperparameter (one in the ICM and another
in the Matérn kernel), we constrained the variance of the Matérn kernel.

Two key-parameters for the surrogate models in the ε-PAL algorithm are
the predicted variance (as this will influence how large our rectangles are)
and the accuracy of the prediction (as ε-PAL will no utility if the model is
not predictive). To investigate if a coregionalized kernel can be of use for
our problem, we performed learning curve analysis, as our overall goal for
active learning is to predict well with as little training data as possible. To
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obtain error estimates, we performed the analysis 10 times with different
random seeds. In Supplementary Fig. 10 we find that the coregionalized
models outperform the two separate ones—notably for the smaller training
set sizes, which we would be suitable for the ε-PAL algorithm.
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Supplementary Figure 10 | Learning curves for models with coregionalized
kernel and independent models.

In Supplementary Fig. 11 we show the variance as a function of the train-
ing set size.
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Supplementary Figure 11 | Predicted variance as a function of the training set size
for models with coregionalized kernel and independent models.

In Supplementary Fig 12 we show the predictive performance of the GPR
models trained with the ε-PAL active learning process.
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Supplementary Figure 12 | Predictive performance of the models trained with the
ε-PAL active learning process.

In Supplementary Fig. 13 and 14 we show the SHAP summary plots for
surrogate models trained with ε = 0.01 and ε = 0.1, respectively,
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Supplementary Figure 13 | SHAP summary plot for a surrogate model (ICM,
Matérn-5/2 kernel) trained over the course of a ε-PAL run with ε = 0.01, δ = 0.05
βscale = 0.05.
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Supplementary Figure 14 | SHAP summary plot for a surrogate model (ICM,
Matérn-5/2 kernel) trained over the course of a ε-PAL run with ε = 0.1, δ = 0.05
βscale = 0.05.

Other model types

In Supplementary Figure 15 we compare the predictive performance of a
rank 1 ICM model, rank 2 ICM model, independent GPR, the neural tangent
kernel (NTK), and the neural network Gaussian process (NNGP). The
NTK and NNGP were computed using the neural-tangents library.16 The
NTK and NNGP were based on the architecture [8, 8, 8] with errorfunction
activation. We did not perform hyperparameter optimization for these
neural network (NN)-based models.

For the GPR models we used a Matérn-5/2 kernel without ARD. We tested
the models for predicting the Rg and ∆Gads.
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Supplementary Figure 15 | Learning curves for different model types. All GPR
models were build using Matérn-5/2 kernels without ARD. The NNGP and NTK
were build for a small, three-layer NN.

The learning curves indicate that in our case there is little difference
between rank 1 and rank 2 coregionalized models.

Dealing with missing data

For the case study with missing data, we randomly discarded one-third
of the simulation results for the dimer repulsion energy. The PyePAL code
can with deal this situation with any kind of model but coregionalized
models are particularly suitable as they can exploit correlations between
the objectives and hence help with “filling in” the missing measurement.
The progress of an active learning experiment in this setting is illustrated in
Supplementary Figure 16.
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a b

Supplementary Figure 16 | Classified points and hypervolume error as a
function of the number of iterations. Using ICM with Matérn-5/2 kernel.
Hypervolume error for random search (with all data present, i.e., no missing
outputs) is shown for comparison. All search procedures were initialized using the
same set of initial points, but vary substantially after only one iteration step. The
hypervolume reference point for this figure is (-5, -5, -5).
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Supplementary Note 8 Pareto optimal structures in

feature and property space
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Supplementary Figure 17 | Overview of the design space and the Pareto optimal
points in this design space.

Out of 3125 polymers in our experimental design, 73 are Pareto optimal
according to our brute-force simulation results (Supplementary Fig. 17).

