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Part I

Supplemental Figures
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Figure S 1. Optimization of positional prior on in vivo data. BaMMs with zeroth- (grey),
first- (orange), second- (green) and fifth-orders (blue) are trained and tested on 435 ENCODE
datasets using 5-fold cross-validation. Panel (A) shows the distribution of optimized positional
priors over the positions on both sequence strands that are center around ChIP-seq summits for
GABPα motif. Panel (B) shows the AvRec distributions as box plot, with boxes indicating 25%/75%
quantiles and whiskers 5%/95% quantiles. The colors are for different orders with- (dark colors)
and without (light colors) optimization of positional prior in the motif training. Panel (C) shows
the cumulative distributions of AvRec scores on 435 datasets. There is no major difference before
and after the positional prior optimization. Panel (D) shows the motif for RFX5 factor learned
from a GTRD dataset [1] with (middle) and without (right) the optimized positional parameter,
compared to the reference motif reported in the JASPAR database [2] (left).
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Figure S 2. Performance comparison of motif discovery tools on in vivo and in vitro
data. log2 of fold change in AvRec between fifth-order BaMMmotif2 and diChIPMunk models
versus AvRec of diChIPMunk models (A), first-order BaMMmotif2 (B) and MEME PWMs (C)
on 427 ChIP-seq datasets. Each dot represents the test on one dataset from either ChIP-seq or
HT-SELEX. The grey dashed lines indicate the median log2 fold change is 26%, 12.4% and 24.9%
respectively. (D-F) Similar comparisons as (A-C) but on 164 HT-SELEX datasets.
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Figure S 3. Benchmark on in vivo data. Average runtime per dataset on a server with
4 cores versus the median AvRec score of several de novo motif discovery tools, including the
previous version of BaMMmotif, validated on 419 datasets with 5-fold cross-validation, with MEME,
CisFinder, BaMMmotif and BaMMmotif2 running on 4 CPU cores. Whiskers indicate the standard
deviation of AvRec score. 2nd-order models trained using BaMMmotif and BaMMmotif2 have
similar average AvRec scores, yet BaMMmotif2 is >1̃0 times faster than BaMMmotif.
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Figure S 4. EM optimization using the full set compared to masking 95% sequences
on ChIP-seq datasets. (A) Using the full set of sequences for the EM optimization (blue)
improves the performance of higher-order models, while extending the core regions for searching the
enriched patterns (green) does not contribute to motif discovery, in comparison to that with 8 bp
for seeding and masking 95% sequences for the EM optimization (yellow). All box-plot whiskers
show 95th/5th percentile. Each cluster contains models with different orders (zeroth-, first-, second-
and fifth-order). (B) Fifth-order BaMMs optimized on the full sequences set have a 4.4% AvRec
fold increase compared to those trained only 5% sequences. (C) Using a masking step improves the
speed by 10-fold, in comparison to using the full set for learning motif model.

(A) (B)

Figure S 5. EM optimization using the full set compared to masking 95% sequences
from HT-SELEX datasets. (A) Using the full set for motif refinement (green) improves the
performance of higher-order models over that using only 5% sequences (yellow). All box-plot
whiskers show 95th/5th percentile. Each cluster contains models with different orders (zeroth-,
first-, second- and fifth-order). (B) Fifth-order BaMMs with full set of sequences for optimization
has a 4.6% AvRec fold increase compared to it with only 5% sequences for optimization.
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Figure S 6. Cross-cell-line validation. log2 of fold change in AvRec between fifth-order
BaMMmotif2 and PWMs from MEME (A), second-order models from InMoDe (B), and first-order
models from diChIPMunk (C), when comparing to AvRec scores of the latter models in 238 paired
ENCODE datasets. Each dot represents one test. The range of AvRec scores is chosen from 0.5 to
8 and the outliers are not shown in these plots.
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TF data set CisFinder MEME ChIPMunk PenGBaMM  k=0 PenGBaMM  k=1 PenGBaMM  k=5

CEBPB

ENCODE

0.664 0.572 0.562 0.561 0.723 0.693

HTSELEXL

0.251 0.535 0.449 0.456 0.471 0.482

POU2F2

ENCODE

0.295 0.584 0.694 0.692 0.759 0.778

HTSELEXL

0.25 0.414 0.379 0.425 0.419 0.436

ELF1

ENCODE

0.695 0.751 0.706 0.768 0.773 0.774

HTSELEXL

0.102 0.452 0.392 0.49 0.509 0.513

FOXA2

ENCODE

0.247 0.271 0.299 0.284 0.309 0.312

HTSELEXL

0.141 0.178 0.373 0.364 0.412 0.446

Figure S 7. Sequence logos and AvRec scores of motifs models from cross-platform
validation. Motif models are trained by different models for four transcription factors: CEBPB,
POU2F2, ELF1, and FOXA2. For each transcription factor, the first row shows models learned
on ENCODE data by applying different tools. The number above each logo represents the AvRec
score when testing the model on the corresponding HT-SELEX data. The second row shows the
models learned on HT-SELEX data and AvRec scores when testing models on ENCODE data. For
BaMM models, both zeroth- and first-order logos are plotted.
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Figure S 8. Impact of extending core motif regions on PWMs. (A) Log2 of fold change
between PWM models with ± 4 bp flanking positions and no added flanking positions, using 435
datasets. Median AvRec change is 2.9 %. (B) Same as (A) but on 168 HT-SELEX datasets.

