Supplementary Material

Potent Suppression of Hydrophobic Bile Acids by Aldafermin, an FGF19 Analogue, Across Metabolic and Cholestatic Liver Diseases

Arun J. Sanyal ¹, Lei Ling ², Ulrich Beuers ³, Alex M. DePaoli ², Hsiao D. Lieu ², Stephen A. Harrison ^{4,5}, Gideon M. Hirschfield ⁶

¹Virginia Commonwealth University, Richmond, VA, United States

²NGM Biopharmaceuticals, South San Francisco, CA, United States

³Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands

⁴Radcliffe Department of Medicine, University of Oxford, United Kingdom

⁵Pinnacle Clinical Research, San Antonio, TX, United States

⁶Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Canada

Corresponding author: Lei Ling, NGM Biopharmaceuticals, 333 Oyster Point Blvd., South San Francisco, CA 94080, Tel: 650-243-5546, Fax: 650-583-1646, Email: lling@ngmbio.com; or Arun J. Sanyal, Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA 23298, Tel: 804-828-4060, Fax: 804-828-2992, Email: arun.sanyal@vcuhealth.org

TABLE OF CONTENT

TABLE OF CONTENT
Supplementary Figures
Fig. S1. Potent Suppression of 7alpha-Hydroxy-4-Cholesten-3-One by Aldafermin in Patients with NASH
Fig. S2. Aldafermin Reduces Total Cholic Acid, Total Chenodeoxycholic Acid, Total Deoxycholic Acid and Total Lithocholic Acid in Patients with NASH
Fig. S3. Levels of DCA, G/T Ratio and the Ratio of (CA+DCA) to (CDCA+LCA) in PSC Patients Stratified by Baseline UDCA Use
Fig. S4. Aldafermin is Efficacious in Lowering Bile Acids in PSC Patients Who Had Baseline Serum Bile Acids >100 $\mu M.$
Fig. S5. Lack of Correlation Between Pro-C3 and Liver Fat Content in Patients with NASH
Fig. S6. Serum Concentrations of Pro-C3 Correlate with Alkaline Phosphatase in Patients with PSC. $.10$
Fig. S7. Hydrophobic Bile Acids Correlate with the Novel Fibrogenesis Biomarker Pro-C3 in NASH and PSC Populations When Analyzed Separately
Supplementary Tables
Table S1. Correlation Between Changes in Bile Acids and Changes in 7alpha-Hydroxy-4-Cholesten-3- One in Patients with NASH. 13
Table S2. Baseline Demographics and Characteristics of NASH and PSC Populations.
Table S3. Serum Levels of Pro-C3 Correlate with Fibrosis Stage at Baseline in Patients with NASH. 16
Table S4. Correlation Between Changes in Bile Acids and Changes in ELF Score in the Pooled NASH and PSC Populations
Table S5. Correlation Between Changes in Bile Acids and Changes in ALT in the Pooled NASH and PSC Populations. 18

Supplementary Figures

Fig. S1. Potent Suppression of 7alpha-Hydroxy-4-Cholesten-3-One by Aldafermin in Patients with NASH.

176 patients with biopsy-proven NASH received 0.3 mg (n=23), 1 mg (n=49), 3 mg (n=49), 6 mg (n=28) aldafermin or placebo (n=27) for 12 weeks. Serum concentrations of 7alpha-hydroxy-4-cholesten-3-one were determined using mass spectrometry methods. ***P < .001, **P < .01 vs baseline (Wilcoxon test). *n.s.*, not significant. D1, day 1; W12, week 12.

Fig. S2. Aldafermin Reduces Total Cholic Acid, Total Chenodeoxycholic Acid, Total Deoxycholic Acid and Total Lithocholic Acid in Patients with NASH.

176 patients with biopsy-proven NASH received 0.3 mg (n=23), 1 mg (n=49), 3 mg (n=49), 6 mg (n=28) aldafermin or placebo (n=27) for 12 weeks. Serum samples were collected at baseline (D1, day 1) and week 12 (W12, end of treatment) for bile acid profiling. (A) Concentrations of total CA at baseline and week 12. Total CA includes conjugated and unconjugated CA. (B) Concentrations of total CDCA at baseline and week 12. Total CDCA includes conjugated and unconjugated and unconjugated and unconjugated and unconjugated and unconjugated CDCA. (C) Concentrations of total DCA at baseline and week 12. Total DCA includes conjugated and unconjugated DCA. (D) Concentrations of total LCA at baseline and week 12. Total LCA includes conjugated and unconjugated LCA. ***P < .001, **P < .01, *P < .05 (Wilcoxon test). *n.s.*, not significant. CA, cholic acid; CDCA, chenocholic acid; DCA, deoxycholic acid; LCA, lithocholic acid.

