
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): Expert in ageing and cancer 

Chatsirisupachai and colleagues present integrated analyses of TCGA data to describe how genomic, 

epigenetic and gene expression changes in cancers are dependent on the age of the patient. Mostly, 

they performed linear regression analyses on various genetic, epigenetic and gene expression 

parameters across all cancers or individual cancers as a function of age. I believe that such a method 

has advantages over binning (e.g. segregating cases into halves, quartiles, etc), as one would expect 

progressive changes that would mirror other progressive changes associated with aging. 

Genomic instability (GI) indices and LOH show age-dependent increases in multiple cancers, 

although it’s interesting that some cancer types show the opposite trend (such as with LOH and lung 

AC). Similarly, increases in whole genome duplication (WGD) with age was observed across cancer 

types, with significant increases for some cancers like endometrial and ovarian. Notably, 

endometrial cancers show increases in GI, LOH and WGD with age. Consistent with the observations 

for GI, somatic copy number alterations (SCNA) also increased with age, evident in similar cancers as 

observed for GI (plus some additional ones). They also identified the chromosomal arms that tend to 

be gained and lost more often with age, as well as focal SCNA that were altered with age (again, 

endometrial cancers, ovarian cancers and low-grade gliomas stand out). Again, it is interesting that 

lung AC shows the opposite pattern, with decreased SCNA in cancers from older individuals. Cancers 

with SCNAs altered by age also exhibited corresponding alterations in the expression of known 

cancer driver genes. 

Not surprisingly, all cancers combined and 18 individual cancers exhibit a significant increase in point 

mutational burden with age, likely due to the increased spontaneous deamination driven C>T 

changes that characterize aging tissues. The only exception was endometrial cancers, and they 

showed that younger endometrial cancers are more frequently MSI-H, and have more frequent POLE 

and POLD1 mutations (hypermutators). They also identify particular genes where mutation 

frequency is impacted by age (excluding hypermutator cancers); for example, IDH1 mutations in 

gliomas negatively correlate with age. It’s interesting that mutations in the same gene can negatively 

and positively correlate with age for different cancers. These analyses highlight how age-dependent 

changes in selective pressures could interface with mutational changes to impact the mutational 

landscape of cancers. 

They then examined age-associated changes in oncogenic signaling pathways in cancers. 5 of 10 

signaling pathways that were previously shown to be deregulated in cancers showed age 

dependence increases in these pathways across cancers (more frequent mutational alterations or 

SCNA in cancers with increasing age). They extended these analyses, showing pathway alterations 

across 15 cancer types. Thus, selection for mutational deregulation of different pathways appears to 

be differential across various cancers as a function of age. 

For some cancers like gliomas, a large number of genes show differential expression dependent on 

age, while for other cancers there were no such genes. Clearly, some cancers like gliomas exhibit 



very different biology dependent on the age of the host, while others less so. Changes in gene 

expression were negatively concordant with those for DNA methylation, as would be expected, 

although the strong correlations observed suggest a major role for such DNA methylation in 

controlling age-dependent changes in gene expression in cancers. They observed similar negative 

correlations between gene expression and DNA methylation for some Gene Ontology terms. 

In all, these bioinformatic analyses of TCGA data to determine the age-dependence of mutational, 

epigenetic and gene expression changes in cancers is thorough and valuable. The assumptions made 

and other considerations (such as the use of cutoffs in terms of case #s for some analyses) appear 

well-justified, and their interpretations of the data appear reasonable. The Intro and Discussion both 

define the problems and offer a good analysis of the implications of their results (such as to why 

female reproductive cancers show such clear age-dependence in epigenetic parameters). The 

Methods are clear and seem appropriate (although genomic bioinformatics is not my area of 

expertise). Obviously, a comprehensive analysis of genetic and expression changes dependent on 

age across cancers is going to raise more questions than it answers, providing fodder for hypothesis 

testing in the years to come. And that’s what makes this study very useful. 

These analyses will serve as a valuable resource for investigators interested in associations between 

age and cancers. They also highlight the important role that age plays in sculpting the mutational 

and phenotypic landscapes of cancers, influenced both by selection and mutational processes. This 

study clearly shows that the age of the patient matters when it comes to the biology of the cancer, 

which should have profound implications for how we develop preventative, diagnostic and 

therapeutic interventions. 

Finally, as they cite, a study deposited on bioRxiv by Li et al used TCGA and PCAWG databases to 

perform a similar analysis for how aging impacts cancer genomics. The current study and this study 

find some common patterns, but due to their different methods also make unique discoveries (for 

example, related to the global transcriptomic and DNA methylation changes revealed from the 

current study). In the end, the field will be well served by the availability of both studies, leading to 

stronger conclusions overall and highlighting some unique contributions from each study. 

Minor: 

1) Suppl Fig 5A, showing the increased point mutational burden with age of cancer (all combined), 

should be included in a main figure (like Fig 4). I imagine that the authors chose to put it 

supplemental given that this association is known, but if it can be squeezed into to a main figure, it 

will help the reader better appreciate the full picture of mutational changes with age. 

2) The GI score is very well described in the Methods, but it would be helpful if the authors very 

briefly described the basics of this score in the Results section when these analyses are presented. 

Signed: James DeGregori 

Reviewer #2 (Remarks to the Author): Expert in cancer genomics 



In the current study, Chatsirisupachai et al. reported an integrative analysis of TCGA data to identify 

age-associated patterns of somatic alterations in human cancers. This is an important research 

question given that aging is the #1 risk factor of cancer. The analysis included multiple data types 

such as copy number, LOH, somatic mutations, expression, and methylation. Overall, this is a very 

large multi-omics study that provides novel insights into cancer and aging. The findings are scientific 

interesting and clinically relevant. However, there are also some technical questions, many of which 

are related to the complexity of the disease, that could be better addressed. 

Major: 

1. For the observed age-related genomic differences that are specific to certain cancers, for 

instances, the more frequent hypermutators in younger endometrial cancer patients, and IDH-WT vs 

IDH-mutant in glioma, do they represent unique features of aging, or age-related subtypes of certain 

cancer? Either could be important, but may need to be distinguished or discussed carefully. The 

latter could be explained by a heterogeneous nature of the disease itself that may or may not have 

been discovered. Similarly, for somatic mutations, certain cancer driver genes were found to show a 

mixed pattern with age in different cancer types. For instance, PTEN decreases with age in colon and 

endometrial, but increases in cervical cancer. CDH1 is more frequent in younger stomach cancer 

patients, but more common in older breast cancer patients. Could these be explained by the 

presence of different subtypes of cancers? The observed cancer-specific pattern seems to suggest 

that more complex subtyping is likely to be the cause. Additionally, are there any genes that showed 

consistent pattern across different cancer types? If so, these may have stronger support as age-

specific mutations. For the disease with higher numbers of age-DEGs, are these more heterogeneous 

diseases? Whereas the 5 diseases with no significant gene could be more homogeneous. 

2. One major finding is that cancer in female reproductive organs, including breast, ovarian and 

endometrial cancers, are among those with the highest number of age-DEGs and age-DMGs. -- Could 

this be caused by the presence of germline pre-disposition mutations, such as BRCA, in certain 

patients? 

3. Mutational signature is certainly an important measurement of age-related mutations. It was not 

clear why this analysis was not included in the current study. 

Minor: 

1. For typical SCNA analysis in cancer, SCNAs were identified by comparing paired tumor/normal 

samples. Could some of the recurrent age-related focal SCNAs across different cancer types are 

indeed caused by age-related changes of the common germline sample (e.x. blood) in opposite 

direction? For example, an age-related copy number loss in blood would lead to all the matched 

tumor sample to show a gain in that region? 

2. Was the quantitative difference of mutations taken into consideration? For example, one-copy 

loss vs homozygous loss, and mutations’ clonal statuses or VAF. If these are over-complicated to be 

included in the model, that would need to be clarified. 

3. Line 132. For the finding that lung adenocarcinoma was the only cancer with a negative 

association between overall SCNA and age, could this be caused by the difference in patient smoking 



history? 

4. Line 140: in cervical cancer...a significant association between age and chromosome/arm-level. 

However, in figure 2b, CESC does not seem to be significant? 