Figure S 9. Quantitative performance on in vivo GTRD datasets. The selected tools are
applied to 405 GTRD datasets [1] and their AvRec were calculated by 5-fold cross-validation, similar
to Figure 2. (A) AvRec distributions as box plot. All box-plot whiskers show 95th/5th percentile.
(B) The cumulative of AvRec scores on 405 datasets. (C) Average runtime per dataset on a server
with 4 cores versus the median AvRec score. Whiskers: standard deviation.
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Figure S 10. Performance comparison of BaMMmotif versus MEME on weak binding
prediction. log2 fold change between fifth-order BaMMmotif2 models and MEME models versus
AvRec of MEME, with AvRec analyzed by 5-fold cross-validation on sequences from the 2nd- (A),
3rd- (B) or 4th- (C) selection cycle of 164 HT-SELEX datasets. The median fold change increases
are 25.9%, 19.8% and 16%, respectively (grey dashed lines). Each dot represents one data set.
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Figure S 11. Show cases for higher-order BaMMs. (A) 0th-order models and higher-order
models were trained with and without sequence masking on a set of 5000 synthetic background
sequences from a second order null model implanted with monomeric and dimeric ETS motifs in
80% and 20% of the sequences, respectively. With all three settings, the implanted motifs were
learned separately as two distinct motifs. (B) 5000 synthetic sequences embedded with GATA3
and JunD motifs with very low occurrences, 10% and 1% respectively. With all three settings, the
implanted motifs were learned separately as two distinct motifs. (C) Motif discovery for FoxA1
from a ENCODE dataset (accession: ENCFF648VIL). The de novo motif discovery process found
two binding modes. But given that the consensus of the dimer motif is palindromic, its fifth-order
motif model mixes with the monomer motif when no masking was applied. When masking 99% of
the positions, 5th-order BaMM was able to separate these two closely related motifs.
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Part II

Supplemental Methods

The supplemental material provides further details of the theoretical basis, the implementation
of the BaMMmotif2 package, and the processing procedure of the datasets that are used for
this benchmark. It also documents the parameters used for testing the motif discovery tools
in the benchmark. It ensures the reproducibility of the results in this paper.

1 De novo motif discovery and refinement

1.1 The fast seeding phase: PEnGmotif

We describe PEnGmotif (Pattern-based discovery of enriched genomic or transcriptomic
sequence motifs), an efficient method for discovering sequence patterns enriched in a set
of nucleotide sequences over random expectation sampled from a second-order background
model. The enriched patterns found by PEnGmotif are optimized to PWMs and serve as
seeds to initialise the refinement stage by BaMMmotif2.

Figure S 12. Workflow of the fast seeding stage. Sequences from high-throughput assays,
such as ChIP-seq, SELEX and PBM, are provided as input data. (i) Occurrences of all K-mers of a
fixed specified length (default 10) are counted. (ii) An enrichment z-score is calculated for each K-
mer based on a Poisson model. (iii) High-scored K-mers are optimized from the nucleotide alphabet
(ACGT) to a degenerate IUPAC alphabet with 11 letters (ACGTRYSWSKN). (iv) The locally
optimal IUPAC patterns are converted to PWMs. (v) PWMs are refined using the Expectation
Maximisation algorithm. (vi) PWMs with similar overlapping regions are merged and extended.

Let K be the length of patterns that will be analysed (e.g. K = 8 used in the study). First,
the number of occurrences of each of the 4K non-degenerate seed patterns of length K are
counted in a 4K-dimensional array with x ∈ {A,C,G,T}K . pbg(x) denotes the probability of
observing K-mer x in absence of specific binding. pbg(x) can be directly counted from large
background sequence sets or modelled as a homogeneous Markov model on a background
data set or the dataset itself. For example, pbg(x) is learned from the genomic input, a mock
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immunoprecipitation or the input sequence library prior to the selection in HT-SELEX. We
model the background probability using a homogeneous Markov model of order K ′ (K ′ = 2
by default):

pbg(xi0 : i1) =

i1∏
i=i0

pbg(xi|xi−K′ : i−1). (1)

We assume the number of occurrences in absence of specific binding to follow a Poisson
distribution: µ = Ltotpbg(y), where Ltot =

∑N
n=1(Ln − K + 1) is the total number of all

counted patterns in the input sequences (N is the total sequence number and Ln is the length
of n′th sequence).

z-score We compute Z-scores for all non-degenerate K-mer patterns. The Z-score is the
deviation from expectation divided by the standard deviation. As for the Poisson distribution
the variance equals the mean, the Z-score is:

Z(y) =
n(y)− Ltotpbg(y)√

Ltotpbg(y)
. (2)

The z-score can be used to pre-filter what K-mers should enter the optimization routine.

p-value As we are also interested in highly enriched sequences (x) and (y) are fulfilled and
we can use the Stirling approximation to calculate the p-value:

p-value(y) =
∞∑
k=n

µk

k!
e−µ

=
µn

n!
e−µ

∞∑
k=0

µk

(n+ 1) · · · (n+ k)

<
≈ µn

n!
e−µ

∞∑
k=0

µk

(n+ 1)k

≈ µn(y)

n(y)!
e−µ

1

1− µ/(n(y) + 1)

log p-value(y) ≈ n(y) log
µ

n(y)
+ n(y)− µ− 1

2
log(2πn(y))− log

(
1− µ

n(y) + 1

)
. (3)

Mutual information We optimize the mutual information (MI) between two random
variables,

MI(q) = −qH(pobs)− (1− q)H(pexp) +H(p), (4)

with H(x) := −xlogx− (1− x)log(1− x).