D1

W12

D1 W12

D1 W12

D1

W12

D1 W12

D1 W12

Fig. S3. Levels of DCA, G/T Ratio and the Ratio of (CA+DCA) to (CDCA+LCA) in PSC Patients Stratified by Baseline UDCA Use.

62 patients with PSC diagnosed according to EASL criteria received 1 mg (n=21), 3 mg (n=21) aldafermin or placebo (n=20) for 12 weeks. Serum samples were collected at baseline (D1, day 1) and week 12 (W12, end of treatment). Left panels, patients not on UDCA at baseline. Right panels, patients on UDCA at baseline. (A) Concentrations of total DCA at baseline and week 12. (B) G/T ratio at baseline and week 12. (C) Ratio of (CA+DCA) to (CDCA+LCA) at baseline and week 12. CA, cholic acid; CDCA, chenocholic acid; DCA, deoxycholic acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid.

Fig. S4. Aldafermin is Efficacious in Lowering Bile Acids in PSC Patients Who Had Baseline Serum Bile Acids >100 μ M.

Three PSC patients had serum bile acids >100 μ M at baseline and received aldafermin 1 mg (patient #1 and patient #2) or 3 mg (patient #3) for 12 weeks. Serum samples were collected at baseline (D1, day 1) and week 12 (W12, end of treatment). **(A)** Concentrations of GCA at baseline and week 12. **(B)** Concentrations of GCDCA at baseline and week 12. GCA, glycocholic acid; GCDCA, glycochenocholic acid.

Fig. S5. Lack of Correlation Between Pro-C3 and Liver Fat Content in Patients with NASH.

176 patients with biopsy-proven NASH received 0.3 mg (n=23), 1 mg (n=49), 3 mg (n=49), 6 mg (n=28) aldafermin or placebo (n=27) for 12 weeks. At baseline, patients underwent magnetic resonance imaging—proton density fat fraction (MRI-PDFF) to measure liver fat content. Serum samples were collected for determination of Pro-C3 concentrations using an ELISA method. Correlation between baseline liver fat content and Pro-C3 concentration was performed using Spearman's method. Correlation coefficient (*rho*) and *P* value are shown on the graph. Pro-C3, neoepitope-specific N-terminal pro-peptide of type III collagen.

Fig. S6. Serum Concentrations of Pro-C3 Correlate with Alkaline Phosphatase in Patients with PSC.

62 patients with PSC diagnosed according to EASL criteria received 1 mg (n=21), 3 mg (n=21) aldafermin or placebo (n=20) for 12 weeks. At baseline, serum samples were collected for measurements of alkaline phosphase using standard laboratory methods and Pro-C3 using an ELISA method. Correlation between baseline alkaline phosphatase and Pro-C3 was performed using Spearman's method. Correlation coefficient (*rho*) and *P* value are shown on the graph. Pro-C3, neoepitope-specific N-terminal pro-peptide of type III collagen.

Fig. S7. Hydrophobic Bile Acids Correlate with the Novel Fibrogenesis Biomarker Pro-C3 in NASH and PSC Populations When Analyzed Separately.

176 patients with biopsy-proven NASH received 0.3 mg (n=23), 1 mg (n=49), 3 mg (n=49), 6 mg (n=28) aldafermin or placebo (n=27) for 12 weeks (left panels). 62 patients with PSC diagnosed according to EASL criteria received 1 mg (n=21), 3 mg (n=21) aldafermin or placebo (n=20) for 12 weeks (right panels). At baseline, serum samples were collected for measurements of bile acids using mass spectrometry method and Pro-C3 using an ELISA method. Correlation between concentrations of bile acids and Pro-C3 was performed using Spearman's method. Correlation coefficient (*rho*) and *P* value are shown on the graph. (A) GCA and GCDCA levels correlate with Pro-C3 at baseline in the NASH and PSC populations when analyzed separately. (B) GCA and GCDCA levels correlate with Pro-C3 at week 12 in the NASH and PSC populations when analyzed separately. (Fro-C3, neoepitope-specific N-terminal pro-peptide of type III collagen.