Feature space

To visualize feature space, we project the high-dimensional feature space
onto two dimensions using principal component analysis (PCA) (Supple-
mentary Fig. 18, using scikit-learn17) and uniform manifold approxima-
tion and projection for dimension reduction (UMAP) (Supplementary Fig. 19,
using umap-learn18). We can observe that the Pareto optimal structures do
not cluster in one region of feature space but are spread all over feature
space.
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Supplementary Figure 18 | Projection of the feature space onto two dimensions
using PCA.
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Supplementary Figure 19 | Projection of the feature space onto two dimensions
using UMAP.
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Supplementary Note 9 Hyperparameter tuning for the

PAL algorithm

Influence of the initial training set

One crucial assumption for the theoretical bounds to be valid is that the
true error is bounded by the estimate provided by the GPR (this can be
problematic if the model is overconfident19). For this reason, we found
empirically that it is practical to initialize the search with a diverse set of
about that is large enough that the model is predictive. The minimum
number of samples can be estimated using learning curve analysis. The
influence of the number of initial points on the performance on our dataset
is shown in Supplementary Figure 20.
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Supplementary Figure 20 | Influence of the number of initial points.
Hypervolume error as a function of the number of initial points. We left ε = 0.05,
δ = 0.05, βscale = 0.05 fixed and sampled using k-means sampling. Note that a low
number of initial samples (e.g., n = 10) can lead to unreliable results. This can be
the case if the surrogate model is non-predictive and overconfident, causing
misclassification of points early in the search. For this reason, the PyePAL package
warns users when the cross-validation error is greater than the variance of the
model. Moreover, the learning curves (Supplementary Fig. 15) indicate that the
models have a large generalization error for n� 60. Hypervolumes were
calculated using the nadir point as our reference point.
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To ensure a good sampling of the initial space, we chose the n samples
using a greedy MaxMin sampling, initialized with the point closest to the
mean of the dataset.

Supplementary Figure 21 compares greedy MaxMin sampling with ini-
tialization based on k-means clustering. We find that the MaxMin sampling
typically leads to faster convergence, but that the k-means sampling con-
verges to lower errors.
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Supplementary Figure 21 | Influence of the sampling method that is used to
create the initial set. Hypervolumes were calculated using the nadir point as our
reference point.
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Supplementary Figure 22 | Relative hypervolume errors and total number of
iterations of the ε-PAL algorithm as a function of ε (εi = ε ∀i ∈ {0, 1, 2}).
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Supplementary Note 10 ε-PAL Implementation

objective 1

objective 2 Pareto set
Pareto front

objective 1

objective 2

ɛ
ɛ

ɛ-Pareto front
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Supplementary Figure 23 | Pareto vs. ε-Pareto front for two objectives. a
illustrates the concept of the Pareto set, i.e., the set of maximal points, and the
Pareto, whereas b shows a ε-Pareto front. ε Pareto optimality would also be given
if the Pareto set includes the green point instead of the neighboring red one.

Overview of the algorithm

The input of the ε-PAL algorithm is the initial design space E, the priors for
the GPR models, as well as the hyperparameters εi and δ. Additionally, we
use a scaling parameter (βscale) of the scaling parameter for the hyperrectan-
gle (βt) as the theoretical value tends to be too conservative. For most of our
ε-PAL runs, we set the hyperparameters δ=0.05, εi, and scaled βt by 1/20.
In our PyePAL package, we allow the user to chose custom schedules for the
optimization of the hyperparameters of the GPR, a batch size, and exclude
high-variance points from the classification step.

For the subsequent discussion we need to define the following symbols,
which mostly follow the notation from Zuluaga et al.:

• design space (E): finite set of point from which we sample

• (ε-accurate) Pareto set (P): the solution we aim to find

• set of unclassified points (U): in the first iteration U0 = E

• set of discarded points (D): points for which we can say with high
confidence that they are not ε Pareto optimal

• using the standard deviation and mean vectors predicted by the GPR
we use the βt to compute a conservative uncertainty hyperrectangle of
point x (Qµ,σ,β(x))
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• iterative intersection of the hyperrectangles gives us uncertainty region
of point x (Rt(x)): Rt(x) = Rt−1 ∩Qµ,σ,β(x)

It is also useful to compare the concept of Pareto optimality with the one
of ε-accurate Pareto dominance, assuming a maximization problem.