We then find locally optimal non-degenerate patterns with a recursive function which takes
a K-mer y and checks for all its neighbouring K-mers, i.e. those that are at most one
substitution away. If it finds a neighbouring yneigh with a better mutual information, the
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function is called recursively with yneigh as an argument. If no neighbour of y has better
mutual information than y, y is appended to the list of locally optimal K-mers. Similarly,
we optimized the high-scored K-mers from the nucleotide alphabet (ACGT) to a degenerate
IUPAC alphabet with 11 letters (ACGTRYSWSKN).

The IUPAC patterns can be transformed to PWMs based on the combined occurrences of all
non-degenerated K-mers that match the degenerate IUPAC pattern in the input sequences.
Alternatively, there is a faster approach based on the insight that if we allow any of the four
nucleotides a ∈ {A,C,G,T} at position j, the vast majority of motif matches will still be
true positives due to the descriptive power of the other K − 1 IUPAC letters. Therefore, we
count the four nucleotides at motif position j for matches to the pattern y0:j−1Nyj+1:K−1 in
which we replaced the jth IUPAC letter by an N:

pja =
n(y0:j−1 a yj+1:K−1)

n(y0:j−1 N yj+1:K−1)
, (5)

where we have called n(y) the number of occurrences of K-mer y in the input set. Note
that these PWM probabilities can be computed solely from the K-mer counts in a time
O(W ×D) that is independent of the size of the input dataset Ltot, and only depends on
the degeneracy D =

∣∣{x ∈ {A,C,G,T}W : x matches y}
∣∣ of the motif y, i.e., the number of

different K-mers it matches.

We then refine the obtained PWMs by learning a multiple-occurrence-per-sequence model
(MOPS) directly on the K-mer counts. The likelihood of a K-mer x ∈ {A,C,G,T}K given a
position weight matrix model with probabilities p = (pj(A) is

p(x|pmotif)

p(x|pbg)
=

K−1∏
j=0

pj(xj)

pbg(xj)
. (6)

Expectation step: Compute the responsibilities r(x), i.e., the probability that the factor
will bind to K-mer x.

r(x) =
p(x|pmotif)

/
p(x|pbg)∑

x′∈{A,C,G,T}K n(x′)p(x′|pmotif)
/
p(x′|pbg)

(7)

Maximization step: Update the probabilities of the position weight matrix model.

pj(A) =
∑

x∈{A,C,G,T}K
I(xj =a)n(x) r(x) (8)

By inserting the E-step equation into the M-step, we obtain

p
(t)
j (A) ∝

∑
x∈{A,C,G,T}K

I(xj =a)n(x)
p(x|p(t−1)

motif )

p(x|pbg)
(9)
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and subsequent normalisation for each j over a ∈ {A,C,G,T} yields the updated motif
matrix probabilities.

To model saturation effects at the motifs with high affinities, we can use a saturation function
that will limit the weight of the odds ratios to a maximum value A, e.g. A = 1000:

p
(t)
j (A) ∝

∑
x∈{A,C,G,T}K

I(xj =a)n(x)

(
A−1 +

p(x|pbg)

p(x|p(t−1)
motif )

)−1
(10)

In a thermodynamic interpretation, A is the odds ratio of sites that have an occupancy of
50% at the assumed concentration of the transcription factor in the nucleus.

Merging and extending PWMs. We can reduce the redundancy of the PEnG!motif
output and more importantly, generate more specific and sensitive motifs by merging sub-
motifs that describe parts of the same underlying biological motif. For that, we first compute
a list of pairwise similarity scores between all PWMs {p(1), . . . , p(M)} with P -values above a

user-specified cutoff obtained in the last step. Here, p
(m)
ja is the probability of observing a

nucleotide a at the j′th position of that PWM. The similarity score S(p(m), p(m
′)) is defined

by the maximum similarity score s(·, ·) evaluated in the overlapping regions when the two
patterns of length l and l′ are shifted by d = −2,−1, . . . , l′ − l + 2 to each other:

S
(
p(m), p(m

′)
)

= max
−2≤d≤l′−l+2

{
s
(
p
(m)
j1 : j2

, p
(m′)
j′1 : j

′
2

)}
. (11)

The indices defining the overlap region in the two PWMs are j1 = max{0, d}, j2 = min{l −
1, l′ − 1 + d} and j′1 = max{0,−d}, j′2 = min{l′ − 1, l − 1− d}. The similarity score between
the PWMs in the overlap region is computed using

s(p, p′) =
1

2

(
d(p, p(bg)) + d(p′, p(bg))

)
− d(p, p′), (12)

The distance d(p, p′) between two PWMs p and p′ of length l is the sum over the PWM
columns of the relative entropies of each with their average distribution p̄ := (p+ p′)/2,

d(p, p′) =
l−1∑
j=0

(H(p||p̄) +H(p′||p̄)) =
l−1∑
j=0

∑
a∈A,C,G,T

(
pja log2 pja + p′ja log2 p

′
ja − 2p̄ja log2 p̄ja

)
.

(13)

The pair with the highest score will be merged using the positional offset d that yielded the
maximum similarity score. The pair of PWMs (p(m), p(m

′)) has a score above a user-specified
threshold (0.4×W bits by default) are merged together using the positional offset d that
yielded the maximum similarity score. In the overlapping regions, the nucleotide probabilities
of merged PWM will be the weighted sum of the nucleotide probabilities of the two merged
PWMs, where the weights are the numbers of matches of the associated IUPAC patterns.
The new weights of the columns of merged PWM will be the sum of these numbers of matches.
In the non-overlapping regions, the probabilities and weights are simply copied over from the
one PWM.
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1.2 Higher-order inhomogeneous Markov models

BaMMmotif [3] refines the pre-aligned short patterns or position-weight-matrices (PWMs) to
higher-order Bayesian Markov models for the enriched motifs.