5. In endometrial cancer, if we exclude all tumors with MSI-H, or mutations in POLE or POLD1, do we 

then see a positive correlation between age and mutation burden? 

6. Line 146, a potential typo of “Fig. Fig. 2d, e” 

Reviewer #3 (Remarks to the Author): Expert in bioinformatics, transcriptomics, and epigenetics 

In this manuscript, the users investigated age-related differences in genomic instability, somatic 

copy number alterations (SCNAs), somatic mutations, pathway alterations, gene expression, and 

DNA methylation landscape across various cancer types. They showed that, in general, genomic 

instability and mutations frequency increase with age, and identified several age-associated genomic 

alterations in cancers, particularly in low-grade glioma and endometrial carcinoma. They also 

demonstrated that age-related gene expression changes are controlled by age-related DNA 

methylation changes and that these changes are linked to numerous biological processes. In general, 

the paper is well written and the idea is clear. Below are comments and suggestions for analysis that 

to strengthen the paper. 

• Can the authors give a potential explanation for the negative correlation between percent genomic 

LOH and age for lung adenocarcinoma, oesophageal, and liver cancer? 

• Can the authors give a potential explanation for the negative association between the overall SCNA 

score and age for lung adenocarcinoma? 

• Can the authors give a potential explanation for the increase of gain of specific chromosome arms 

with age in certain cancer types and the decrease of gain of other chromosome arms with age in 

other cancer types? For instance, do these chromosome arms contain certain genes that drive these 

cancer types? And similarly, can they comment on the increase and decrease of loss of chromosome 

arms with age for other cancer types. 

• Can the authors provide more details about the functional roles of the genes that showed negative 

correlation between mutation and age in low grade glioma and glioblastoma? Do these genes share 

some functional roles together? 

• Figure S5 shows that the relationship between age and somatic mutations overall is positive. There 

are 6 substitution classes. Does this positive relationship mostly contribute by C->T mutations as 

suggested by Line 196? 

• What is the relationship between cancer-related changes (DEGs & DMCs) and the age-related 

changes (DEGs & DMCs)? And what is the interplay among somatic mutations, DMCs, and DEGs in 



the aging context? 

• In Figure 6e, several pathways that are not directly related to cancer was included such as exon 

development. How did the authors perform the GSEA analysis for methylation changes? 

ClusterProfiler was used as mentioned in the methods section without much details. Were DMC 

associated genes used for GSEA analysis? If so, how was the gene associated with DMCs? How did 

the authors choose the background for GSEA analysis? Not all genes were covered equally across the 

promoters, how did the author make sure the GSEA analysis was not influenced by the coverage of 

CpGs in the methylation profiling? 

• Minor comments: 

o On page 9, line 222, the users used “UCEC” without mentioning what it stands for. 

o In all the figures, the font size of legends and axes is very small. It negatively impacts the 

readability. 

o Line 146: there is an extra “fig.” 

o Line 170: missing citation for “previously identified cancer driver genes”. 
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Authors’ response to the Reviewers’ comments 
  
Manuscript: NCOMMS-20-34538 
Title: An Integrative Analysis of the Age-Associated Genomic, Transcriptomic and 
Epigenetic Landscape across Cancers 
 
Dear Editor, 
  
Thank you for considering our manuscript for publication in Nature Communications. We 
carefully read all the comments and suggestions from the editors and reviewers and revised 
the manuscript accordingly. Overall, we agree with the majority of the comments and revised 
the manuscript following the suggestions. In the few cases we chose not to fully follow the 
suggestions, our reasons for doing so are carefully detailed. 
  
What follows are our point-by-point responses (in blue and marked with ###) to the 
comments from the editors and reviewers.  Changes in the manuscript are highlighted in 
yellow. 
  
Reviewer #1 (Remarks to the Author): Expert in ageing and cancer 

Chatsirisupachai and colleagues present integrated analyses of TCGA data to describe how 
genomic, epigenetic and gene expression changes in cancers are dependent on the age of the 
patient. Mostly, they performed linear regression analyses on various genetic, epigenetic and 
gene expression parameters across all cancers or individual cancers as a function of age. I 
believe that such a method has advantages over binning (e.g. segregating cases into halves, 
quartiles, etc), as one would expect progressive changes that would mirror other progressive 
changes associated with aging. 

Genomic instability (GI) indices and LOH show age-dependent increases in multiple cancers, 
although it’s interesting that some cancer types show the opposite trend (such as with LOH 
and lung AC). Similarly, increases in whole genome duplication (WGD) with age was 
observed across cancer types, with significant increases for some cancers like endometrial 
and ovarian. Notably, endometrial cancers show increases in GI, LOH and WGD with age. 
Consistent with the observations for GI, somatic copy number alterations (SCNA) also 
increased with age, evident in similar cancers as observed for GI (plus some additional ones). 
They also identified the chromosomal arms that tend to be gained and lost more often with 
age, as well as focal SCNA that were altered with age (again, endometrial cancers, ovarian 
cancers and low-grade gliomas stand out). Again, it is interesting that lung AC shows the 
opposite pattern, with decreased SCNA in cancers from older individuals. Cancers with 
SCNAs altered by age also exhibited corresponding alterations in the expression of known 
cancer driver genes. 

Not surprisingly, all cancers combined and 18 individual cancers exhibit a significant 
increase in point mutational burden with age, likely due to the increased spontaneous 
deamination driven C>T changes that characterize aging tissues. The only exception was 
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endometrial cancers, and they showed that younger endometrial cancers are more frequently 
MSI-H, and have more frequent POLE and POLD1 mutations (hypermutators). They also 
identify particular genes where mutation frequency is impacted by age (excluding 
hypermutator cancers); for example, IDH1 mutations in gliomas negatively correlate with 
age. It’s interesting that mutations in the same gene can negatively and positively correlate 
with age for different cancers. These analyses highlight how age-dependent changes in 
selective pressures could interface with mutational changes to impact the mutational 
landscape of cancers. 

They then examined age-associated changes in oncogenic signaling pathways in cancers. 5 of 
10 signaling pathways that were previously shown to be deregulated in cancers showed age 
dependence increases in these pathways across cancers (more frequent mutational alterations 
or SCNA in cancers with increasing age). They extended these analyses, showing pathway 
alterations across 15 cancer types. Thus, selection for mutational deregulation of different 
pathways appears to be differential across various cancers as a function of age. 

For some cancers like gliomas, a large number of genes show differential expression 
dependent on age, while for other cancers there were no such genes. Clearly, some cancers 
like gliomas exhibit very different biology dependent on the age of the host, while others less 
so. Changes in gene expression were negatively concordant with those for DNA methylation, 
as would be expected, although the strong correlations observed suggest a major role for such 
DNA methylation in controlling age-dependent changes in gene expression in cancers. They 
observed similar negative correlations between gene expression and DNA methylation for 
some Gene Ontology terms. 

In all, these bioinformatic analyses of TCGA data to determine the age-dependence of 
mutational, epigenetic and gene expression changes in cancers is thorough and valuable. The 
assumptions made and other considerations (such as the use of cutoffs in terms of case #s for 
some analyses) appear well-justified, and their interpretations of the data appear reasonable. 
The Intro and Discussion both define the problems and offer a good analysis of the 
implications of their results (such as to why female reproductive cancers show such clear age-
dependence in epigenetic parameters). The Methods are clear and seem appropriate (although 
genomic bioinformatics is not my area of expertise). Obviously, a comprehensive analysis of 
genetic and expression changes dependent on age across cancers is going to raise more 
questions than it answers, providing fodder for hypothesis testing in the years to come. And 
that’s what makes this study very useful. 

These analyses will serve as a valuable resource for investigators interested in associations 
between age and cancers. They also highlight the important role that age plays in sculpting 
the mutational and phenotypic landscapes of cancers, influenced both by selection and 
mutational processes. This study clearly shows that the age of the patient matters when it 
comes to the biology of the cancer, which should have profound implications for how we 
develop preventative, diagnostic and therapeutic interventions. 

Finally, as they cite, a study deposited on bioRxiv by Li et al used TCGA and PCAWG 
databases to perform a similar analysis for how aging impacts cancer genomics. The current 
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study and this study find some common patterns, but due to their different methods also make 
unique discoveries (for example, related to the global transcriptomic and DNA methylation 
changes revealed from the current study). In the end, the field will be well served by the 
availability of both studies, leading to stronger conclusions overall and highlighting some 
unique contributions from each study. 