• Pareto dominance: We say that y dominates y ′ iff y � y ′, i.e., y is no
worse than y ′ in all objectives and strictly better in at least one objective

• ε-Pareto dominance: We relax the definition to y + ε � y ′, which we
also write as y �ε y ′

Note that in contrast to the original implementation we do not require
knowledge of the value ranges of the objectives to compute the uncertainty
hyperrectangles. In general, this is not known a priori. That is, instead
of computing the tolerance as εjrj, where rj is the range of objective j, we
use εjµj where µj is the prediction for objective j. Additionally, this en-
sures that the tolerance is proportional to the value of the µj (and is not
inflated/deflated depending on the range). We compare both behaviors in
Supplementary Fig. 24. We find the adaptive tolerances converge to lower
errors and to also show lower errors in the initial and intermediate iterations.
This is particularly pronounced if we do not set the uncertainties of the
sampled points to zero but instead use the uncertainties predicted by the
GPR.
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Supplementary Figure 24 | Fixed tolerances vs. adaptive tolerances. To expedite
this experiment we used a lg2 spaced schedule for hyperparameter optimization
(in contrast to the linearly space schedule used in the rest of this work). We left
δ = 0.05 and βscale = 0.05 fixed, used a Matérn-5/2 kernel without ARD, and
initialized with 40 points sampled using greedy farthest point sampling.
Hypervolumes were calculated using the nadir point as our reference point.

For calculation of the hypervolumes we use code from the nevergrad

library.20 Note that hypervolumes are not used in the algorithm itself but
logged to monitor our algorithm convergence.

Moreover, we implemented the prediction error ε(P̂, P)21

ε(P̂, P) =
1
‖P‖

‖P‖

∑
i

min
x ′∈P̂

max
1≤j≤p

(
f j(x)− f j(x ′)

)
· 100

rj
, (13)

where P̂ is the predicted Pareto front, p the number of objectives, rj is the
range of the values for objective j, and ‖P‖ the number of points in the set
of Pareto optimal points, P.

For more detail on the ε-PAL algorithm, we refer the reader to the original
implementation.21;22

Initialization To initialize the GPR a few samples from the design space
need to be first evaluated. In practice, this can be done by selecting k samples
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closest to the centroids of a k-means clusters or by using a greedy MaxMin
sampling approach (which we initialize with the median or mean).

Modelling As discussed in section 7, we use Gaussian processes as surro-
gate models and the mean and variance of the posterior function to construct
hyperrectangles. We decided to add the frequency of hyperparameter opti-
mization of the GPR models as a hyperparameter for the ε-PAL algorithm.

objective 1

objective 2
Pareto pessimistic frontier
hyperrectangle of discarded point

Supplementary Figure 25 | Illustration of the set of Pareto pessimistic points. In
the discarding step, we would keep the point with the green uncertainty region
Rt(x) as we cannot say with certainty that it is lower than the Pareto pessimistic
ppess front but will discard all points with gray hyperrectangles. In the discarding
step, we build two different Pareto pessimistic fronts. First, only from the points
we already classified as ε-Pareto optimal. Then, followed by ones where we
consider the union of ε-Pareto optimal and unclassified points.

Discarding Any point is removed from the unclassified set if its optimistic
outcome is ε dominated by the pessimistic outcome of another point. More
specifically, we first consider the Pareto pessimistic set ppess(P) and then
the Pareto pessimistic set ppess(P ∪ U), where a Pareto pessimistic set is
defined as the set of points x for which there is no other point x ′ such that
min (Rt(x)) � min (Rt(x ′)). For this reason, we are guaranteed that the
discarding step is safe since there always will be a point that ε dominates
the discarded points. This is a key feature that is of particular importance
for materials design and discovery.
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Identification of ε Pareto optimal points A point x belongs with high prob-
ability to the output set of ε-accurate Pareto points if there is no other point
x ′ ∈ P ∪U such that max (Rt(x ′)) �ε min (Rt(x)).