According to Boltzmann’s law, the probability of a genomic site with sequence x to be bound
by the transcription factor divided by the probability of x not to be bound is

exp

(
−∆G(x)− µ

kBT

)
=

p(bound|x)

p(not bound|x)
=

p(bound|x)

1− p(bound|x)
, (14)

with the chemical potential µ that depends on the factor concentration but not on x. Solving
for p(bound|x) yields the well-known behaviour for saturated binding,

p(bound|x) =

(
1 + exp

(
∆G(x)− µ

kBT

))−1
. (15)

We parameterise the dependence of ∆G(x) on the binding site sequence x by a probability
distribution pmotif(x) which is defined by

pmotif(x)/pbg(x) ∝ exp(∆G(x)/kBT ). (16)

The proportionality constant is determined by the normalization. Solving for pmotif(x) and
normalising yields

pmotif(x) :=
pbg(x) exp(−∆G(x)/kBT )∑
y pbg(y) exp(−∆G(y)/kBT )

, (17)

where the sum in the normalisation constant runs over all possible binding site sequences
y ∈ {A,C,G,T}W . The motif score

S(x) := log
pmotif(x)

pbg(x)
= −∆G(x)

kBT
+ const. (18)

gives us, up to the constant log
∑

y pbg(y) exp(−∆G(y)/kBT ), the binding strength of a
site x as quantified by the negative Gibbs energy of binding in units of kBT log 2. Once
we know pmotif(·) we can compute the motif score S(x) which gives us the relative binding
strength. If we define µ′ = µ/kBT−log

∑
y pbg(y) exp(−∆G(y)/kBT ) we see that S(x)+µ′ =

(−∆G(x) + µ)/kBT . Hence up to the constant chemical potential µ′, pmotif(·) determines the
occupancy of any sequence (in the absence of competitive binding through steric hindrance)
for any potential binding site sequence x = (x1 . . . xW ),

p(bound|x) =
eS(x)+µ

′

1 + eS(x)+µ′
. (19)

In the following we drop the prime on µ′ for simplicity.

We derive a model for the Gibbs binding energy ∆G(x) for any potential binding site sequence
x = x1 :K ∈ {A,C,G,T}K by computing a motif score S(x):

S(x) = −∆G(x)

kBT
+ const. := log

pmotif(x)

pbg(x)
=

K−1∑
j=0

log
pKj (xj|xj−K : j−1)

pK
′

bg (xj|xj−K′ : j−1)
. (20)
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where we model the background probability using a homogeneous Markov model of order K ′:

pbg(xi0 : i1) =

i1∏
i=i0

pbg(xi|xi−K′ : i−1). (21)

We model the motif using an inhomogeneous Markov model of order K:

pmotif(x0 :K−1) =
K−1∏
j=0

pj(xj|xj−K : j−1). (22)

We learn the parameters of the inhomogeneous Markov model by maximising the posterior
probability. A natural prior is a product of Dirichlet distributions with pseudo-count
parameters proportional to the lower-order model probabilities, with proportionality constants
αkj for k = 1, . . . , K, whose size determines the strength of the prior. Maximizing the
posterior probability yields

pkj (xk+1|x1:k) =
nj(x1:k+1|r) + αkjp

k−1
j (xk+1|x2:k)

nj−1(x1:k|r) + αkj
. (23)

1.3 Masking in the motif refinement step

We train BaMMs using the expectation-maximization (EM) algorithm. In the E-step, we
(re-) estimate the responsibilities r for a motif to be present at position i of sequence n,

rni := p(zn = i|xn, pKmotif(x)) =
p(xn|zn = i, pKmotif(x)) p(zn = i)∑Ln−W+1

i′=0 p(xn|zn = i′, pKmotif(x)) p(zn = i′)
(24)

In the M-step, we use the new rni to update the model parameters pmotif(x)K for all orders
k = 0, ..., K. This update equation looks exactly the same as the previous equation for known
motifs locations, except that now the counts nj(x1:k+1) are interpreted as fractional counts
computed according to

nj(x, xk+1|r) :=
N∑
n=1

Ln−W+1∑
i=1

rniI (xn, i+j−k : i+j =(x, xk+1)) . (25)

The indicator function I returns 1 if the logical expression is true and 0 otherwise. The
parameter updates are done for all orders from 0 to K.

Here we introduce a masking step between the E- and M-step by masking out the first N%
of rni after re-ranking increasingly (N is 90 by default) in the first iteration of the EM. By
doing this, we learn the model only on the strong binding sites and thus eliminate the effect
of unrelated motifs. We then iterate the EM algorithm until convergence.
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1.4 Optimization of order- and position-specific hyperparameters
α

In the previous version of BaMMmotif [3], the hyperparameters αkj were empirically chosen.
Here in this project, we try to learn the position-specific αkj from the data.

We choose as prior on the hyperparameters αkj (for 1 ≤ k ≤ K) an inverse Gamma
distribution with parameters 1 and (βγk),

p(αkj|β, γ) =
β γk

α2
kj

e−β γ
k/αkj (26)

where β ≈ 5 and γ = 3 corresponds roughly to the previous choice αkj = β γk = 20× 3k−1

that worked for all of the datasets in the previous study [3].