### We are thankful for the positive comments from the reviewer. We are pleased in 
particular that the reviewer finds our study a valuable resource for scientists interested in 
ageing and cancer. 

 

Minor: 

1) Suppl Fig 5A, showing the increased point mutational burden with age of cancer (all 
combined), should be included in a main figure (like Fig 4). I imagine that the authors chose 
to put it supplemental given that this association is known, but if it can be squeezed into to a 
main figure, it will help the reader better appreciate the full picture of mutational changes 
with age. 

### Yes, we initially chose to include it in a supplementary figure because this is a well-
known association. We agree with the reviewer that by including it in the main figure instead 
would provide the reader a better picture of age-associated mutational changes. The figure is 
now included in Fig 4a. 

 

2) The GI score is very well described in the Methods, but it would be helpful if the authors 
very briefly described the basics of this score in the Results section when these analyses are 
presented. 

### We thank the reviewer for pointing this out. We have now included a brief description in 
the Results section at Line 81 as follows. 

We first derived genomic instability (GI) scores, calculated as the genome fraction (percent-
based) that does not fit the ground state, defined as 2 for tumours that have not undergone 
whole-genome duplication (WGD), and 4 for tumours that have undergone WGD (Methods).
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Reviewer #2 (Remarks to the Author): Expert in cancer genomics 

In the current study, Chatsirisupachai et al. reported an integrative analysis of TCGA data to 
identify age-associated patterns of somatic alterations in human cancers. This is an important 
research question given that aging is the #1 risk factor of cancer. The analysis included 
multiple data types such as copy number, LOH, somatic mutations, expression, and 
methylation. Overall, this is a very large multi-omics study that provides novel insights into 
cancer and aging. The findings are scientific interesting and clinically relevant. However, 
there are also some technical questions, many of which are related to the complexity of the 
disease, that could be better addressed. 

### We are happy that the reviewer finds our data are scientifically interesting and clinically 
relevant. We would also like to thank the reviewer for the thoughtful comments and we agree 
that these issues are important. We provide the point-by-point response below. 

 

Major:  

1. For the observed age-related genomic differences that are specific to certain cancers, for 
instances, the more frequent hypermutators in younger endometrial cancer patients, and IDH-
WT vs IDH-mutant in glioma, do they represent unique features of aging, or age-related 
subtypes of certain cancer? Either could be important, but may need to be distinguished or 
discussed carefully. The latter could be explained by a heterogeneous nature of the disease 
itself that may or may not have been discovered. Similarly, for somatic mutations, certain 
cancer driver genes were found to show a mixed pattern with age in different cancer types. 
For instance, PTEN decreases with age in colon and endometrial, but increases in cervical 
cancer. CDH1 is more frequent in younger stomach cancer patients, but more common in 
older breast cancer patients. Could these be explained by the presence of different subtypes of 
cancers? The observed cancer-specific pattern seems to suggest that more complex subtyping 
is likely to be the cause. Additionally, are there any genes that showed consistent pattern 
across different cancer types? If so, these may have stronger support as age-specific 
mutations. For the disease with higher numbers of age-DEGs, are these more heterogeneous 
diseases? Whereas the 5 diseases with no significant gene could be more homogeneous. 

### We would like to thank the reviewer for this comment. We agree with the reviewer that 
distinguishing between ageing features and age-related subtypes is important. However, 
cancer subtypes can be difficult to define and can be subjective. There are numerous ways to 
define subtypes, for example, by some markers such as ER+ and ER- breast cancer, by 
histological subtypes or by gene expression or methylation unsupervised clustering.  

Here, we tried to address this issue by considering some standard and broadly recognised 
subtypes, but we would also like to note that there might be several other ways to define 
subtypes within each cancer type. 

Firstly, the strong age-related features we found in IDH-WT/IDH-mutant represent 
previously identified subtypes in gliomas. The IDH-mutant subtype is predominantly found 
in younger patients1-3. Thus, this feature could represent age-associated subtypes. Similarly, 
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endometrial cancer consists of four subtypes previously identified, including POLE 
(ultramutated), MSI-H (hypermutated), copy-number low (endometrioid) and copy-number 
high (serous-like)4. The POLE and MSI-H subtypes are dominated by mutational signatures 
associated with POLE mutation and MSI-related mutational processes. The other subtypes, 
however, displayed dominant COSMIC mutational signature 1 associated with ageing5. 
Therefore, the more frequent hypermutators in younger endometrial tumours are likely to 
represent age-associated subtypes. 
Regarding the somatic mutations that showed an opposite pattern with age between cancer 
types, we checked whether mutations in some of these genes exhibit a feature of well-known 
subtypes in cancers or not. One example, as mentioned by the reviewer is the CDH1 mutation 
which was enriched in the genomically stable (GS) stomach tumours, which were diagnosed 
at an earlier age6. Indeed, by investigating 306 stomach tumours with subtype information 
from a previous TCGA study7, we also found the significantly younger age at diagnosis in GS 
subtype comparing with other subtypes (Wilcoxon test, p-value = 0.0058, Fig. 1 Top left), 
and an enrichment of tumours with CDH1 mutations in this subtype (Fisher’s exact test, p-
value = 2.0 x 10-5, Fig. 1 Top right). In breast cancer, although we have already included 
oestrogen receptor status, ER+ or ER- tumours, in our linear model, other cancer subtyping 
systems might affect the age-associated features. A previous study has reported enrichment of 
CDH1 loss-of-function mutations in invasive lobular carcinoma (ILC), a second most 
common histological subtype8. Here, using the subtype information from a previous study9, 
we investigated 734 breast cancer samples that have been classified as ILC, invasive ductal 
carcinoma (IDC), mixed and other histological subtypes. We showed that ILC was diagnosed 
at an earlier age comparing with all other subtypes (Wilcoxon test, p-value = 0.00081, Fig. 1 
Middle left), as well as an enrichment of CDH1 mutations in ILC (Fisher’s exact test, p-
value = 4.4 x 10-38, Fig.1 Middle right). Apart from CDH1, we also explored the association 
between gene mutations and ILC subtypes in other cancer driver genes that we found age-
associated patterns in breast cancer, including PIK3CA, GATA3, KMT2C and MAP3K1. We 
also found that PIK3CA mutations were more frequent in ILC (Fisher’s exact test, p-value = 
0.0013, Fig.1 Bottom left), while GATA3 mutations tended toward lower frequency in ILC 
(Fisher’s exact test, p-value = 0.054, Fig.1 Bottom right) as suggested by a previous study8. 
However, there was no significant association between ILC subtype and mutations in KMT2C 
and MAP3K1 (Fisher’s exact test, p-value = 0.16 in both genes). 
Another example the reviewer mentioned was an increased PTEN mutation with age in 
cervical cancer, we found no difference in the proportion of PTEN mutations between two 
cervical cancer subtype, adenocarcinoma and squamous cell carcinoma (Fisher’s exact test, 
p-value = 1, Fig. 2 Right). Age at diagnosis was not different between both subtypes (Fig. 2 
Left). This could either suggest an age-associated feature regardless of subtype or an 
unidentified subtype that needs to be further investigated. For the decrease in PTEN 
mutations with age in colon cancer and endometrial cancer, this might be due to the presence 
of MSI-H tumours in the data. Although we have already excluded tumours with more than 
1,000 mutations, some MSI-H tumours contain less than 1,000 mutations and still present in 
the data. To better address this bias, we re-analysed our age-associated mutations by 
excluding all tumours harbouring more than 1,000 mutations per exome and MSI-H tumours. 
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After we removed MSI-H tumours from the analysis, PTEN mutation was not significantly 
associated with age in both colon and endometrial cancer. 
 