Supplementary Tables

Table S1. Correlation Between Changes in Bile Acids and Changes in 7alpha-Hydroxy-4-Cholesten-3-One in Patients with NASH.

Percent Change in Bile Acids from Baseline to Week 12	Percent Change in 7alpha-Hydroxy-4- Cholesten-3-One from Baseline to Week 12		
	rho	P value	
Primary	bile acids		
Glycine-conjugated primary bile acids			
GCA (μmol/L)	0.48	< .001	
GCDCA (µmol/L)	0.34	< .001	
Taurine-conjugated primary bile acids			
TCA (μmol/L)	0.08	.29	
TCDCA (μmol/L)	-0.13	.10	
Unconjugated primary bile acids			
CA (μmol/L)	0.36	< .001	
CDCA (µmol/L)	0.41	< .001	
Secondary bile acids			
Glycine-conjugated secondary bile acids			
GDCA (μmol/L)	0.38	< .001	
GLCA (μmol/L)	0.26	.001	
Taurine-conjugated secondary bile acids			
TDCA (μmol/L)	0.12	.15	
TLCA (μmol/L)	0.05	.62	
Unconjugated Secondary Bile Acids			
DCA (µmol/L)	0.48	< .001	
LCA (μmol/L)	0.28	< .001	

Shown are correlation coefficients. *P* values by Spearman's method.

CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA, glycolithocholic acid; LCA, lithocholic acid; TCA, taurocholic acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid.

Table S2. Baseline Demographics and Characteristics of NASH and PSCPopulations.

Parameters	NASH Patients (n=176)	PSC Patients (n=62)	P Value		
Age (years)	51.2 (10.6)	43.2 (13.7)			
Weight (kg)	100.2 (21.5)	78.6 (14.5)			
BMI (kg/m²)	36.4 (7.1)	26.1 (5.1)			
Sex			-		
Female	121 (69%)	24 (39%)			
Male	55 (31%)	38 (61%)			
Race					
Asian	3 (2%)	1 (2%)			
Black	2 (1%)	7 (11%)			
White	166 (94%)	52 (84%)			
Other	5 (3%)	2 (3%)			
Ethnicity			1		
Hispanic/Latino	82 (47%)	1 (2%)			
Non-Hispanic/Latino	94 (53%)	61 (98%)			
Liver enzymes	Γ	Ι	1		
ALP (U/L)	99.2 (38.3)	366.7 (171.3)	< .001		
ALT (U/L)	72.4 (42.9)	102.5 (63.6)	< .001		
AST (U/L)	54.9 (30.4)	78.8 (49.1)	< .001		
Serum bile acids					
	Primary bile acids				
Glycine-conjugated primary bil	e acids				
GCA (μmol/L)	0.4 (0.4)	8.9 (16.8)	< .001		
GCDCA (µmol/L)	1.5 (1.4)	12.0 (15.6)	< .001		
Taurine-conjugated primary bil	e acids		- I		
TCA (μmol/L)	0.1 (0.1)	5.0 (10.1)	< .001		
TCDCA (µmol/L)	0.2 (0.3)	4.2 (7.0)	< .001		
Unconjugated primary bile acid	Unconjugated primary bile acids				
CA (μmol/L)	0.2 (0.4)	0.2 (0.3)	0.52		
CDCA (µmol/L)	0.5 (0.8)	0.2 (0.3)	.002		
Secondary bile acids					
Glycine-conjugated secondary bile acids					
GDCA (µmol/L)	0.9 (1.4)	1.9 (2.9)	< .001		
GLCA (µmol/L)	0.03 (0.04)	0.19 (0.33)	< .001		
Taurine-conjugated secondary bile acids					

TDCA (µmol/L)	0.3 (0.4)	0.5 (0.9)	.003	
TLCA (μmol/L)	0.01 (0.01)	0.04 (0.09)	< .001	
Unconjugated secondary bile acids				
DCA (μmol/L)	0.7 (0.7)	0.2 (0.3)	< .001	
LCA (µmol/L)	0.03 (0.03)	0.06 (0.12)	.002	

Shown are mean (SD) or n (%).