According to Bayes’ theorem, the conditional probability of α given motif positions z can be
written as:

p(αk|X, z, pk−1motif) ∝αk
p(X|α, z, pk−1motif) p(α|z, p

k−1
motif)

p(αk|X, z, pk−1motif) ∝αk
p(X|α, z, pk−1motif) p(α) (27)

where

p(X|z,α, pk−1motif)

∝
W−1∏
j=0

∏
y

Γ(αkj)∏
a Γ(αkjv∗j (a|y′))

∏4
a=1 Γ(nz

j (y, a) + αkjv
∗
j (a|y′))

Γ(nz
j−1(y) + αkj)

���
���

����
4∏

a=1

1

vbg(a|y)n
z
j (y,a)

. (28)

Inserting (26) and (28) yields for the conditional probability

p(αk|X, z, pk−1motif) =
W−1∑
j=0

(∏
y

β γk

α2
kj

e
−β γ

k

αkj
Γ(αkj)∏

a Γ(αkjv∗j (a|y′))

∏4
a=1 Γ(nz

j (y, a) + αkjv
∗
j (a|y′))

Γ(nz
j−1(y) + αkj)

)

=
W−1∏
j=0

p(αkj|X, z, pk−1motif) , (29)

which factorizes over the αkj. We could therefore use Gibbs sampling to draw each new value
of αkj from its probability distribution independent of the others.

But for an efficient optimisation we need to reparameterise αkj as

αkj = eakj (30)

and sample akj instead of αkj, because otherwise it would take too long to explore the entire
probability distribution by small steps in αkj. If we went in steps of 0.5, for example, it would
take almost 20000 directed steps to move from αkj = 1 to 10000. With steps of size 0.5, it
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would take only 2log20000 = 18.4 directed steps to reach 10000. The probability density also
needs to be transformed with the variable:

p(akj|X, z, pk−1motif) =

∣∣∣∣dαkjd akj

∣∣∣∣ p(αkj|X, z, pk−1motif) (31)

= αkj p(αkj|X, z, pk−1motif) (32)

The log conditional probability for akl is

log p(akl|X, z, pk−1motif) = const.− logαkj − β γk/αkj + 4k log Γ(αkj) (33)

+
∑

y=y1:k

(
4∑

a=1

[
log Γ(nz

j (y, a)+αkjp
k−1
motif,j(a|y

′))− log Γ(αkjv
k−1
j (a|y′))

]
− log Γ(nz

j−1(y)+αkj)

)

We can sample from this distribution using the Metropolis-Hastings algorithm. We draw a
new atrykl ∼ N (akl, 1) and accept this trial sample with a probability

p(atrykl |X, z, p
k−1
motif)

p(akl|X, z, pk−1motif)
if p(atrykl |X, z, p

k−1
motif) < p(akl|X, z, pk−1motif)

1 if otherwise . (34)

Because it is fast to sample akl in this way, we draw 10 or times in a row and only take record
the last accepted sample of akl. This 10-fold repetition ensures that we can explore almost
the entire range of relevant values of akl within these 10 steps.

At the start of the sampling, the akj will move in the direction of the medians of their
probability distribution in relatively directed steps until the changes to the akj become
non-directional and begin to fluctuate. We can then fix the akj to the average of the last 20
or so samples and perform a few (e.g. 5) iterations of the EM algorithm (described in section
1.2) to find the optimum model parameters vKj (a|y) given the fixed akj.

1.5 Learning positional preferences of motifs

Thermodynamic treatment of positional preference

We proceed analogously to section 1.2 but introduce a positional preference as an additive
term ∆Gi in the binding energy. The probability of a factor to bind a binding site consisting
of W nucleotides between i and i+W − 1 in a sequence x = x1:L then becomes

p(factor bound at position i|x) =

(
1 + exp

(
∆G(xi:i+W−1) + ∆Gi − µ

kBT

))−1
. (35)

We define pmotif(x0:W−1) as in eq. (17) and we further define a positional distribution

p(z= i|factor bound to x) =
exp(−∆Gi/kBT )∑L
i′=1 exp(−∆Gi′/kBT )

. (36)
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We abbreviate the denominator as const. gives

− ∆Gi

kBT
+ const. = log p(z= i|factor bound to x) =: si. (37)

Once we know pmotif(·) and p(z= i|factor bound to x), we can compute S(xi:i+W−1) and si
and the relative binding strength (∆G(xi:i+W−1) + ∆Gi)/kBT for any potential binding site
position i in any sequence x = (x1 . . . xL).

If we again assume to be in a regime of unsaturated binding, p(bound|x) . 0.1 we can approx-
imate the probability p(xn|bound, pkmotif) for pulling out a sequence xn from an underlying
distribution of possible sequences pbg(x) as

p(xn|bound, pkmotif) ∝ p(factor bound|xn, pkmotif) pbg(xn)

= pbg(xn)
L−W+1∑
i=1

p(factor bound at i|xn, pkmotif)

= pbg(xn)
L−W+1∑
i=1

(
1 + exp

(
∆G(xi:i+W−1) + ∆Gi − µ

kBT

))−1
≈ pbg(xn)

L−W+1∑
i=1

exp

(
−∆G(xi:i+W−1) + ∆Gi − µ

kBT

)

∝ pbg(xn)
L−W+1∑
i=1

exp (S(xi:i+W−1) + si) . (38)

To find the model parameters θ consisting of s = (s1, . . . . , sL−W+1) and of pkmotif specifying
pmotif(·), we need to optimise the log likelihood function of these parameters:

LL(θ) =
N∑
n=1

log p(xn|bound, pkmotif , s) (39)

Flat Bayesian prior on positional preference

Let us define parameters π with πi = p(z=i|zi6=0) = esi the probability of a motif to start at
position i of a sequence. The M-step will then be given again by equation (24) but this time
using the positional preferences πi instead of the flat positional distribution. We will use a
flat prior distribution,

p(π|β) = Dir(π|β1) , (40)

and we will choose a value around β = 2 . . . 10.
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The auxiliary function becomes

Q(pkmotif ,α, q|r, pk−1motif)

=
N∑
n=1

[
Ln−W+1∑

i=0

rni log
(
p(xn|zn = i, pkmotif) p(zn = i|q)

)]
+ log p(pkmotif |pk−1motif ,α) + log p(π|β)

=
N∑
n=1

Ln−W+1∑
i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α)

+
N∑
n=1

(
rn,0 log(1− q) +

Ln−W+1∑
i=1

rni log(qπi)

)
+ log Dir(π|β1)

=
N∑
n=1

Ln−W+1∑
i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α) (41)

+
N∑
n=1

(
rn,0 log(1− q) + (1− rn,0) log q +

Ln−W+1∑
i=1

rni log πi

)
+

Ln−W+1∑
i=1

(β − 1) log πi.