  

 

 
 
Fig.1 Top left: Genomically stable (GS) stomach cancers (STAD) are presented in younger 
patients. Top right: An enrichment of CDH1 mutations in GS subtype. Middle left: Invasive 
lobular carcinoma (ILC) breast cancers (BRCA) are presented in older patients. Top right: 
An enrichment of CDH1 mutations in ILC subtype. Bottom left: An enrichment of PIK3CA 
mutations in ILC subtype. Bottom right: Mutations in GATA3 are less frequent in ILC 
subtype. 
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Fig. 2 Left: Age at diagnosis of cervical cancer (CESC) subtypes, adenocarcinoma and 
squamous cell carcinoma, are not different. Right: The frequency of PTEN mutations in 
cervical adenocarcinoma and squamous cell carcinoma are not different. 
  
  
In the somatic mutation analysis, we found five genes showing a consistent pattern with age. 
Mutations in these genes, however, associated significantly with age only in two cancer 
types, including lower mutations of ATRX and IDH1 in low-grade gliomas and glioblastoma 
with age, an increased mutation of NF1 with age in Pheochromocytoma and Paraganglioma 
and melanoma an increased mutation of NOTCH1 in cervical cancer and head and neck 
cancer, and an increased mutation of PIK3CA in breast cancer and cervical cancer. From this 
information, there is no universal gene that shows an increased or decreased mutation with 
age across several cancer types. One major reason is that the prevalence of a cancer driver 
gene mutated in different cancer types is vastly different. Additionally, it is still unclear 
whether different tissues age similarly or differently. Therefore, the increase or decrease in 
the frequency of mutations with age for cancer from each tissue could be due to differences in 
tissue environments and the interplay between cells harbouring mutations and tissue 
environment changes with age that needs to be further investigated both computationally and 
experimentally. 
  
As the reviewer pointed out, we observed a vast difference between the number of age-DEGs 
from different cancer types. However, it is difficult to conclude that this difference is caused 
by the homogeneity or heterogeneity of diseases. In fact, pointing out that one cancer is more 
homogeneous or more heterogeneous than other cancers can be tricky. For example, by 
histological type, most cases in the TCGA ovarian cancer cohort are ovarian serous 
cystadenocarcinoma. It is, however, among one of the top cancers with the highest number of 
age-DEGs. On the other hand, there were no age-DEGs in stomach cancer, which consists of 
different histological subtypes such as mucinous type, diffuse type and papillary type or 
consists of four molecular subtypes distinguished by genomic data, including EBV+, MSI, 
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GS, and chromosomal instability (CIN). Therefore, the numbers of age-DEGs could be 
independent of the cancer heterogeneity. 
  
Overall, we agree with the reviewer that it is interesting and important, yet difficult, to 
untangle the age-associated features within a subtype from the age-associated subtypes. Here, 
while we were able to explain some of the age-associated mutations in relation to age-related 
subtypes, further detailed investigation in each cancer type is required to fully distinguish 
age-related subtype effects from age-associated effects, or even to identify a new age-related 
subtype. Our perspective, however, is that either age-associated mutations come from age-
related subtypes or from age-related features could reflect the biological differences between 
cancers at different ages. Thus, our current manuscript underscores the importance of age in 
cancer research and calls for more studies in relation to ageing and cancer. We incorporated 
some of these examples we addressed above in the Results section of the manuscript at Line 
302.   
 
Mutations in CDH1 were more frequent in younger stomach cancer patients (OR = 0.9414, 
95%CI = 0.9027-0.9800, adj. p-value = 0.006), but more common in older breast cancer 
patients (OR = 1.0218, 95%CI = 1.0049-1.0392, adj. p-value = 0.0183) (Fig. 4f). This result 
highlights cancer-specific patterns of genomic alterations with age. We tested whether age-
associated subtypes could explain differences in mutation with age. Using subtype 
information from a previous TCGA study40, CDH1 mutations were found more often in the 
genomically stable (GS) subtype of stomach cancer (two-sided Fisher’s exact, p-value = 
2.0x10-5), which was presented more frequently in younger patients (two-sided Wilcoxon 
rank sum test, p-value = 0.0058) (Supplementary Fig. 10a-b). As expected, CDH1 mutations 
were highly enriched in the invasive lobular carcinoma (ILC) subtype of breast cancer35 (two-
sided Fisher’s exact, p-value = 4.4x10-38), which was more prevalent in older patients (two-
sided Wilcoxon rank sum test, p-value = 0.00081) (Supplementary Fig. 10c-d). 
 

We also discussed this point in the Discussion section at Line 472 as follows. 

Indeed, some of these age-related differences might be explained by age-related subtypes, 
such as the high prevalence of CDH1 mutation in invasive lobular breast carcinoma and 
genomically stable stomach cancer, that are presented more often in older and younger 
patients, respectively. Further detailed investigation in each cancer type is required to fully 
distinguish age-related subtype effects from age-associated effects, or even to identify a new 
age-related subtype. Our perspective is that whether age-associated genomic differences 
come from age-related subtypes or from age-related features they reflect biological 
differences between cancers at different ages, highlighting the impact of age on the molecular 
profile of cancer. 

 

2. One major finding is that cancer in female reproductive organs, including breast, ovarian 
and endometrial cancers, are among those with the highest number of age-DEGs and age-
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DMGs. -- Could this be caused by the presence of germline predisposition mutations, such as 
BRCA, in certain patients? 

### We thank the reviewer for raising this point. To address this, we retrieved the 
information of germline predisposition in TCGA patients from the previous TCGA study10. 
We then excluded samples harbouring germline variants located in exons of BRCA1, BRCA2 
and TP53 that did not overlap with variants reported in the 1000 Genomes project. In total, 
the number of samples excluded from each TCGA cohort in gene expression are 134 out of 
1,011 (13.25%), 63 out of 288 (21.88%) and 56 out of 432 (12.96%) for breast (BRCA), 
ovarian (OV) and endometrial cancers (UCEC), respectively. Similarly, the number of 
samples excluded from each TCGA cohort in methylation are 93 out of 719 (12.93%), 101 
out of 545 (18.53%) and 47 out of 360 (13.06%) for BRCA, OV and UCEC, respectively. We 
next repeated our multiple linear regression analyses to identify age-DEGs and age-DMGs 
using samples without germline variants. For gene expression analysis, significant age-DEGs 
(adj. p-value < 0.05) identified from samples without germline variants largely overlapped 
with age-DEGs from all samples (Fig. 3). Indeed, we also observed a high correlation 
between regression coefficients of multiple regression analysis from all tumours and tumours 
without samples harbouring germline predisposition variants in BRCA (R = 0.98, Pearson 
correlation), OV (R = 0.93) and UCEC (R = 0.98) (Fig. 4). 
Likewise, we found a large overlap between age-DMGs identified from all samples and 
samples without germline variants in all three cancers (Fig. 5). A high correlation between 
regression coefficients of multiple regression analysis from all tumours and tumours without 
samples containing germline variants were observed in BRCA (R = 0.99, Pearson 
correlation), OV (R = 0.97) and UCEC (R = 0.98) (Fig. 6). 
Due to the similarity between age-DEGs and age-DMGs identified from all patients and only 
patients without germline predisposition mutations, the presence of germline mutations is 
unlikely to be the main cause of the high number of age-DEGs and age-DMGs. As we 
discussed at Line 500, other factors such as hormonal changes could be responsible for the 
age-associated gene expression and methylation changes. We have incorporated this data into 
the Results section of the revised manuscript at Line 370 and Supplementary Figure 12 as 
follows. 
To exclude the possibility that germline predisposition mutations in some patients may cause 
such a high number of age-DEGs and age-DMGs in cancers of the female reproductive 
system, we excluded samples harbouring germline mutations in BRCA1, BRCA2 and TP53 as 
previously identified42 from the breast, ovarian and endometrial cancer cohorts and repeated 
the multiple linear regression analysis. We observed a high correlation between regression 
coefficients of the analyses from all tumours and the analyses excluding samples with 
germline mutations, for all three cancer types and for both gene expression and methylation 
(R = 0.93-0.99, p-value < 2.2x10-16) (Supplementary Fig. 12). The overlap between age-
DEGs or age-DMGs identified from all samples and from samples without germline variants 
were large (Supplementary Fig. 12, Supplementary Data 15). Therefore, the high number of 
age-DEGs and age-DMGs are independent of the presence of germline predisposition 
mutations in some patients. We, therefore, used age-DEGs and age-DMGs identified from all 
samples for subsequent analyses. 
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Fig. 3 Overlap between age-DEGs identified from all samples (adj. p-value < 0.05) and 
samples without germline variants (adj. p-value < 0.05). 

 

Fig. 4 Pearson correlation between regression coefficient from the multiple linear regression 
analysis to identify the association between gene expression and age in all samples and in 
samples without germline variants. Each dot represents one gene. 
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Fig. 5 Overlap between age-DMGs identified from all samples (adj. p-value < 0.05) and 
samples without germline variants (adj. p-value < 0.05). 
 

 

Fig. 6 Pearson correlation between regression coefficient from the multiple linear regression 
analysis to identify the association between methylation and age in all samples and in 
samples without germline variants. Each dot represents each gene. 
 

 

3. Mutational signature is certainly an important measurement of age-related mutations. It 
was not clear why this analysis was not included in the current study. 
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### We thank the reviewer for the suggestion. We agree with the reviewer that mutational 
signature analysis is an important analysis related to age-related mutations. However, our 
focus in the study was to identify cancer driver genes in which their mutations showed an 
age-associated pattern. Moreover, several studies have already reported the age-related 
mutational signatures using TCGA and PCAWG data, pointing mainly toward COSMIC 
signature 1 and signature 5 (clock-like mutational signatures)11,12. Importantly, we are aware 
that this analysis has been performed by Li et al.13 that is also submitted to this journal. Thus, 
we are not sure performing a similar analysis will provide novel insights. If the reviewer 
and/or Editor insists we perform this analysis we could do it, however. 

 

Minor: 

1. For typical SCNA analysis in cancer, SCNAs were identified by comparing paired 
tumor/normal samples. Could some of the recurrent age-related focal SCNAs across different 
cancer types are indeed caused by age-related changes of the common germline sample (e.x. 
blood) in opposite direction? For example, an age-related copy number loss in blood would 
lead to all the matched tumor sample to show a gain in that region? 

### We thank the reviewer for raising this point. We performed a careful analysis of samples 
with potential copy number changes in the matched germline sample (n=9,678). We detected 
segments of more than 10Mb that have B-allele frequency (BAF) < 0.49 or > 0.51 in 
germline samples using the ASPCF function implemented in ASCAT. This yielded 58 
samples (0.6 %) with at least one clear BAF deviation, indicating either sub-clonal copy-
number variations or copy-number alterations from contaminated tumour cells. We repeated 
age-related focal SCNA analysis excluding these 58 samples and found that almost all 
significant age-associated regions remain significant. Only in one gain region, chromosome 
12q14.1 in low-grade glioma, where the result changes from significant (adj. p-value = 0.048) 
to non-significant (adj. p-value = 0.077) after excluding one sample with the gain in this 
region from the analysis. We inspected the excluded sample to check the region where BAF 
is deviated from 0.5 and found that this sample has been flagged due to a mixed pattern 
between 1+1 and 2+0 at chromosome 9q, suggesting that this CNV in this germline blood 
sample does not affect the region with age-associated SCNA in cancer (12q14.1). The change 
in p-value we observed thus more likely to come from a reduced statistical power. Therefore, 
our analysis of age-related SCNAs was not confounded by the presence of somatic 
mosaicism in normal samples. 

 

2. Was the quantitative difference of mutations taken into consideration? For example, one-
copy loss vs homozygous loss, and mutations’ clonal statuses or VAF. If these are over-
complicated to be included in the model, that would need to be clarified. 

### No, we did not take homozygous/heterozygous and clonal statuses into consideration. 
We acknowledge that it would be an interesting analysis but considering that it would be 
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over-complicated. We agreed with the reviewer that it is important to clarify and have 
included a paragraph stating this in the revised manuscript at Line 480 as follows. 

One limitation, however, of our age-related genomic analyses is that we did not include in 
our model information on quantitative differences of genomic alterations, such as 
homozygous/heterozygous loss and clonal/subclonal mutations, to not over-complicate the 
analyses. 

 

3. Line 132. For the finding that lung adenocarcinoma was the only cancer with a negative 
association between overall SCNA and age, could this be caused by the difference in patient 
smoking history? 

### Yes, smoking is enriched in younger lung adenocarcinoma patients as shown in Fig. 7 
below. Patients that are current smokers are significantly younger than other groups. 
Although we included smoking status in our linear model, it is likely that smoking status still 
confounds the data. When we performed multiple linear regression on samples from lifelong 
non-smokers only, there is no association between age and overall SCNA score (p-value = 
0.75) (Fig. 8 Left below). We, however, found a significant association between age and 
overall SCNA score in both current smokers and current reformed smokers (p-value = 0.0420 
and 0.0421, respectively) (Fig. 8 Right and Bottom below). Therefore, although the 
presence of current smokers in younger patients could partly cause the negative association 
between overall SCNA score and age, other unknown factors might also contribute to this 
negative correlation. 
In fact, we also found a negative association between age and mutational burden in lung 
adenocarcinoma using simple linear regression analysis. However, this negative association is 
no longer significant after we adjusted for smoking status. It is worth noting that the Li et al. 
study also reported negative associations between age and SCNA as well as mutational 
burden in lung adenocarcinoma13. We have now included this potential explanation of a 
negative association between SCNA score and age caused by the difference in patient 
smoking history in our manuscript at Line139 as follows. 
 
lung adenocarcinoma is the only cancer type exhibiting a negative association between 
overall SCNA score and age (Fig. 2a, Supplementary Fig. 3a, and Supplementary Data 5), 
possibly due to the presence of current smokers in younger lung adenocarcinoma patients 
(Supplementary Fig. 2a). When we analysed only non-smokers, there was no significant 
association between age and overall SCNA score (Supplementary Fig. 4a). However, the 
significant negative association was found when we analysed only current reformed smokers 
and only current smokers (Supplementary Fig. 4b-c), thus other unexplained factors apart 
from smoking status might also contribute to this higher SCNA score in younger smokers.  
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Fig. 7 An enrichment of current smokers in younger lung adenocarcinoma (LUAD) patients. 
The group comparison was performed by the Kruskal-Wallis test. The pairwise comparisons 
were done using Dunn’s test. P-values from Dunn’s test between each pair of comparisons 
are shown. 
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Fig. 8 Left: Association between age and overall SCNA score in lifelong non-smoker lung 
adenocarcinoma patients. Right: Association between age and overall SCNA score in current 
reformed smokers. Bottom: Association between age and overall SCNA score in current 
smokers. 
 

 

4. Line 140: in cervical cancer...a significant association between age and chromosome/arm-
level. However, in figure 2b, CESC does not seem to be significant? 

### Thank you for pointing this out, it should be sarcoma, not cervical cancer. This has now 
been corrected. 

 

5. In endometrial cancer, if we exclude all tumors with MSI-H, or mutations in POLE or 
POLD1, do we then see a positive correlation between age and mutation burden? 

### We investigated the association between age and mutational burden in endometrial 
cancer excluding all MSI-H and POLE/POLD1 tumours and found a significant increase in 
mutational burden with age (Fig. 9 below). This result is included in the Supplementary Fig. 
7c and Line 249 as follows. 
 
Indeed, when we excluded tumours with MSI-H and tumours containing POLE/POLD1 
mutations from the analysis, we found a significant positive association between mutation 
burden and age in endometrial cancer (adj. R-squared = 0.12, p-value = 0.00138) 
(Supplementary Fig. 7c). 
 

 

Fig. 9 Association between age and mutational burden in endometrial cancer excluding 
tumours with MSI-H, POLE or POLD1 mutations.  
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6. Line 146, a potential typo of “Fig. Fig. 2d, e” 

### Thank you for spotting this. It is corrected now. 

 

Reviewer #3 (Remarks to the Author): Expert in bioinformatics, transcriptomics, and 
epigenetics 

In this manuscript, the users investigated age-related differences in genomic instability, 
somatic copy number alterations (SCNAs), somatic mutations, pathway alterations, gene 
expression, and DNA methylation landscape across various cancer types. They showed that, 
in general, genomic instability and mutations frequency increase with age, and identified 
several age-associated genomic alterations in cancers, particularly in low-grade glioma and 
endometrial carcinoma. They also demonstrated that age-related gene expression changes are 
controlled by age-related DNA methylation changes and that these changes are linked to 
numerous biological processes. In general, the paper is well written and the idea is clear. 
Below are comments and suggestions for analysis that to strengthen the paper. 

