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Supplementary Fig. 1

Association between age and (a) GI score and (b) percent genomic LOH. Multiple linear
regression was performed to identify the relationship between age and GI score or percent
genomic LOH for each cancer type. Only cancer types with a significant association (adj. p-
value < 0.05) are shown together with adjusted R-squared and p-values before multiple
hypothesis testing correction from multiple linear regression analysis. Blue lines represent best

linear fit. Grey envelope denotes 95% confidence interval.
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Supplementary Fig. 2

Age distribution of patients presented with different clinical factors. a Age distribution of lung
adenocarcinoma patients by smoking status. Current smoker n = 112, Current reformed smoker
n = 276, Lifelong Non-smoker n = 62 samples. b Age distribution of oesophageal cancer
patients by race. Asian n = 44, Black/African American n = 5, White n = 108 samples. ¢ Age
distribution of oesophageal cancer patients by smoking status. Current smoker n = 34, Current
reformed smoker n = 70, Lifelong Non-smoker » = 54 samples. d Age distribution of liver
cancer patients by histologic grade. G1 n =46, G2 n =170, G3.G4 n = 134 samples. The group
comparison was performed by the Kruskal-Wallis test. The pairwise comparisons were done
using two-sided Dunn’s test. The middle bar of the boxplot is the median. The box represents

interquartile range (IQR), 25th to 75th percentile. Whiskers represent a distance of 1.5 x IQR.
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Supplementary Fig. 3

Association between age and (a) overall SCNA score, (b) chromosome/arm-level SCNA score,
and (c) focal-level SCNA score. Multiple linear regression was performed to identify the
relationship between age and SCNA score for each cancer type. Only cancer types with a
significant association (adj. p-value < 0.05) are shown together with adjusted R-squared and
p-value before multiple hypothesis testing correction from multiple linear regression analysis.

Blue lines represent best linear fit. Grey envelope denotes 95% confidence interval.
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Supplementary Fig. 4

Association between age and overall SCNA score in lung adenocarcinoma separated by

smoking status - (a) lifelong non-smoker, (b) current smoker and (¢) current reformed smoker.

Adjusted R-squared and p-value before multiple hypothesis testing correction from multiple

linear regression analysis are presented. Blue lines represent best linear fit. Grey envelope

denotes 95% confidence interval.
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Heatmaps represent arm-level copy-number alterations across cancer types. Samples are sorted

by age. Colours represent copy-number changes from GISTIC2.0, blue denotes copy-number

loss and red corresponds to copy-number gain.
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Supplementary Fig. 7

Association between age and somatic mutations. a Association between age and mutation
burden. Simple linear regression was performed to investigate the association between age and
mutation burden. Cancer types with a significant association (adj. p-value < 0.05) were further
investigated using multiple linear regression. The figure shows cancer type-specific analysis
for every cancer that had a significant association in the simple linear regression analysis.
Adjusted R-squared and p-value before multiple hypothesis testing correction from multiple
linear regression analysis are displayed. Blue lines represent best linear fit. Grey envelope
denotes 95% confidence interval. b Association between age and fraction contribution of each
substitution class. For each substitution class in each cancer, simple linear regression was
performed to investigate the association between age and fraction contribution. Cancer types
with a significant association (adj. p-value < 0.05) were further investigated using multiple
linear regression. Multiple hypothesis testing correction was done using Benjamini—Hochberg
procedure. Only significant associations from multiple linear regression analysis were plotted.
Circle size corresponds to the significant level, red and blue represent positive and negative
associations, respectively. ¢ Association between age and mutation burden in endometrial
cancer after excluding tumours with MSI-H and POLE/POLD I mutations. Adjusted R-squared
and p-value before multiple hypothesis testing correction from multiple linear regression
analysis are displayed. Blue line represents best linear fit. Grey envelope denotes 95%

confidence interval.



90

Age at diagnosis
[o2]
o

30

Age at diagnosis

Age at diagnosis
o

N
o

Age at diagnosis
[o2] ©
o o

[9%)
o

COAD: MSI-H and age

o
kil

FALSE TRUE
MSI-H

BLCA: POLE mutation

0= 0.7891]
Al
’

FALSE TRUE
mutation

LUSC: POLE mutation

FALSE TRUE
mutation

COAD: POLD1 mutation

é: 0.9363
{4
“Va =

FALSE TRUE
mutation

READ: MSI-H and age

100

80

60

Age at diagnosis

40

20

FALSE TRUE
MSI-H

COAD: POLE mutation

Age at diagnosis

o= 0.2233]
100
80 .
60
a0{ =
20

FALSE TRUE
mutation

SKCM: POLE mutation

é: 0.2959
K
s

©
o

Age at diagnosis
[2]
o

[95)
o

FALSE TRUE
mutation

STAD: MSI-H and age

Age at diagnosis

FALSE TRUE
MSI-H

LUAD: POLE mutation

100 é = 0.6607
2 80
o
C
je2}
8
S 60
©
[
(2]
<
40
20
FALSE TRUE
mutation
STAD: POLE mutation
100

Age at diagnosis
(2] [es]
o o

N
o

FALSE TRUE
mutation



Supplementary Fig. 8

Association between age and (a) MSI-H in COAD (FALSE n =294, TRUE n = 62 samples),
READ (FALSE n = 120, TRUE n = 4 samples), and STAD (FALSE n =311, TRUE n = 74
samples), and (b) POLE/POLDI mutations in cancer types containing the mutations in these
genes in more than 5% of the samples. BLCA:POLE FALSE n = 346, TRUE n = 23 samples;
COAD:POLE FALSE n =346, TRUE n = 28 samples; LUAD:POLE FALSE n =431, TRUE
n =25 samples; LUSC:POLE FALSE n =421, TRUE n = 23 samples; SKCM:POLE FALSE
n = 391, TRUE n = 41 samples; STAD:POLE FALSE n = 365, TRUE n = 20 samples;
COAD:POLDI FALSE n =349, TRUE n = 25 samples. The statistical significance (p-values
before multiple hypothesis testing correction are shown) was calculated from the multiple
logistic regression adjusting for clinical variables. The middle bar of the boxplot is the median.
The box represents interquartile range (IQR), 25th to 75th percentile. Whiskers represent a
distance of 1.5 x IQR.
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Supplementary Fig. 9