We use the method or Lagrange multipliers again to find the optimum of Q(pkmotif ,α, q|r, pk−1motif)

under the constraint
∑L−W+1

i=1 πi = 1:

∂

∂πi

(
Q(pkmotif ,α, q|r, pk−1motif)− λ

(
L−W+1∑
i=1

πi − 1

))
=

N∑
n=1

rni
πi

+
β − 1

πi
− λ = 0 (42)

Solving for πi, normalising the distribution and defining Ni :=
∑N

n=1 rni yields

πi =
Ni + β − 1

N + (L−W + 1)(β − 1)
. (43)

Prior penalising jumps in the positional preference profile

For many applications it might be more appropriate to limit the complexity of the positional
preference profile by imposing a smoothness on the p(z = i). For example, transcription
factor binding sites will be more frequent near the center of ChIP-seq peaks than farther
away; factors bind more strongly to the outer parts of probes on protein binding microarrays
than to the parts near the glass slide; transcription factors in HT-SELEX experiments might
prefer the center of probes over the ends. In the following we assume that all training and
test sequences have the same length L.

Because the smoothness prior couples neighbouring positional probabilities with each other,
there is no closed-form solution for the parameters anymore. We have to use a gradient-
based optimisation such as conjugate gradients to minimise Q with respect to the positional
parameters. We therefore parameterise the positional distribution in such a way that the
normalisation condition

∑
i πi = 1 and the limits 0 ≤ πi ≤ 1 automatically hold true during

the numerical optimisation,

p(zn= i|zn 6=0) =
esi∑L−W+1

i′=1 esi′
. (44)
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We impose a smoothness prior on the πi, that encourages the point-wise estimated first
derivative to stay small,

p(π|β) =
L−W+1∏
i=2

N
(
si − si−1| 0, β−1

)
, (45)

with precision (= inverse variance) β.

With this prior, the auxiliary function becomes

Q(pkmotif ,α, q,π|r, pk−1motif) =
N∑
n=1

L−W+1∑
i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α)

+
N∑
n=1

(
rn,0 log(1−q) + (1−rn,0) log q +

L−W+1∑
i=1

rni

(
si − log

(∑
i′

esi′

)))

− β

2

L−W+1∑
i=2

(si − si−1)2 +
L−W

2
log β + const. (46)

The partial derivatives of Q(pkmotif ,α, q,π|r, pk−1motif) are

∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) =

N∑
n=1

rni −
N∑
n=1

L−W+1∑
i′=1

rni′
esi∑
i′′ e

si′′

− β (si − si−1) I(2 ≤ i ≤ L−W + 1)

+ β (si+1 − si) I(1 ≤ i ≤ L−W ) (47)

and
∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) = Ni − (N −N0) p(z= i|z 6=0)− (βAs)i

with the abbreviations N0 :=
∑N

n=1 rn,0 and

A :=



1 −1 0 0 · · · · · · · · · 0

−1 2 −1 0
. . . . . . . . .

...

0 −1 2 −1
. . . . . . . . .

...

0 0 −1 2
. . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0 0
...

. . . . . . . . . . . . 2 −1 0
...

. . . . . . . . . 0 −1 2 −1

0 . . . . . . . . . 0 0 −1 1


. (48)

The partial derivative will adjust si such that p(z= i|z 6=0) = esi/
∑

i′ e
si′ equals Ni/(N −N0)

plus a smoothness correction As that will pull si up or down in order to minimise the
estimator of the second derivative of the profile at position i. We run a few iterations of
conjugate gradients (e.g. 5 to 10) during each EM step to learn the positional preferences.
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Learning the optimal smoothness parameter β from the data. We can regard Q
also as a function of β,

Q(pkmotif ,α, q,π, β|r, pk−1motif) = −β
2

L−W+1∑
i=2

(πi − πi−1)2 +
L−W

2
log β + constβ , (49)

and optimise is with respect to β:

0 =
∂

∂β
Q(pkmotif ,α, q,π, β|r, pk−1motif) = −1

2

L−W+1∑
i=2

(si − si−1)2 +
L−W

2β
(50)

and therefore

β =

(
1

L−W

L−W+1∑
i=2

(si − si−1)2
)−1

(51)

Instead of optimising β, we can again interpret Q as the likelihood of an ensemble of fractional
motif instances with weights rni and compute the expectation value of β. If we assume
a uniform prior on β, p(β) = const, the posterior distribution of β is proportional to the
likelihood. We note that the functional form of Q(β) is that of a Gamma distribution,
Q(β) = log Ga(β|a, b) + const = (a − 1) log β − bβ + const, with a − 1 = (L −W )/2 and
b = (1/2)

∑
i(si − si−1)2. Since the expectation value of a Gamma distribution is a/b, we can

conclude for β

E[β] =

(
1

L−W + 2

L−W+1∑
i=2

(si − si−1)2
)−1

. (52)

We can then update β by its expectation value instead of the mode of Q(β). Alternatively,
we could sample β from the Gamma distribution Ga(β|(L−W + 2)/2, (1/2)

∑
i(si − si−1)2).

