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Supplementary Fig. 1. Activation of the Schengen-pathway triggers the deposition of 
a distinct “stress” lignin in the endodermis.
Examples of small Raman maps for endodermal cells of root cross-sections in WT(Ø) and 
WT(+CIF2) and for xylem of WT(Ø) and WT(+CIF2) used for determining the lignin spectra 
using Multivariate Curve Resolution (MCR) presented in Fig. 2c, d. The colour code 
represents the intensity of the lignin factor presented in Fig. 2c, d. Similar small Raman maps 
were obtained from independent plants for CS lignin of WT (n = 8 plants), cell-corner lignin 
of WT treated with CIF2 (+CIF2; n = 5 plants), for xylem lignin of WT (n = 2 plants) and 
xylem lignin of WT treated with CIF2 (n = 2 plants).
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Supplementary Fig. 2. The lignin compositional changes induced by the Schengen 
pathway contributes to the sealing of the apoplast.
a Scheme of experimental design. The myb36-2 mutant was germinated for 4 days on control 
condition and then transferred for three more days on a control media (Ø + Ø), on a media 
containing 10 µM piperonylic acid only (PA + Ø), or supplemented with 20 µM p-coumaryl 
alcohol (PA + p-cou.), with 20 µM coniferyl alcohol (PA + Coni.), with 20 µM sinapyl alcohol (PA + 
Sinap.) and with the combination of 10 µM p-coumaryl alcohol and 10 µM coniferyl alcohol (PA 
+ p-cou + Coni.). b Maximum intensity projection of the top endodermal cells at ~20 cells after the onset of
elongation in roots stained with Basic fuchsin (lignin). Scale bar = 25 µm. Representative pictures are
shown. The experiment was repeated two times independently with similar results. c Fluorescence
intensity of lignin stained using Basic fuchsin in the cortex-facing cell wall corner of endodermal cells at
~20 cells after the onset of elongation in myb36-2. Individual data points (small dots) represent the pixel
intensity for one endodermal cell. Measurements of pixel intensity were performed in 3 to 6 individual cells
per plants and measurements were performed in 5 plants for (Ø + Ø), 4 plants for (PA + Ø), 6 plants for (PA
+ p-cou.), 5 plants for (PA + coni.), 5 plants for (PA + Sinap.) and 6 plants for (PA + p-cou + Coni.). Large
dots represent the mean of pixel intensity measured in each plant. Black lines represent the mean and
standard deviation for each treatment. Letters show significantly different treatments determined by
an ANOVA and Tukey’s test as post hoc analyses (p < 0.01). d Boxplot showing the number of cells from
the onset of elongation permeable to propidium iodide in wild-type (WT) and myb36.2 in control
condition (Ø + Ø) and after pharmacological treatments described in (a) for myb36.2. Measurements were
performed in 15 plants for WT (Ø + Ø) WT, 11 plants for myb36.2 (Ø + Ø), 10 plants for myb36.2 (PA +
Ø), 10 plants for myb36.2 (PA + p-cou.), 12 plants for myb36.2 (PA + p-coni.), 11 plants for myb36.2
(PA + Sinap.) and 10 plants for myb36.2 (PA + p-cou + Coni.). Center lines show the medians; box limits
indicate the 25th and 75th percentiles.Different letters represent significant differences between treatments
using a two-sided Mann-Whitney test (p<0.05).
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Supplementary Fig. 3. Gene expression profiling in response to the 
activation of the Schengen-pathway.
a Principal component analysis (PCA) of the differentially expressed genes identified 
in root tips of wild-type (WT), sgn3-3, esb1-1, myb36-2, esb1-1 sgn3-3, sgn3-3 
myb36-2 plants. Treatment with 100 nM CIF2 was applied as indicated (+CIF2) for WT 
and sgn3-3 plants (n = 6 biological replicates from two independents experiments). b Gene 
ontology enrichment in the different gene clusters from Fig. 3a. The colour of each 
point represents the p-value adjusted using the Benjamin-Hochberg procedure, and the 
size of each point denotes the percentage of total differential expressed genes in 
the given gene ontology term (Gene Ratio). c Heatmap of gene expression 
for peroxidases and laccases that are upregulated by the constitutive 
activation of the Schengen pathway as defined by the Cluster 1 (C1) of the 
Fig. 3a. Asterisks indicate genes previously identified as upregulated in response 
to CIF21. d Heatmap of gene expression of genes related to the 
phenylpropanoid pathway (black)2 and their transcriptional regulators 
(grey)3,4. Genes names are given according to5 for genes related 
to the phenylpropanoid pathway. Asterisks indicate demonstrated function in 
lignin biosynthesis with an activity demonstrated in vitro or in vivo for PAL1-46, 
C4H7, 4CL1-48,9, CCR1 and 210,11, CAD1, 2 and 612,13, C3’H14, C3H15, 
COMT and CCoAOMT116, HCT17, CSE18, ALDH1A19, F6’H120, COSY21 and F5H122.  
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Supplementary Fig. 4. Metabolite profiling in response to the activation of the Schengen-
pathway. 
Heatmaps of metabolite profiling determined using Ultra High 
Performance Liquid Chromatography (UHPLC) in 5 mm roots tips of wild-type (WT), 
sgn3-3, esb1-1 sgn3-3 and esb1-1. The heatmaps show all the compounds (2497, left) 
and characterised compounds (52, right) that are differentially accumulated (q-value < 
0.01, left; q-value < 0.1, right n = 8 biological replicates from two independent 
experiments). Underlined names are for compounds that are only differentially 
accumulated (q-value < 0.1) in esb1-1 and not changed in sgn3-3 and esb1-1 
sgn3-3 in comparison with WT. Data for the known compounds are presented in 
Supplementary Data 3. 