### We are grateful that the reviewer finds our paper is well written, and the idea is clear. We 
would also like to thank the reviewer for thoughtful comments, which helped strengthen the 
manuscript. We here provide the point-by-point response below. 

 

• Can the authors give a potential explanation for the negative correlation between percent 
genomic LOH and age for lung adenocarcinoma, oesophageal, and liver cancer? 

### We looked into the potential confounding factors in our linear model. Apart from age, 
tobacco smoking had a significant association with percent genomic LOH in lung 
adenocarcinoma. As shown in Fig. 10 below, patients that were current smokers were 
younger than the other groups. Although we included smoking status in our linear model, it is 
likely that smoking status still confounds the data. The percent genomic LOH in tumours 
from current smokers is significantly higher than that of current reformed smokers, whereas 
there was no difference between percent genomic LOH in tumours from lifelong non-
smokers and the other groups (Fig. 11 below). While we found no association between age 
and LOH in lifelong non-smokers and current reformed smokers (Fig. 12 Left-Right below), 
the negative association was shown in current smokers (Fig. 12 Bottom below). Thus, it is 
possible that the negative correlation between percent genomic LOH and age in lung 
adenocarcinoma can partly be explained by the younger age of current smokers. However, 
the negative association between age and percent genomic LOH that is presented when 
analysing only current smokers indicates that other factors might also contribute to this 
negative correlation. 
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Fig. 10 An enrichment of current smokers in younger lung adenocarcinoma (LUAD) patients. 
The group comparison was performed by the Kruskal-Wallis test. The pairwise comparisons 
were done using Dunn’s test. P-values from Dunn’s test between each pair of comparisons 
are shown. 

  
Fig. 11 Tumours from current smokers harbour a higher percent genomic LOH than that of 
current reformed smokers. The group comparison was performed by the Kruskal-Wallis test. 
The pairwise comparisons were done using Dunn’s test, multiple hypothesis correction was 
performed by Bonferroni method. Adjusted P-values from Dunn’s test between each pair of 
comparisons are shown. 
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Fig. 12 Left: Association between age and percent genomic LOH in lifelong non-smoker 
lung adenocarcinoma patients. Right: Association between age and percent genomic LOH in 
current reformed smokers. Bottom: Association between age and percent genomic LOH in 
current smokers. 
  
For liver cancer, there was also a significant association between LOH and histologic grade, 
in addition to age. Grade 3 and 4 tumours were enriched in younger patients (Fig. 13 Left 
below). The percent genomic LOH in grade 3 and 4 tumours is significantly higher than that 
of grade 1 and 2 tumours (Fig. 13 Right below). When we investigated the relationship 
between age and percent genomic LOH in G1 and G2 tumours using multiple linear 
regression, no association was found (p-value = 0.125) (Fig. 14 Left below). However, the 
significant negative association between age and percent genomic LOH was shown in G3 and 
G4 tumours (p-value = 0.0324) (Fig. 14 Right below). Thus, although the negative 
correlation between age and percent genomic LOH in liver cancer can partly be explained by 
the higher proportion of G3 and G4 tumours in younger patients, there might be undiscovered 
factors related to age and LOH in liver cancer. 
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Fig. 13 Left: Tumours with histological grade G3 and G4 are presented in younger liver 
cancer (LIHC) patients. Right: G3 and G4 tumours harbour a higher percent genomic LOH. 
The group comparison was performed by the Kruskal-Wallis test. The pairwise comparisons 
were done using Dunn’s test, multiple hypothesis correction was performed by Bonferroni 
method. Adjusted P-values from Dunn’s test between each pair of comparisons are shown. 
  

 
Fig. 14 Left: Association between age and percent genomic LOH in histological grade G1 
and G2 liver cancers. Right: Association between age and percent genomic LOH in 
histological grade G3 and G4 liver cancers. 
  
Next, our linear model for investigating the association between age and LOH in oesophageal 
cancer did not include race, pathologic stage and smoking history due to the missing data in 
more than 10% of samples (10.8%, 13.1% and 10.2% respectively). We then performed 
multiple linear regression adjusting for all variables used previously (gender, histologic grade 
and alcohol history) together with race, pathologic stage and smoking history. We found that 
the negative association between age and percent genomic LOH in oesophageal cancer is no 
longer significant (p-value = 0.197). 
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We briefly included the potential explanation for the negative association between percent 
genomic LOH and age for lung adenocarcinoma, oesophageal and liver cancer in the revised 
manuscript at Line108 as follows. 
 
This negative correlation might be due to the difference in the distribution of age of samples 
with smoking status (lung adenocarcinoma and oesophageal cancer), race (oesophageal 
cancer) and tumour grade (liver cancer) (Supplementary Fig. 2), yet other unexplained factors 
might also contribute to the higher LOH level in younger patients in these three cancer types. 

 

• Can the authors give a potential explanation for the negative association between the overall 
SCNA score and age for lung adenocarcinoma? 

### The negative association between SCNA score and age in lung adenocarcinoma is likely 
due to the difference in smoking status. As shown in Fig. 10 above, there is an enrichment of 
current smokers in younger patients. Although we included smoking status in our linear 
model, it is likely that smoking status still confounds the data. When we performed multiple 
linear regression only samples from lifelong non-smokers, there is no association between 
age and overall SCNA score (p-value = 0.75) (Fig. 15 Left below). We, however, found a 
significant association between age and overall SCNA score in both current smokers and 
current reformed smokers (p-value = 0.0420 and 0.0421, respectively) (Fig. 15 Right and 
Bottom below). Therefore, although the presence of current smokers in younger patients 
could partly cause the negative association between overall SCNA score and age, other 
unknown factors might also contribute to this negative correlation. 
In fact, we also found a negative association between age and mutational burden in lung 
adenocarcinoma using simple linear regression analysis. However, this negative association is 
no longer significant after we adjusted for smoking status. It is worth noting that the Li et al. 
study also reported negative associations between age and SCNA as well as mutational 
burden in lung adenocarcinoma13. We have now included this potential explanation of a 
negative association between SCNA score and age caused by the difference in patient 
smoking history in our manuscript at Line 139 as follows. 
 
lung adenocarcinoma is the only cancer type exhibiting a negative association between 
overall SCNA score and age (Fig. 2a, Supplementary Fig. 3a, and Supplementary Data 5), 
possibly due to the presence of current smokers in younger lung adenocarcinoma patients 
(Supplementary Fig. 2a). When we analysed only non-smokers, there was no significant 
association between age and overall SCNA score (Supplementary Fig. 4a). However, the 
significant negative association was found when we analysed only current reformed smokers 
and only current smokers (Supplementary Fig. 4b-c), thus other unexplained factors apart 
from smoking status might also contribute to this higher SCNA score in younger smokers.  
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Fig. 15 Left: Association between age and overall SCNA score in lifelong non-smoker lung 
adenocarcinoma patients. Right: Association between age and overall SCNA score in current 
reformed smokers. Bottom: Association between age and overall SCNA score in current 
smokers. 
 

• Can the authors give a potential explanation for the increase of gain of specific chromosome 
arms with age in certain cancer types and the decrease of gain of other chromosome arms 
with age in other cancer types? For instance, do these chromosome arms contain certain 
genes that drive these cancer types? And similarly, can they comment on the increase and 
decrease of loss of chromosome arms with age for other cancer types. 

### We thank the reviewer for this question. First of all, this age-associated arm-level copy 
number alteration analysis was performed on recurrently gain and loss arms in each cancer 
type identified by GISTIC2.0, therefore, these chromosome arms potentially harbour cancer 
driver genes. Gains of chromosome arms containing oncogenes, or loss of chromosome arms 
containing tumour suppressor genes are common mechanisms driving cancer. From our 
analysis, we identified an increase in the gain of chromosome 7 containing EGFR locus in 
glioblastoma and low-grade glioma. Moreover, gliomas also showed an increased 
chromosome 10 loss containing PTEN allele. The gain of chromosome 7 and loss of 
chromosome 10 are common features of IDH-WT gliomas, which occur more frequently in 
older patients. A recent analysis reported that chromosome 7 gain and 10 loss commonly 
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occurred at tumour initiation in glioblastoma, highlighting the importance of these arm-level 
events in driving this cancer type14. 