Prior penalising kinks in the positional preference profile

For various applications such as PBMs and HT-SELEC, we might be interested in more
smooth positional preferences. In these cases, it might be better to use a smoothness prior
on the πi that encourages the point wise estimated third derivative to stay small,

p(π|β) =
L−W∏
i=2

N
(
si −

si−1 + si+1

2

∣∣∣∣ 0, β−1) , (53)

with precision (= inverse variance) β. With this prior, the auxiliary function becomes

Q(pkmotif ,α, q,π|r, pk−1motif) =
N∑
n=1

L−W+1∑
i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α)

+
N∑
n=1

(
rn,0 log(1−q) + (1−rn,0) log q +

L−W+1∑
i=1

rni

(
si − log

(∑
i′

esi′

)))

− β

2

L−W∑
i=2

(
si −

si−1 + si+1

2

)2

+
L−W−1

2
log β + const. (54)
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The partial derivatives of Q(pkmotif ,α, q,π|r, pk−1motif) are

∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) =

N∑
n=1

rni −
N∑
n=1

L−W+1∑
i′=1

rni′
esi∑
i′′ e

si′′

+
β

2

(
si−1 −

si−2 + si
2

)
I(3 ≤ i ≤ L−W + 1)

− β
(
si −

si−1 + si+1

2

)
I(2 ≤ i ≤ L−W )

+
β

2

(
si+1 −

si + si+2

2

)
I(1 ≤ i ≤ L−W − 1) (55)

and
∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) = Ni − (N −N0) p(z= i|z 6=0)− β

4
(Bs)i

with the abbreviations N0 :=
∑N

n=1 rn,0 and

B :=



1 −2 1 0 0 · · · · · · · · · 0

−2 5 −4 1 0
. . . . . . . . .

...

1 −4 6 −4 1
. . . . . . . . .

...

0 1 −4 6 −4
. . . . . . . . .

...

0 0 1 −4 6
. . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . 1 0
...

. . . . . . . . . . . . . . . 6 −4 1
...

. . . . . . . . . . . . 1 −4 5 −2

0 . . . . . . . . . . . . 0 1 −2 1



. (56)

The partial derivative will adjust si such that p(z= i|z 6=0) = esi/
∑

i′ e
si′ equals Ni/(N −N0)

plus a smoothness correction Bs that will pull si up or down in order to minimise the
estimator of the third derivative of the profile at position i.

Learning the optimal smoothness parameter β from the data. Analogously to the
previous smoothness prior, we can learn β from the data using the update

β =

(
1

L−W − 1

L−W∑
i=2

(
si −

si−1 + si+1

2

)2
)−1

(57)

or

β =

(
1

L−W + 1

L−W∑
i=2

(
si −

si−1 + si+1

2

)2
)−1

. (58)
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1.6 Scanning sequences for motif occurrences

To obtain the motif occurrences from the sequences, given a known or learned motif, we
developed a motif scanning tool BaMMScan to evaluate the possible motif occurrences on the
input sequences. The motif score si(x1:K) is calculated for each position i on every sequence x
for the order K. A background score distribution is created by generating M -fold background
sequences from a second-order homogeneous Markov model from input set (M can be 10).
We sort the list of N+ +N− positive- and negative-set scores jointly in descending order. We
denote the cumulative number of scores from the negative set up to rank l in this list by FPl

and then compute the P-value of entry l with score Sl in that list by

P -value(Sl) =
1

N−

(
FPl +

Shigher
l − Sl

Shigher
l − Slower

l + ε

)
. (59)

and the E-values are obtained simply as

E-value = N+ × P -value. (60)

The motif occurrences with a P -value smaller than certain cutoff (e.g. 1e−4) are reported.

1.7 Evaluation criteria using the average recall (AvRec) score

To assess the predictive performance of the motif finders, we first defined an average recall
(AvRec) score (details also described in [4]). The AvRec score represents the averaged recall
over the range of precision from 0 to 1. The advantage of AvRec score over commonly used
p-value is that it covers the most relevant range of False-discovery-rates (FDR) in practical
applications and allows the user to intuitively estimate the motif performance in her particular
application.

We obtain a p-value for each sequence by

p-valuel =
FPl + 0.5

N− + 1
(61)

After having a p-value for every motif occurrence (as described in eq.59), we obtain a list of
corresponding local FDR values and an estimate of the weight of the null component η0 by
applying fdrtool [5] on the p-value distribution (Figure S 13A). We then calculate FDR and
recall for each entry by

FDRl =
FPl

FPl + TPl

(62)

recalll = (1− FDRl)
l

(1− η0)N
(63)

The ratio between true positive (TP) and false positive (FP) is calculated by

Rl[TP/FP] =
1− FDRl

FDRl

×M (64)
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with M as the ratio between negative and positive sequences.

We visualize the characteristics by plotting the TP/FP ratio RTP/FP on the y-axis against
the recall on the x-axis, and define the calculated area-under-the-curve as the AvRec score
for motif evaluation (Figure S 13B).
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Figure S 13. Schemes of motif assessment on sequences. (A) We calculate p-values for the
most likely positions on both positive and background sequences, given the motif and a second-order
background model learned from the sequences. We plot the density of the p-values and choose a
cutoff at 0.1 (the solid red line). The background sequences are mapped in the grey shadow, given
the ratio between the background and positive sequences. The true positives (TP, in green), false
negatives (FN, in white), false positives (FP, in red) and true negatives (TN) are visualized on the
plot. (B) For each p-value for positive sequences, we calculate the recall and the ratio between TP
and FP, and then plot the recall against the ratio of TP/FP. The solid dark blue line represent for
the scenario when the ratio between positive and background sequences is 1:1, the dash lines under
it are for the cases when the ratio is 1:10 and 1:100, respectively. An average recall (AvRec) score is
calculated as the area under the curve for the 1:1 ratio scenario, and used as a measurement for
motif quality on the positive sequence.