Heatmap showing age-associated mutations in 10 cancer types. Samples are sorted by age.
Colours represent types of mutation. The right annotation legend indicates the direction of
change, increase or decrease mutations with age. The mutation burden of samples is presented

in dots above the heatmap in a log10 scale.
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Supplementary Fig. 10

Mutations in CDH1 by cancer subtypes. a Association between CDH mutations and stomach
cancer subtype comparing between genomically stable (GS) and other subtypes. The statistical
significance (p-value shown) was calculated from two-sided Fisher’s exact test. b Age
distribution of genomically stable stomach cancer subtype and other stomach cancer subtypes.
GS n =31, Others n =275 samples. The statistical significance (p-value shown) was calculated
from two-sided Wilcoxon rank sum test. The middle bar of the boxplot is the median. The box
represents interquartile range (IQR), 25th to 75th percentile. Whiskers represent a distance of
1.5 x IQR. ¢ Association between CDHI mutations and breast cancer subtype comparing
between invasive lobular carcinoma (ILC) and other subtypes. The statistical significance (p-
value shown) was calculated from two-sided Fisher’s exact test. d Age distribution of
genomically stable stomach cancer subtype and other stomach cancer subtypes. ILC n = 647,
Others n = 87 samples. The statistical significance (p-value shown) was calculated from two-
sided Wilcoxon rank sum test. The middle bar of the boxplot is the median. The box represents

interquartile range (IQR), 25th to 75th percentile. Whiskers represent a distance of 1.5 x IQR.
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Supplementary Fig. 11

Pearson correlation between linear regression coefficient of age on DNA methylation level and
linear regression coefficient of age on gene expression. The regression coefficients were
obtained from the multiple linear regression analysis to investigate the association between age
and DNA methylation or gene expression. Pearson correlation coefficient r and p-values (two-

sided test) are shown in the figures.
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Supplementary Fig. 12

methylation in breast, ovarian and endometrial cancers. a Pearson correlation between linear
regression coefficient of age on gene expression or methylation from all samples and only
samples without germline predisposition mutations. Pearson correlation coefficient r and p-
value (two-sided test) are shown in the figures. b Overlap between age-DEGs or age-DMGs

identified from all samples and only samples without germline predisposition mutations.
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Supplementary Fig. 13

Venn diagrams of the overlap between age-DEGs and age-DMGs in 8 cancer types. Age-DEGs
were separated into genes up-regulated with age (Expr Up) and genes down-regulated with
age (Expr_Down). Age-DMGs were classified into genes with increased methylation with age

(Methy Up) and genes with decreased methylation with age (Methy Down).
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Supplementary Fig. 14

Pearson correlation coefficient between methylation and gene expression. a Violin plots
showing the distribution of the Pearson correlation coefficient between methylation and gene
expression in 8 cancer types. Genes were grouped into (1) overlapping genes between age-
DMGs and age-DEGs (age-DMGs-DEGs), (2) age-DMGs only genes, (3) age-DEGs only
genes, and (4) other genes. ESCA others n = 11564, age DEGs n =871, age DMGs n = 1080,
age DMGs DEGs n =429 genes; KIRP others n = 11871, age DEGs n = 1128, age DMGs n
= 425, age DMGs DEGs n = 93 genes; LAML others n = 9011, age DEGs n = 300,
age DMGs n =378, age DMGs_DEGs n =57 genes; LIHC others n = 10906, age DEGs n =
1802, age DMGs n =301, age DMGs_DEGs n = 162 genes; OV others n = 9222, age DEGs
n = 634, age DMGs n = 580, age DMGs_DEGs n = 44 genes; PRAD others n = 13365,
age DEGs n = 150, age DMGs n = 188, age DMGs DEGs n = 7 genes; SKCM others n =
12786,age DEGs n=206,age DMGs n=276,age DMGs_DEGs n =56 genes; UCEC others
n=11618, age DEGs n = 1038, age DMGs n = 798, age DMGs_DEGs n = 272 genes. The
group comparison was performed by the Kruskal-Wallis test. The pairwise comparisons were
done using two-sided Dunn’s test. P-values from two-sided Dunn’s test between age-DMGs-
DEGs and the other groups are shown. The middle bar of the boxplot is the median. The box
represents interquartile range (IQR), 25th to 75th percentile. Whiskers represent a distance of
1.5 x IQR. b Density plots showing the distribution of the Pearson correlation coefficient

between methylation and gene expression, in four groups of genes, across 10 cancer types.
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Supplementary Fig. 15

The enriched age-related gene ontology (GO) terms identified by Gene set enrichment analysis
(GSEA) in 8 cancer types. The dot size corresponds to a significant level (permutation test). A
GO term was considered significantly enriched if adj. p-value < 0.05 for gene expression and
adj. p-value < 0.1 for methylation. Multiple hypothesis testing correction was done using
Benjamini—Hochberg procedure. Colours represent enrichment scores, red denotes positive
score (enriched in older patients), while blue signifies negative score (enriched in younger
patients). No enriched term was identified from the gene expression data of endometrial cancer

(UCEC).