For endometrial cancer, we found a large increase in chromosome arm loss with age. This 
might also be related to the difference in age-related subtypes, hypermutated with low copy-
number alterations in tumours from younger patients and low mutations with high copy-
number alterations in tumours from older patients. An example of arm-level loss in this 
cancer type included an increased loss of chromosome 17, where TP53 located in, with age, 
although we did not find age-associated focal-level loss in TP53. Similarly, we identified an 
increase in loss of chromosome 9 with age, containing a tumour suppressor gene CDKN2A. 
However, we did not identify an increase in focal-level loss of this gene with age. 
Conversely, some cancer-driver gene gain or loss were significantly increased or decreased 
with age only in focal-level, but not in arm-level alterations. For example, a gain of ERBB2 
increased with age, while chromosome 17, where ERBB2 located, lost more frequently with 
age. 
Apart from gliomas and endometrial cancer, arm-level gain and loss in other cancer types are 
also related to some of the known cancer-driver genes. For instance, we found an increase in 
chromosome 13q loss with age in thyroid cancer. This chromosome arm contains a tumour 
suppressor RB1 gene. The gain of chromosome 12, harbouring the oncogene KRAS, increased 
with age in ovarian cancer. Chromosome 6 loss decreased with age in ovarian cancer, QKI 
gene coded for an RNA-binding protein located in this chromosome. A previous study 
reported the role of QKI on splicing aberration in ovarian cancer15. Another gene located in 
chromosome 6q is a tumour suppressor gene MAP3K4. The important roles of MAP3K4 on 
cancer growth and epithelial-to-mesenchymal transition have been shown in intrahepatic 
cholangiocarcinoma16. Further studies are needed to investigate the role of loss of MAP3K4 
in ovarian cancer. 
Indeed, while we can explain some of the age-associated chromosomal arm alterations, 
further closer inspection on the arm-level alterations is required to fully explain why some 
specific arms are more frequent or less frequent gains or losses in particular cancer types. We 
have incorporated some of these explanations in the Results section at Line 166 as follows. 
 
These arms included 9p and 17p, containing tumour suppressor genes CDKN2A and TP53, 
respectively. Low-grade glioma and ovarian cancer, two other cancer types for which we 
found the highest significant association between age and SCNA scores, also exhibited a 
significant increase or decrease in losses with age in multiple arms (Fig. 2e-f, Supplementary 
Fig. 5). We also observed that losses of chromosome 10p and 10q increased with age in 
gliomas. Recurrent losses of chromosome 10 (containing PTEN), together with gains of 
chromosome 7 (containing EGFR) are important features in IDH-wild-type (IDH-WT) 
gliomas24. This type of glioma was more common in older patients, whereas IDH-mutant 
gliomas were predominantly found in younger patients. Apart from gliomas and endometrial 
cancer, arm-level gains and losses in other cancer types are also related to known cancer-
driver genes. For instance, we found an increased incidence in the loss of chromosome 13q 
(harbouring RB1) with age in thyroid cancer. Gains of chromosome 12 (containing the KRAS 
oncogene), increased with age in ovarian cancer. Indeed, while we can explain some of the 
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age-associated chromosomal arm alterations, further closer inspection of arm-level alterations 
is required to fully explain why some specific arms are more or less frequently gained or lost 
as a function of age in particular cancer types. 

 

• Can the authors provide more details about the functional roles of the genes that showed 
negative correlation between mutation and age in low grade glioma and glioblastoma? Do 
these genes share some functional roles together? 

### Three genes that showed a negative correlation between mutation and age in low-grade 
glioma and glioblastoma are IDH1, TP53 and ATRX. A recent functional study in neural stem 
cells (NSCs) by introducing IDH1 mutation, TP53 shRNA and ATRX shRNA showed that the 
combination of these three oncogenic hits blocks NSC differentiation and promotes 
gliomagenesis17. The transcriptional profile of their 3-hit NSC model resembled IDH1-
mutated human low-grade astrocytomas, a subtype of low-grade gliomas. This 3-hit NSCs 
caused hypermethylation of CTCF motifs flanking the SOX2 locus, disrupted chromatin 
looping, leading to the transcriptional downregulation of SOX2, a transcription factor 
important in self-renewal and differentiation of NSC, and therefore impaired NSC 
differentiation. In addition, this study showed that IDH1 mutation alone is enough to cause a 
hypermethylated epigenetic state. However, slow cell growth and increased cell death were 
observed in IDH1-only mutant cells. P53 knockdown is important to overcome growth arrest 
and cell death. Another recent report demonstrated that ATRX inactivation caused epigenomic 
remodelling and shifting differentiation state18. The role of ATRX deficiency in alternative 
lengthening of telomeres, a telomerase-independent mechanism, has also been observed19. 
Taken together, three genes with a negative correlation between mutation and age in gliomas, 
IDH1, TP53 and ATRX cooperatively promote gliomas by causing epigenomic alterations, 
impaired differentiation and evading growth arrest and cell death. We have incorporated this 
information in the Discussion section at Line 449 as follows. 
 
A recent functional study in neural stem cells (NSCs) showed that the combination of IDH1, 
ATRX and TP53 blocks NSC differentiation by causing hypermethylation of CTCF motifs 
flanking the SOX2 locus, disrupting chromatin looping and dysregulation of SOX2, an 
important transcription factor in self-renewal and differentiation of NSCs52. Impaired 
differentiation, growth arrest evasion by mutations in TP53, and alternative lengthening of 
telomeres by ATRX inactivation thus cooperatively promote gliomas in younger patients. 

 

• Figure S5 shows that the relationship between age and somatic mutations overall is positive. 
There are 6 substitution classes. Does this positive relationship mostly contribute by C->T 
mutations as suggested by Line 196? 

### Yes, this positive relationship was mostly contributed by C>T mutations. We performed 
multiple linear regression to investigate the association between age and the fraction of 
contribution (percentage of each substitution class in total base substitution) adjusting for 
gender, race and cancer type. The positive association is found only in C>T mutations 
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(regression coefficient = 0.058, p-value = 8.57x10-7). We also found a negative association in 
C>A mutations (regression coefficient = -0.065, p-value = 8.84x10-10). Fraction of 
contribution in the other classes was not significantly associated with age (p-value > 0.05). It 
should be noted that the positive and negative association we found between age and C>T 
and C>A substitutions, respectively, have previously been reported by Milholland et al20. 
We also performed linear regression to access the association between age and fraction of 
contribution of each substitution class in each cancer type. Consistent with the pan-cancer 
analysis, C>T mutations showed a significant positive association with age in six cancer 
types, whereas C>A mutations had a significant negative association with age in three cancer 
types (Fig. 14). This result was added into the Results section at Line 223 of a revised 
manuscript as follows.  
 
This increase in mutation load was mainly contributed by C>T mutations, as we found a 
positive association between the fraction of C>T mutations and age (regression coefficient = 
0.058, p-value = 8.57x10-7) in a pan-cancer analysis. Conversely, the fraction of C>A 
mutations was negatively associated with age (regression coefficient = -0.065, p-value = 
8.84x10-10) (Supplementary Data 10), concordant with a previous report4. We also examined, 
for each cancer type, the association between age and fraction contribution of each 
substitution class. Consistent with the pan-cancer analysis, C>T mutations showed a 
significant positive association with age in six cancer types, whereas C>A mutations had a 
significant negative association with age in three cancer types. (Supplementary Fig. 7b, 
Supplementary Data 10). 

 

 

Fig. 14 Cancer type-specific association between age and fraction contribution of substitution 
class. 
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• What is the relationship between cancer-related changes (DEGs & DMCs) and the age-
related changes (DEGs & DMCs)? And what is the interplay among somatic mutations, 
DMCs, and DEGs in the aging context? 