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Supplementary Fig. 5. Activation of the Schengen-pathway triggers local lignification and 
induction of defense-related genes.
a. Scheme of experimental design. Twelve day-old wild-type plants were transferred on round
plates containing two compartments. The compartments were filled with control media on both
compartments (C.Ø), media supplemented with 100 nM CIF2 on both compartments (C.CIF2)
or media only on one side (Sp.Ø) and media supplemented with 100 nM CIF2 (Sp.CIF2) on
the other side for the split condition. Plants were grown for 3 more days on these plates and
then the roots exposed to each compartment were harvested. b. Median view of endodermal
cells stained with Direct Yellow 96 (cell wall, blue) and Basic Fuchsin (lignin, yellow). Cells
were imaged at 15 cells after the onset of elongation. Scale bar = 10 µm. Representative
pictures are shown. Similar results were observed in at least 5 plants. c. Gene expression of
Peroxidase 49 and 52 (PER49 and 52) determined by qPCR on each compartment described
in a.  d. Gene expression of genes related to defense (PH1, MYB15, LECTIN RECEPTOR
KINASE, PLANT NATRIURETIC PEPTIDE A, CYSTEINE-RICH RLK 18, FRK1,
RDA2, ERF114 and DHYPRP1) determined by qPCR. Different letters in
panels a et b indicate significant differences between treatments determined by an
ANOVA and Tukey’s test as post hoc analyses (p < 0.05, n = 6 biological
replicates). Horizontal black lines indicate median values.
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Supplementary Fig. 6. Plasma membrane attachment to the cell wall.
Maximum projection of the top endodermal cells as shown in the schematic view. 
The observations were done in lines expressing the plasma membrane 
marker line pELTP::SYP122mCitrine before plasmolysis (+H2O) and after plasmolysis 
(+Mannitol) at 15 cells after the onset of elongation. The dashed line represents the contours of 
the cells. Asterisks show the plasmolysis generated space where no attachment is observed. 
Scale bar = 5 m. Representative pictures are shown. The experiment was repeated three 
times independently with similar results.
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Supplementary Fig. 7. Absence of endodermal apoplastic barrier triggers major ionomic changes 
in different growth conditions.
a, b Principal component analysis (PCA) based on the concentration of 20 elements in shoots of 
WT, sgn3-3, myb36.3 and sgn3-3 myb36-2 plants grown in (a) hydroponics (short day, n=6) and (b) 
natural soil (short day, n = 18 for WT, n = 18 for sgn3-3, n = 18 for myb36-2 and n = 13 
for sgn3-3 myb36-2). Ellipses show confidence level at a rate of 90%. c Pictures of 2-week-
old wild-type (WT), sgn3-3, myb36-2 and sgn3-3 myb36-2 plants grown in agar plates. d, e 
Boxplots showing the primary root length (d) and lateral roots density (e) of 2-week-old WT, 
sgn3-3, myb36-2 and sgn3-3 myb36-2 plants grown in agar plates. Letters show significantly 
different groups determined by an ANOVA and a Tukey’s test as post hoc analyses (n = 49 for 
WT, n = 42 for sgn3-3, n = 43 for myb36-2 and n = 41 for sgn3-3 myb36-2), p < 0.01). Center lines 
show the medians; box limits indicate the 25th and 75th percentiles. f Pictures of 5-week-old WT, 
sgn3-3, myb36-2 and sgn3-3 myb36-2 plants grown in hydroponics. Scale bar = 1 cm. g 
Pictures of 9-week-old WT, sgn3-3, myb36-2 and sgn3-3 myb36-2 plants grown in natural soil. 
Scale bar = 3 cm.
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Supplementary Fig. 8. Activation of the Schengen-pathway maintains plant growth under 
fluctuating environment.
a Quantification of suberin staining along the root of 6 days-old plants. The 
results are expressed in percentage of root length divided in 
three zones: unsuberised (white), discontinuously suberised (yellow), 
continuously suberised (orange). n = 7 individual plants, error bars: SD, the 
centre of the error bars represents the mean. Individual letters show significant differences 
using a two-sided Mann-Whitney test between the same zones (p < 0.01). The 
experiment was repeated two times independently with similar results. b Graphs 
showing leaf surface area of WT, sgn3-3, myb36-2, sgn3-3 myb36-2, WT-
pELTP::CDEF and sgn3-3 myb36-2-pELTP::CDEF plants germinated in soil 
with a high humidity (80%) for 7 days and then transferred in an environment with 
constant (80% RH, blue) or with a lower humidity (60% RH, red). Data were collected at 0, 2, 
5 and 8 days after the transfer. Each point is the average leave surface per plant from a single 
pot (n = 36 pots at 0 day for each genotype, n = 6 pots at 2, 5 and 8 days for each genotype). 
Each pot contained at least 6 plants for each genotype. The line shows the average 
value for each measured time points. Black asterisk indicates a significant difference 
between high and low humidity for a same genotype at one time point. Blue and red 
asterisk indicate a significant difference in comparison with WT at the same time 
point respectively for the high and low humidity environment. The significant 
differences were determined by an ANOVA and a Tukey’s test as post hoc analyses (p < 
0.01). c Graphs showing ions accumulation (Z-score) in shoots of WT, sgn3-3, 
myb36-2 and sgn3-3 myb36-2 plants germinated in soil with a high 
humidity (80%) for 10 days and then transferred in an environment with constant (80% 
RH, “High” in blue) or with a lower humidity (60% RH, “Low” in red) for 5 more days. 
Large dots represent the median value for each genotypes and small dots 
represent individual replicates (n = 9 biological replicates). Thick lines indicate a 
significant difference using a two-sided t-test (p < 0.05).
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