2 Datasets used for the benchmark

2.1 ENCODE database

We evaluated the performance of the selected algorithms on human ChIP-seq datasets from
the ENCODE portal [6] till March 2012. In total, there are 435 datasets for 93 distinct
transcription factors. The top 5000 peak regions, sorted by their signal value, were selected
for each dataset. If fewer than 5000 peaks were contained in a dataset, all peaks were chosen.
Positive sequences were extracted ±104 bp around the peak summits. Background sequences
were sampled by trimer frequencies from positive sequences, with the same length as positive
sequences and 10 times the amount of positive sequences. 8 datasets were excluded from all
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the results because diChIPMunk failed to learn models within 3 hours.

2.2 HT-SELEX datasets

For HT-SELEX data, we downloaded 164 datasets with 200 bp-long oligomers from Zhu
et al. [7], which are deposited in the European Nucleotide Archive (ENA) under accession
PRJEB22684. Each dataset represents one non-redundant human transcription factor. For
each dataset, we selected the top 5000 sequences from the 4th cycle without any sorting.
Background sequences are sampled in the same way as described previously.

2.3 GTRD database

For the GTRD database, we obtained 405 in vivo datasets for 405 non-redundant human
transcription factors from Yevshin et al. [1]. The top 5000 peak regions are selected after
sorting by q-values. Positive sequences are extracted ±100 bp around the peak summits.
Background sequences are sampled in the same way as described previously.

2.4 MITOMI datasets

MITOMI is a microfluidics-based approach for de novo discovery and quantitative biophysical
characterization of DNA target sequences [8]. We downloaded the MITOMI data for 28
Saccharomyces cerevisiae transcription factors under the accession GPL10817. The 3 bp and
15 bp long adapters on both ends are truncated. We then downloaded yeast GTRD datasets
for 8 transcription factors [1] for the motif discovery.

2.5 Cross-platform datasets

Out of 435 ENCODE datasets for 93 TFs and 164 HT-SELEX datasets for 164 non-redundant
TFs, there are 66 TFs which have both in vivo and in vitro datasets. Out of 66 TFs, most
of them have very low AvRec scores when performing the cross-platform validations. We
investigated into details and found out that for most of them, the learned motifs were very
distinct from the two platforms. This result confirms that TFs can bind to different motifs
when experimenting either in vivo or in vitro. For the left 16 paired tests, they are motifs for
4 TFs, namely CEBPB, POU2F2, ELF1, and FOXA2, which were used in our benchmark.

3 Motif finders used in the benchmark

The source code is available for command-line versions of PEnGmotif and BaMMmotif2 and
supported on Linux and MacOS:
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3.1 PEnGmotif

PEnGmotif repository: github.com/soedinglab/PEnG-motif. For this study, we used parame-
ters --optimization score MUTUAL INFO -w 8 --threads 4. The output is in MEME-like
format. The motifs are sorted by their AvRec scores, and the best one was taken for the
benchmark.

3.2 BaMMmotif2

BaMMmotif2 repository: github.com/soedinglab/BaMMmotif2. For this study, we seeded
with the PWMs discovered by PEnGmotif and used parameters --EM -k [k] --advanceEM

--extend 2 2 for further optimization. [k] is chosen as 1 and 5 for the benchmark for this
study. The output format is defined as BaMM format with extensions like .ihbcp and .hbcp.

3.3 BaMMmotif

BaMMmotif repository: github.com/soedinglab/BaMMmotif. For this study, we seeded with
PWMs by triggering XXmotif internally and used parameters --reverseComp --XX-localization

--XX-localizationRanking --XX-K 2 --maxPValue 0.05 --maxPWMs 3 --extend 2 2 for
further optimization. The output format is defined as BaMM format with extensions like
.ihbcp and .hbcp.

3.4 CisFinder

CisFinder was installed from https://lgsun.grc.nia.nih.gov/CisFinder/download.html. We
ran patternFind for identifying motifs, patternCluster for clustering motifs, and patternTest
for improving motifs. Default parameters were applied. The discovered motifs were converted
to MEME-like output format and re-ranked by our motif sorting script, and only the best
motif was taken for the benchmarks.

3.5 MEME

MEME version 5.1.1 was installed and applied with parameters -dna -mod zoops -nmotifs

3 -revcomp -p 4 -V 2. Maximum 3 motifs were saved in the output, and the best one
according to the AvRec score was taken for the benchmarks.

3.6 ChIPMunk

ChIPMunk version v8 was downloaded and applied with parameters ru.autosome.ChIPMunk
8 12 yes 1.0 100 10 1 4. The discovered motifs were converted to MEME-like output
format.
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3.7 diChIPMunk

diChIPMunk was implemented in the same package as ChIPMunk. We ran it with param-
eters ru.autosome.di.ChIPMunk 8 12 yes 1.0 200 20 1 4. The discovered motifs were
converted to BaMM-like output format for further comparison.

3.8 InMoDe

InMoDe was downloaded from http://www.jstacs.de/index.php/InMoDe. We applied the
module flexible, which allows us to customize the learning task. The discovered motifs
were converted to BaMM-like output format for further comparison.
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