### We previously21 explored the relationship between differentially expressed genes with 
ageing and differentially expressed genes in cancer (cancer vs. normal) in nine tissues. In 
general, the gene expression in cancer and ageing change in opposite direction in most 
tissues, except in thyroid and uterus21. The overall opposite gene expression patterns between 
age-related and cancer-related changes also found by another study22. The relationship 
between DNA methylation changes in ageing and cancer is not straightforward. In general, 
global hypomethylation occurs in both ageing and cancer, while hypermethylation happens in 
promoter regions of specific genes23. It has been proposed that methylation changes occur in 
a subpopulation of cells during normal ageing, might predisposing them to be more 
susceptible to tumour-initiating mutations24. A recent study, however, reported differences in 
DNA methylation changes in ageing and cancer. While hypermethylated regions in both 
ageing and cancer are associated with bivalent chromatin signatures, hypomethylated 
sequences in ageing and cancer were enriched at regions with active H3K4me1 mark and 
repressive H3K9me3 mark, respectively25. Another paper reported only a small overlap 
between differentially methylated regions in ageing and cancer26. Thus, the relationship 
between cancer-related methylation and age-related methylation changes is still unclear. 

Somatic mutations accumulate during ageing, and clonal expansions occur, as recently shown 
in many tissues27-29. Mutations that provide a selective advantage for a cell over surrounding 
cells are selected, similar to clonal expansion in cancer. Depending on the gene in which 
mutations accumulated, gene expression and methylation level change as a result of somatic 
mutations. In addition, mutations that occur on a DNA sequence in gene regulatory networks 
could cause an aberrant gene expression, leading to an increase in transcriptional noise as 
well as defects in cell signalling with age30. Indeed, even though it is beyond the scope of the 
current work, the interplay between somatic mutations, DMGs and DEGs in ageing is an 
important question waiting for more research. Unlike cancer, a study of somatic mutations in 
ageing has previously been limited by the challenge in detection, because mutations are 
recurrently present only in a small number of cells30. A recent advance in ultra-deep 
sequencing and in vitro clonal expansion followed by sequencing opens a great opportunity 
to study somatic mutations in ageing28,31, and their influence on gene expression and 
epigenetics in the near future. 
 

• In Figure 6e, several pathways that are not directly related to cancer was included such as 
exon development. How did the authors perform the GSEA analysis for methylation 
changes? ClusterProfiler was used as mentioned in the methods section without much details. 
Were DMC associated genes used for GSEA analysis? If so, how was the gene associated 
with DMCs? How did the authors choose the background for GSEA analysis? Not all genes 
were covered equally across the promoters, how did the author make sure the GSEA analysis 
was not influenced by the coverage of CpGs in the methylation profiling?  
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### We thank the reviewer for pointing out the intricacies of GSEA analysis, and allowing us 
to clarify. First of all, in methylation analysis, we used the one-to-one mapping genes and 
probes by selecting the probes that are most negatively correlated with the corresponding 
gene expression. By this procedure, we can perform GSEA as in gene expression. GSEA was 
done by using all genes in the analysis, ranking from the gene with the most positive 
regression coefficient with age (most up-regulated methylation in older patients) to the gene 
with the most negative regression coefficient with age (most up-regulated methylation in 
younger patients). Unlike over-representation analysis such as GO enrichment analysis that is 
based on a predefined gene set (for example, up-regulated genes in older patients) and 
hypergeometric test to identify the significant overlap between a predefined gene set and a 
gene set of interest, a ranked gene list consisting of all genes is used in the GSEA and the test 
was to determine whether member genes in a gene set of interest are randomly distributed 
throughout the ranked gene list or found more often in the beginning (higher in older patients 
in our case) or the bottom of the list (higher in younger patients in our case)32, thus, we did 
not have to choose a background for GSEA. We acknowledge the reviewer’s concern that not 
all genes were covered equally across the promoter, and we cannot exclude the possibility 
that GSEA analysis using methylation data could be influenced by the probes that we did not 
include in our analysis. However, these enriched pathways in our results are mainly pathways 
that were enriched when we analysed gene expression data. And gene expression is a final 
readout from epigenetic control by DNA methylation. Despite the potential noise in GSEA 
analysis on methylation data, we, therefore, intended to include this result to emphasise the 
general opposite trend between gene expression and methylation when genes are ranked 
based on the fold change with age, suggesting potential age-associated epigenetic control of 
age-related gene expression in cancers. 

We briefly mentioned this limitation in the Discussion section at Line 506 as follows. 

A limitation of this analysis is that we chose only one methylation probe per gene to create a 
one-to-one mapping between genes and probes. Other probes might also have an impact on 
gene expression as well as might cause noise in our GSEA analysis from methylation data.  

We also added more detail on the GSEA analysis in the Methods section at Line 778 as 
follows. 

Gene Set Enrichment Analysis (GSEA) was performed to investigate the Gene Ontology 
(GO) terms that are enriched in tumours from younger or older patients. The analysis was 
done using the package ClusterProfiler (version 3.14.3)78. Briefly, genes or methylation 
probes were ranked based on their regression coefficient with age from the most positive 
regression coefficient with age (most up-regulated in older patients) to the gene with the most 
negative regression coefficient with age (most up-regulated in younger patients). A ranked 
gene list consisting of all genes was used in the GSEA to determine whether member genes in 
a gene set of interest from GO are randomly distributed throughout the ranked gene list or are 
found more often in the top or the bottom of the list79. The complete list of enriched GO 
terms is presented in Supplementary Data 18. 
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• Minor comments: 

o On page 9, line 222, the users used “UCEC” without mentioning what it stands for. 

### Thank you for raising this, “UCEC” is now replaced with endometrial cancer. 

 

o In all the figures, the font size of legends and axes is very small. It negatively impacts the 
readability.  

### We thank the reviewer for pointing this out, we have increased the font size in all figures. 

  

o Line 146: there is an extra “fig.” 

### Thank you for spotting this. This has now been corrected.  

  

o Line 170: missing citation for “previously identified cancer driver genes”.  

### Thank you, citations have now been added. 

  

 

End of Response to the Reviewers 

We thank the reviewers for the constructive comments which help us substantially improve 
our manuscript. In addition to the changes described above, we noticed and fixed minor 
errors from our originally submitted version. We also carefully re-read the manuscript and 
made some further minor changes to improve clarity and readability. We think the manuscript 
is now ready for publication, yet please do not hesitate to contact us should any further 
questions arise or if you think further corrections are necessary. 

  

Sincerely, 

João Pedro de Magalhães on behalf of all authors 
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REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have done a thorough job addressing the points raised by all three reviewers. This 

manuscript sheds new light on how age influences the molecular presentation of cancers, 

sometimes in a surprising manner, and the data will serve as a resource for others in the years to 

come. 

Signed - James DeGregori 

Reviewer #2 (Remarks to the Author): 

All my questions have been addressed. -Lei Wei 

Reviewer #3 (Remarks to the Author): 

The authors addressed all my questions. 



Authors’ response to the Reviewers’ comments 
  
Manuscript: NCOMMS-20-34538A 
Title: An Integrative Analysis of the Age-Associated Multi-Omic Landscape across Cancers 
 
Dear Editor, 
  
Thank you for considering our manuscript for publication in Nature Communications. 
What follows are our responses (marked with ###) to the comments from the reviewers.   
 
Reviewer #1 (Remarks to the Author): 
The authors have done a thorough job addressing the points raised by all three reviewers. 
This manuscript sheds new light on how age influences the molecular presentation of 
cancers, sometimes in a surprising manner, and the data will serve as a resource for others in 
the years to come.  
 
Signed - James DeGregori 
 
### We would like to thank the reviewer once again for your kind words and positive 
comments. 
 
Reviewer #2 (Remarks to the Author): 
All my questions have been addressed. -Lei Wei 
 
### We would like to thank the reviewer once again for your constructive questions and 
suggestions. 
 
Reviewer #3 (Remarks to the Author): 
The authors addressed all my questions. 
 
### We would like to thank the reviewer once again for your thoughtful questions and 
suggestions. 
 
 
End of Response to the Reviewers 

We have addressed editorial requests from our previously submitted version. We also 
carefully re-read the manuscript and made some further minor changes to improve clarity and 
readability. We think the manuscript is now ready for publication, yet please do not hesitate 
to contact us should any further questions arise or if you think further corrections are 
necessary. 

 
Sincerely, 



João Pedro de Magalhães on behalf of all authors 