Sampling In the sampling stage the next sample is one of the Pareto optimal
or unclassified points with the highest uncertainty wt:

wt(x) = max
y,y ′∈Rt(x)

∥∥∥∥y− y ′

ŷ

∥∥∥∥
2

. (14)

Note that the algorithm does not sample from the discarded points. To
ensure scale invariance, we rescale the uncertainty in each direction by
the mean prediction, i.e., we use the coefficient of variation for sampling.
Beyond de-biasing the search, this change can have an impact on the perfor-
mance of the algorithm as shown in Supplementary Figure 26.
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Supplementary Figure 26 | Influence of scaling the variance on the
performance of the algorithm. Using the coefficient of variation instead of the
unscaled uncertainty marginally improves the performance in our test cases.

As the choice of the aggregation function (with which the different objec-
tives are combined into one scalar for the sample step) is not unique, we
compared the performance of the Frobenius norm (default in the PyePAL
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package, used for this work) with the mean and median (Supplementary
Figure 27).
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Supplementary Figure 27 | Influence of the aggregation function. We observe
that the Frobenius norm leads to faster termination of the search, e.g., compared to
median aggregation, which leads to lower final hypervolume errors.
Hypervolumes were calculated using the nadir point as our reference point.

In our implementation we, by default, will use the measured mean and
standard deviations instead of the predictions of the surrogate model. From
Supplementary Fig. 28 we see that replacing the GPR uncertainty for the
sampled points with zero greatly expedites the convergence.
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Supplementary Figure 28 | Replacing the uncertainty with the measured
uncertainty (here asummed to be zero). To expedite this experiment we used a
lg2 spaced schedule for hyperparameter optimization (in contrast to the linearly
space schedule used in the rest of this work). We left δ = 0.05, ε = 0.05, and
βscale = 0.05 fixed, used a Matérn-5/2 kernel without ARD, and initialized with 40
points sampled using greedy farthest point sampling.

We chose to not implement sampling methods that require retraining of
the models for all potential candidates (e.g., expected error reduction23;24)
as those techniques would extremely increase the computational cost of the
algorithm (retraining and evaluating the model(s) for every possible new
sample, averaged over all possible labels), even though those techniques
might mitigate the tendency of uncertainty sampling25 to sample outliers.

Stopping The algorithm stops when all points are either discarded or clas-
sified as Pareto optimal, i.e., if U = ∅.

Batch sampling

Batch sampling can be beneficial if simulations or experiments can be paral-
lelized and when a sequential scheme is too time-consuming. The original
ε-PAL scheme samples only one sample per iteration. In this work, we did
not employ batch sampling. However, in our PyePAL package, we allow the
user to perform ε-PAL in batch mode. We use a greedy approximation and
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sample the n next best samples according to the selection criterion rather
than just sampling one point. Note that the greedy approximation lowers
the efficiency of the exploration of the space.

Multiple ε

For some applications it is often preferred to have the different tolerances
for ε on the Pareto front for each objective. To account for such flexibility,
we use one εi per dimension i.

Theoretical guarantees

Zuluaga et al.21 showed that the ε-PAL algorithm comes with some guar-
antees for the quality of the solution. For that reason, one assumes that the
functions which are modeled with the GPR are arbitrary functions from the
reproducing kernel Hilbert space (RKHS) with some associated kernel k.
Additionally, the noise of the samples is assumed to have zero mean con-
ditioned on the history and to be bounded by σ. For appropriate choice of
hyperparameter βt, Zuluaga et al. proved that an ε-accurate Pareto front can
be found in a bounded number of iterations with probability 1− δ, where δ

is also a hyperparameter that can be specified by the user.

Limitations

It is well known that kernel methods tend to need stringent feature selec-
tion.26 In case one only has access to a high-dimensional feature space with
noisy data, the GPR models might have a too low predictive performance for
a decent convergence of ε-PAL. Future work could investigate Monte-Carlo
dropout based surrogate models.27

Furthermore, ε-PAL, operates on a finite design space, i.e., it will not find a
design that is not in the set of possible designs it is provided with as input.
Therefore, any continuous design space needs to be discretized.
Additionally, since we require the returned points to be ε-Pareto optimal,
this approach can require many iterations until the first point is classified
as ε-Pareto optimal if the predicted variance stays high even after many
iterations.
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Sensitivity of the hypervolume error to the choice of the reference

point

Since the reference point for the hypervolume calculation is a user defined
parameter we explored a range of different settings. For the reference points
we considered the minimum of our design space (sampled using the DoE),
some intermediate point (−5,−5,−5) and a point orders of magnitude
larger than the objectives (−1000,−1000,−1000). In Supplementary Fig. 29
we compared the convergence behavior to the median of 100 random explo-
rations of the design space.
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Supplementary Figure 29 | Convergence behavior compared to random search
for different hypervolume reference points. The curves are calculated for the
same runs as shown in Fig. 6 in the main text.
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Supplementary Note 11 Inverse design

We use the term “inverse design” to refer to finding a valid polymer that
maximizes the outputs of our models.28

Surrogate model

To be able to perform practical inverse design, we cannot use all the features
used in this work. For example, the Shannon entropy feature, provided
a length and set of characters, is partially invertible but would require a
complex constraint for our optimization algorithm. This would make the
search inefficient.
To avoid this issue, we trained gradient boosted decision tree (GBDT) models
with reduced feature sets to predict the predictions of the GPR models. For
those surrogate models, we optimized the hyperparameters with Bayesian
optimization. The details can be found under sweep ids f2cteo9b, 704xptpt,
1vwsrp8b on the wandb platform). Note that the use of surrogate models
that are trained on the predictions on other models is a commonly used
technique to interpret models.29;30

Genetic algorithm

We also attempted to use particle swarm optimization (PSO) as implemented
in the pyswarm31 package but found better results with genetic algorithm
(GA), for which we used the geneticalgorithm Python package.32 The main
advantage of GA over PSO for our optimization problem is that GA allows
for a more natural treatment of mixed datatype (integer and real) optimiza-
tion.

Since not all possible features correspond to valid polymers and we are
mostly interested in novel polymers, we used the following fitness function

L(x) = −10
ŷ(x)
ytrain

+ CP(x) + NIVP(x) + αNP(x), (15)

where ŷ is the prediction of the model. CP and NIVP are penalty terms that
penalize structures with unphysical cluster size features and those of which
are not invertible, respectively. The penalties have the following form

CP(x) =

max_bead_type > length · bead +30

else 0
∀ bead, (16)
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where we used the feature notation from section 6, and

NIVP(x) =

at least one valid monomer seq. generated 0

else 50,
. (17)

where we use the algorithm described in section 11 to iteratively attempt
the mapping from features to a bead sequence.

The last term in eq. 15 is a penalty term that increases the loss for structures
that are similar to the ones from our database to encourage the GA to explore
new areas of chemical space:

NP(x) = max
(

ytrain

(
min ‖xtrain,i − xtrain‖ −min ‖x− xtrain‖

)
,−ytrain

)
.

(18)
To consider a wide balance between exploration and exploitation we swept
through α = {0, 0.1, 0.5, 1, 2, 10, 20, 50, 100} with multiple random restarts
for each α.

We considered the feature bounds listed in Supplementary Table 2.

Supplementary Table 2 | Feature bounds for the GA.

feature lower bound upper bound type

length 16 48 int

max_{bead} 0 36 int

{bead} 0 1 real

For the elitist GA we used the hyperparameters listed in Supplementary
Table 3.

Supplementary Table 3 | Parameters used for the GA.

parameter value

restarts 3
maximum number of iterations 300
elite ratio varied {0, 0.01, 0.05, 0.07}
population size 300
mutation probability 0.1
crossover probability 0.8
parents portion 0.1
crossover type uniform
early stopping after 500 iterations without improvement
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Mapping back to valid monomer sequences

For our promising solutions, we enumerated possible monomer sequences.
To map back to physically valid bead sequences we round the bead numbers
and degree of polymerization found in GA to integers, and calculate the
maximum size of the clusters to capture the topological features of the
polymer (pool of beads and clusters).

To efficiently evaluate if any permutation of the given characters can
build a valid monomer sequence, we use a backtracing algorithm.33 This
algorithm sequentially evaluates if the addition of a character from the pool
can still provide a valid monomer sequence, based on the constraints on the
number of beads and the maximum size of the clusters. If the addition is
successful, we pop this character from the pool and continue recursively
calling the function until the pool of candidate beads is empty.
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Supplementary Figure 30 | Projection of the generated feature sets on the first two
principal components of the database.

Since none of the predictions we made for the polymers we found in the
“inverse design” step dominated a point from the Pareto front we found
in the subspace sampled with DoE, we did not perform any additional
simulations.

In Supplementary Table 4 we compare hypervolumes found with the GA,
and ε-PAL on the subspace sampled with DoE.
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Supplementary Table 4 | Hypervolume of design space sampled with DoE and
Pareto front found using the GA.

reference point hypervolume
original DoE

hypervolume GA PyePAL (ε=0.01)

minimum (1.46,
3.04, 1.61× 10−3)

268 166 257

(-5,-5,-5) 1536 1283 1515
(-1000, -1000,
-1000)

1 026 829 209 1 025 214 020 1 026 813 775
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Acronyms

D set of discarded points. 33

E design space. 33

P (ε-accurate) Pareto set. 33, 36, 37

Qµ,σ,β(x) uncertainty hyperrectangle of point x. 33, 34

Rg radius of gyration. 17, 21, 25

Rt(x) uncertainty region of point x. 34, 36, 37

U set of unclassified points. 33, 36, 37, 39

∆Gads free energy of adsorption. 14, 15, 21, 25

∆Grep repulsive free energy of polymer dimer. 16, 17

βt scaling parameter for the hyperrectangle. 33, 40

ARD automatic relevance determination. 8, 25, 26, 35, 39

CV collective variable. 14, 16, 17

DoE design of experiments. 9, 10, 41, 44, 45

DPD dissipative particle dynamics. 12–14, 16, 17, 19

EGO efficient global optimization. 7

EI expected improvement. 3, 4, 7, 8

fcc face-centered cubic. 13, 14

GA genetic algorithm. 42–45

GBDT gradient boosted decision tree. 42

GPR Gaussian process regression. 8, 21, 23, 25, 26, 30, 33–36, 38, 40, 42

ICM intrinsic coregionalization model. 21, 24, 25, 27

L-BFGS limited memory Broyden–Fletcher–Goldfarb–Shanno. 21
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LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator. 14,
17

MD molecular dynamics. 14, 16

NN neural network. 25, 26

NNGP neural network Gaussian process. 25, 26

NTK neural tangent kernel. 25, 26

PAL Pareto active learning. 8, 21–25, 32, 33, 35, 36, 39, 40, 44

PCA principal component analysis. 28, 29

PMF potential of mean force. 14, 16

PSO particle swarm optimization. 42

RKHS reproducing kernel Hilbert space. 40

UMAP uniform manifold approximation and projection for dimension re-
duction. 28, 29

WHAM weighted histogram analysis method. 14, 16
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