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA, glycolithocholic acid; LCA, lithocholic acid; TCA, taurocholic acid; TCCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid.

	F1 (n=62)	F2 (n=56)	F3 (n=56)	P Value
Age (years)	48.7 (11.7)	50.9 (10.4)	54.1 (9.0)	.034
Weight (kg)	96.4 (21.0)	100.4 (21.3)	104.6 (22.2)	.15
BMI (kg/m²)	35.4 (7.7)	36.2 (6.9)	37.8 (6.9)	.08
Serum parameters			•	
ALP (U/L)	100.6 (49.5)	93.1 (28.1)	105.6 (35.6)	.15
ALT (U/L)	63.8 (36.0)	77.0 (49.0)	77.0 (44.9)	.14
Pro-C3 (ng/mL)	13.7 (6.3)	18.6 (10.6)	23.3 (16.4)	< .001
Histology			•	
NAS	5.0 (1.0)	5.4 (1.2)	5.6 (1.2)	.011
Ballooning	1.2 (0.6)	1.5 (0.6)	1.6 (0.5)	< .001
Inflammation	1.5 (0.6)	1.8 (0.5)	1.9 (0.6)	.004
Steatosis	2.2 (0.7)	2.1 (0.8)	2.0 (0.7)	.68

Table S3. Serum Levels of Pro-C3 Correlate with Fibrosis Stage at Baseline in Patients with NASH.

Shown are mean (SD). P values by Kruskal-Wallis test.

ALP, alkaline phosphatase; ALT, alanine aminotransferase; BMI, body mass index; NAS, NAFLD activity score; Pro-C3, neoepitope-specific N-terminal pro-peptide of type III collagen.

Table S4. Correlation Between Changes in Bile Acids and Changes in ELF Score in the Pooled NASH and PSC Populations.

Percent Change in Bile Acids from Baseline to Week 12	Percent Change in ELF Score from Baseline to Week 12		
	rho	P value	
Primary	bile acids		
Glycine-conjugated primary bile acids			
GCA (μmol/L)	0.32	< .001	
GCDCA (µmol/L)	0.28	< .001	
Taurine-conjugated primary bile acids			
TCA (μmol/L)	0.22	.002	
TCDCA (µmol/L)	0.16	.02	
Unconjugated primary bile acids			
CA (μmol/L)	0.23	.001	
CDCA (μmol/L)	0.12	.08	
Secondary bile acids			
Glycine-conjugated secondary bile acids			
GDCA (μmol/L)	0.33	< .001	
Taurine-conjugated secondary bile acids			
TDCA (μmol/L)	0.32	< .001	
Unconjugated Secondary Bile Acids			
DCA (μmol/L)	0.29	< .001	

Shown are correlation coefficients. P values by Spearman's method.

CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; ELF, enhanced liver fibrosis; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA, glycolithocholic acid; LCA, lithocholic acid; TCA, taurocholic acid; TDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid.

Table S5. Correlation Between Changes in Bile Acids and Changes in ALT in the Pooled NASH and PSC Populations.

Percent Change in Bile Acids from Baseline to Week 12	Percent Change in ALT from Baseline		
	rho	P value	
Primary	bile acids		
Glycine-conjugated primary bile acids			
GCA (μmol/L)	0.40	< .001	
GCDCA (µmol/L)	0.25	< .001	
Taurine-conjugated primary bile acids			
TCA (μmol/L)	0.20	.003	
TCDCA (µmol/L)	-0.02	.82	
Unconjugated primary bile acids			
CA (μmol/L)	0.16	.02	
CDCA (μmol/L)	0.24	< .001	
Secondary bile acids			
Glycine-conjugated secondary bile acids			
GDCA (μmol/L)	0.38	< .001	
Taurine-conjugated secondary bile acids			
TDCA (μmol/L)	0.24	< .001	
Unconjugated Secondary Bile Acids			
DCA (µmol/L)	0.42	< .001	

Shown are correlation coefficients. P values by Spearman's method.

ALT, alanine aminotransferase; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GCA, glycocholic acid; GCCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA, glycolithocholic acid; LCA, lithocholic acid; TCA, taurocholic acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid.