

Relative intensities of lysospecies in the VMH (a) and ARC (b) by IMS after injection with saline (n=4) or glucose (n=4). All data represent the mean ± SEM. LPI: lysophosphatidylinositol, LPS: lysophosphatidylserine, LPE: lysophosphatidylethanolamine.

Relative amounts of hypothalamic eicosanoids mediated by lipoxygenase (a) or cytochrome P450 (b) after the injection of glucose compared with saline injected mice. n=3 in each experimental group. Data represent the mean fold change in color.

Hypothalamic PLC-mediated-pathway does not affect systemic glucose metabolism. (a) Glucose tolerance test (GTT) (0–120 min) after intra-hypothalamic injection (-30 min) of Xestospondin, an IP3 receptor antagonist, (n=7) or vehicle (n=7). (b) GTT (0–120 min) after intra-hypothalamic injection (-30 min) of U73122, a phospholipase C (PLC) inhibitor, (n=7) or vehicle (n=7). All data represent the mean ± SEM

Hypothalamic leptin responsiveness is regulated by cPLA2.

a, Representative micrographs showing immunofluorescent cFos staining in the hypothalamus of mice i.c.v. injected with PBS, MAFP, leptin or both MAFP and leptin. Scale bar: 500 µm. b, c, Quantification of cFos expression in the dmVMH, cVMH, vIVMH (b), and ARC (c) after i.c.v. injection of PBS, MAFP, leptin or both MAFP and leptin (n=3 in each experimental group) (VMH: two-way ANOVA followed by Sidak multiple comparison test, in b, p < 0.0001 PBS vs Leptin, p < 0.0001 Leptin vs MAFP/Leptin.). d, Representative micrographs showing immunofluorescent pSTAT (Tyr 705) staining in the hypothalamus of mice i.c.v. injected with PBS, MAFP, leptin or both MAFP and leptin. Scale bar: 500 µm. e, f, Quantification of pSTAT3 (Tyr 705)-positive cells in the dmVMH, cVMH, vIVMH (e), and ARC (f) after i.c.v. injection of PBS, MAFP, leptin or both MAFP and leptin (n=4 in each experimental group) (VMH: two-way ANOVA followed by Sidak multiple comparison test, in e, p < 0.0001 Leptin vs PBS, p= 0,0095 Leptin vs MAFP/Leptin. In f, one-way ANOVA followed by Sidak multiple comparison test, p = 0.0408 Leptin vs MAFP/Leptin.). All data represent the mean ± SEM; * = p<0.05; ** = p<0.01; *** = p<0.001; **** = p<0.0001.

a, Construct of AAV8-DIO (CreOn)-shRNA against *mpla2g4*, containing DIO (Double-floxed Inverted Open reading frame) to express shRNA Cre-dependently. b, Representative micrographs showing virus infected (tdTomato) and shRNA expressing (GFP) Sf1-neurons. Scale bar: 500 μ m. c, Expression of pla2g4a mRNA in the whole hypothalamus injected with AAV8-DIO-shRNA against mpla2g4 (cPLA2KD^{sf1}; n=3) compared with control mice (GFP^{Sf1}; n=3) (two-tailed t test, p = 0.0497, cPLA2KD^{sf1} vs GFP^{sf1}). d, Enzymatic activity of cPLA2 after injection of saline (n=5) or glucose (2g/kg) (n=5) in C57BL/6J mice. e-g, Distributions of phospholipids in the hypothalamus of cPLA2KD^{Sf1} mice after i.p. injection of saline or glucose. e, Representative results of IMS on hypothalamic phosphatidylinositol (PI) (18:0/20:4) of cPLA2KD^{Sf1} mice after saline (left half) or glucose injection (right half). Scale bar: 500 μ m. f, g, Relative intensities of phospholipids in the VMH (f) and ARC (g) of cPLA2KD^{Sf1} mice after injection of saline (n=3) or glucose (n=3). (two-tailed t test for each molecule, in g, p = 0.0056 for PI (18:0/20:4), p = 0.0343 for PI (18:1/20:4), p = 0.0453 for PE (p18:0/20:4)). h, Representative micrographs showing immunofluorescence of POMC (α -MSH) and GFP in Sf1-cre mice injected with AAV-DIO-GFP. Scale bar: 200 μ m. i, Ratio of GFP expressed POMC neurons (n=5). All data represent the mean ± SEM; * = p<0.05; ** = p<0.01

a, Body weight and tissue weight in cPLA2KD^{Sf1} mice (n=4) and GFP^{Sf1} mice (n=5) 8 weeks after the AAV injection. (iWAT: inguinal white adipose tissue. EWAT: epididymal white adipose tissue. mesentWAT: mesenteric white adipose tissue. BAT: brown adipose tissue). b-d, Phenotype of mice with "hit" and "miss" injection of AAV8-DIO-shRNA against *mpla2g4* into the VMH in Sf1-cre mice. b, Representative micrographs showing the "miss" injection of virus into the VMH. c, Glucose tolerance test on the Sf1-cre mice received "miss" (n=3) or "hit" (n=4) injection of AAV8-DIO-shRNA against *mpla2g4* or hit injection of AAV8-DIO-GFP (Ctr) (n=3) (two-way ANOVA followed by Sidak multiple comparison test, p = 0.0156 at time = 60 Ctr vs hit, p = 0.0302 at time =60 miss vs hit). d, Insulin tolerance test on the mice receive "miss" (n=3) or "hit" (n=3) injection or hit injection of AAV-DIO-GFP (Ctr) (n=3) (two-way ANOVA followed by Sidak multiple comparison test, p = 0.0117 at time = 120 Ctr vs hit, p = 0.0141 at time = 120, miss vs hit). Data represent the mean ± SEM. * = p<0.05 (Ctr versus hit); ** = p<0.01 (Ctr versus hit); + = p<0.05 (hit versus miss).

Supplementary Figure 7

a, Construct of AAV8-GFAP-Cre-mCherry and AAV8-DIO-shRNA against *mpla2g4* and representative micrographs showing virus infected (tdTomato) and shRNA expressing (GFP) astrocytes in the ARC. Scale bar: 25 μ m. b, Relative expression of cPLA2 in the hypothalamus of cPLA2KD^{GFAP} and control mice. n=3 in each experimental group (two-tailed t test, p = 0.039, Ctr vs cPLA2KD^{GFAP}). c, Glucose tolerance test in cPLA2KD^{GFAP} mice (n=5) and GFP^{GFAP} mice (n=4). d, Insulin tolerance test in cPLA2KD^{GFAP} mice (n=5) and GFP^{GFAP} mice (n=4). e, Body weight change in cPLA2KD^{GFAP} mice (n=5) and GFP^{GFAP} mice (n=4) after viral injection. All data represent the mean ± SEM. * = p<0.05

Knockdown of astrocytic cPLA2 in hypothalamus (cPLA2KDGFAP) did not change body weight and glucose metabolism.

Relative intensities of lypospecies in the VMH (a) and ARC (b) by IMS from RCD (n=5) or HFD(n=5) fed mice. (two-tailed t test for each molecule, LPI(18:0) in VMH, p = 0.0389 RCD vs HFD, in ARC p=0.0099 RCD vs HFD).

All data represent the mean \pm SEM; * = p<0.05; ** = p<0.01.

LPI: lysophosphatidylinositol, LPS: lysophosphatidylserine, LPE: lysophosphatidylethanolamine.

Relative amounts of hypothalamic eicosanoids mediated by lipoxygenase (a) or cytochrome P450 (b) in RCD or HFD fed mice. n=3 each experimental group. Data represent the mean fold change in color.

Body weight and tissue weight in male cPLA2KD^{st1} mice (n=3) and GFP^{st1} mice (n=3) after 8 weeks of a HFD feeding. (iWAT: inguinal white adipose tissue. EWAT: epididymal white adipose tissue. mesentWAT: mesenteric white adipose tissue. BAT: brown adipose tissue). All data represent the mean ± SEM.

Knockdown of cPLA2 improves HFD-induced impairment of glucose metabolism in female mice. a, Body weight change in female cPLA2KD^{sf1} mice (n=4) and GFP^{sf1} mice (n=4) and GFP^{sf1} mice (n=5). (two-way ANOVA followed by Sidak multiple comparison test, p = 0.0059 at time = 30, p = 0.0009 at time = 60, GFP^{sf1} vs cPLA2KD^{sf1}. two-tailed t test in area under the curve (AUC) during GTT, p = 0.0177, GFP^{sf1} vs cPLA2KD^{sf1}. c, Insulin tolerance test on cPLA2KD^{sf1} (n=4) mice and GFP^{sf1} mice (n=4) after 8 weeks of HFD feeding. d, Body weight and tissue weight in cPLA2KD^{sf1} mice (n=5) and GFP^{sf1} mice (n=4) after 8 weeks of HFD feeding. (iWAT: inguinal white adipose tissue. EWAT: epididymal white adipose tissue. mesentWAT: mesenteric white adipose tissue. BAT: brown adipose tissue.) All data represent the mean ± SEM; * = p<0.05; ** = p<0.01; *** = p<0.001.

b

С

cPLA2KD^{sf1}-HFD

Supplementary Figure 12

Knockdown of cPLA2 prevents HFD-induced microgliosis and astrogliosis in female mice.

a-c, Left: Representative micrographs showing immunofluorescent GFAP staining in the hypothalamus of RCD-fed GFP^{sf1} mice (GFP^{sf1}-RCD) (a), HFD-fed GFP^{sf1} mice (GFP^{sf1}-HFD) (b) and HFD-fed cPLA2KD^{sf1} (cPLA2KD^{sf1}-HFD) mice (c). Scale bar: 500 µm. Right: magnified rectangles showed in left. Scale bar: 30 µm. d,e, Quantification of GFAP-positive cells in the VMH (d) or ARC (e) of GFP^{sf1}-RCD (n=3), GFP^{sf1}-HFD (n=3) and cPLA2KD^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in e, p = 0.005 GFP^{sf1} RCD vs GFP^{sf1} HFD, p= 0.0497 GFP^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in e, p = 0.0004 GFP^{sf1}-RCD (n=3), and cPLA2KD^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in g, p = 0.0004 GFP^{sf1}-RCD vs GFP^{sf1} HFD, p= 0.0128 GFP^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in g, p = 0.0004 GFP^{sf1}-RCD vs GFP^{sf1}-HFD, p= 0.0128 GFP^{sf1}-HFD vs cPLA2KD^{sf1}-HFD (h-j, Left: Representative micrographs showing immunochemistry Iba1 staining in the hypothalamus of GFP^{sf1}-RCD (h), GFP^{sf1}-HFD (i) and cPLA2KD^{sf1}-HFD mice (j). Scale bar: 500 µm. Right: magnified rectangles showed in left. Scale bar: 30 µm. k,l, Quantification of Iba1-positive cells in the VMH (k) or ARC (l) of GFP^{sf1}-RCD (n=3), GFP^{sf1}-HFD (n=3) and cPLA2KD^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in l, p = 0.0089 GFP^{sf1}-RCD vs GFP^{sf1}-HFD (n=3) and cPLA2KD^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in l, p = 0.0089 GFP^{sf1}-HFD (n=3) and cPLA2KD^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in m, p = 0.0162 GFP^{sf1}-RCD vs GFP^{sf1}-HFD (n=3) and cPLA2KD^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in m, p = 0.0162 GFP^{sf1}-RCD vs GFP^{sf1}-HFD (n=3) and cPLA2KD^{sf1}-HFD (n=3) mice (one-way ANOVA followed by Sidak multiple comparison test, in m, p = 0.0162 GFP

REAGENT or RESOURCE	SOURCE	IDENTIFIER			
Antibodies					
Rabbit-anti-cFos	Santa Cruz	CAT#SC-52			
Rabbit-anti-Iba1	FUJIFILM Wako	CAT#LKN5648			
Rabbit-anti-GFAP	Sigma-Aldrich	CAT#HPA056030			
Rabbit-anti-GFP	Frontier institute	AB_2571573			
Rabbit-anti-pSTAT3 (Tyr 705) antibody	Cell Signaling Technologies	9145S			
Phospho-cPLA2 (Ser505) Antibody	Cell Signaling Technologies	28315			
cPLA2 Antibody	Cell Signaling Technologies	2832S			
Streptavidin, DyLight 488 Conjugated	Vector Biolabs	SA-5488			
Biotinylated-Goat-Anti-Rabbit (IgG) secondary antibody	Thermo Fisher Scientific	A11034			
Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor 647 Conjugate)	Cell Signaling Technologies	4414S			
Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate)	Cell Signaling Technologies	4412S			
Bacterial and Virus Strains					
AAV8-DIO (Cre-On)-shRNA against mpla2g4	Vigene	Custom made			
AAV8-GFAP-mcherry-Cre	UNC Vector Core	Lot# AV5056C			
Chemicals, Peptides, and Recombinant Proteins					
9-Aminoacridine hemihydrate	Thermo Fisher Scientific	134410010			
Glucose	FUJIFILM Wako	049-31165			
Novolin R 100 IU	Novo Nordisk	N/A			
Glucose-D-[3- ³ H]	Muromachi Kikai	ART0124			
2-Deoxy-D-glucose ¹⁴ C(U)	Muromachi Kikai	ARC0112A			
Methyl arachidonyl fluorophosphonate (MAFP)	Sigma-Aldrich	M2939			
Indomethacin (Indo)	Sigma-Aldrich	17378			
Ethanol	FUJIFILM Wako	056-03341			
Dimethyl sulfoxide	Nacalai Tesque	13407			
TRIzol TM reagent	Thermo Fisher Scientific	15596026			
Critical Commercial Assays	-	-			
Mouse Insulin ELISA KIT	FUJIFILM Wako	633-23919			
Cytosolic Phospholipase A2 Assay Kit	Abcam	Ab133090			
Secretory-phospholipase-A2 Assay Kit	Abcam	Ab133089			
TaqMan [™] Gene Expression Master Mix	Thermo Fisher Scientific	4369016			
M-MLV Reverse Transcriptase	Thermo Fisher Scientific	28025013			
VECTASTAIN Elite ABC Kit	Vector Laboratories	PK-6100			
DAB tablet	FUIIFILM Wako	045-22833			

Supplementary table 1 List of reagents and resources

Supplementary table 2

Assignment of lipid molecular species by IMS negative ion mode

Lipid assignment	[M-H] ⁻ (<i>m/z</i>)
Palmitic acid	255.25
Oleic acid	281.3
Stearic acid	283.35
Arachidonic acid	303.3
DHA	327.33
PE (p18:1/16:0), plasmalogen	700.6
PE (18:0/16:1)	716.6
PE (p18:0/20:4), plasmalogen	750.5
PS (18:0/16:0)	762.6
PE (18:0/20:4)	766.5
PE (18:0/22:4)	794.5
PS (18:0/20:4)	810.6
PS (18:0/22:6)	834.6
PI (16:0/20:4)	857.6
PI (18:1/20:4)	883.55
PI (18:0/20:4)	885.77

LPE 16:0	452.3
LPE 18:0	480.3
LPE 18:1	478.3
LPE 20:4	500.3
LPE 22:4	528.3
LPI 16:0	571.3
LPI 18:0	599.3
LPI 18:1	597.3
LPI 20:4	619.3
LPI 22:4	647.3
LPS 16:0	496.3
LPS 18:0	524.3
LPS 18:1	522.3
LPS 20:4	544.3
LPS 22:4	572.3

Supplementary table 3

MRM conditions for each PGs

	Retention	n SRM SRM (validation)		idation)	Collision		Collision	Retention	SF	M	SRM (validation)			Collision		
Compoubds	time					Polarity	energy		Compoubds	time					Polarity	energy
	(min)	QI	Q3	QI	Q3		(eV)			(min)	ųı	Q3	QI	Q3		(eV)
tetranor-PGFM	2.7	329.2	311.2			Negative	15	13,14	4-dihydro-15-keto PGJ2	14.2	333.2	175.1			Negative	1
tetranor-PGEM-d6	3.4	333.2	315.2			Negative	12	14,15	5-DIHETE	14.3	335.2	207.2			Negative	1
tetranor-PGEM	3.1	327.2	309.2			Negative	15	7,17-	-hydroxy-DPA	14.4	361.2	143.1	361.2	199.2	Negative	1
20-hydroxy-PGF2a	5.5	369.2	305.2			Negative	21	9.10-	-DIHOME	14.5	313.2	201.2			Negative	2
20-hydroxy-PGE2	5.9	367.2	287.2			Negative	18	12-ke	eto-LTB4	14.6	333.2	179.1			Negative	1
18-carboxy-dinor-LTB4	6.2	337.2	59.1			Negative	26	5,6-D	DIHETE	14.8	335.2	145.1			Negative	1
13,14-dihydro-15-keto-tetranor-PGF1b	6.7	299.2	113.1			Negative	24	N-ace	cetyl-LTE4	14.9	480.3	333.2			Negative	2
2,3-dinor-8-iso-PGF2a	7.3	325.2	237.2			Negative	13	14,15	5-DHET	15.1	337.2	207.2			Negative	1
13,14-dinydro-15-keto-tetranor-PGF1a 6-keto-PGF1a-d4	7.6	299.2	249.1			Negative	24	12-H	1HI 2-DHFT	15.2	2/9.2	1/9.1			Negative	1
6-keto-PGF1a	7.7	369.2	245.2			Negative	27	8,9-0	DHET	15.6	337.2	127.1			Negative	2
13,14-dihydro-15-keto-tetranor-PGD2	8.0	297.2	109.1			Negative	23	9-HO	DTrE	15.7	293.2	171.1			Negative	1
20-carboxy-LTB4	8.2	365.2	169.1			Negative	22	20-ca	arboxy-AA	15.8	333.2	297.2	333.2	289.2	Negative	2
PGF2a-EA	7.8	442.3	334.2			Negative	22	14,15	5-EET-EA	15.6	364.2	62.1			Positive	-1
PGE2-EA	8.3	440.3	271.2			Negative	26	5,6-D	DHET	15.9	337.2	145.1			Negative	1
8-150-PGF52	8.5	367.2	169.1			Negative	10	13-H 18-H	HEPE	15.9	293.2	215.2			Negative	1
20-hydroxy-LTB4	8.4	351.2	195.1			Negative	18	10 H	IETE	16.9	319.2	275.2			Negative	1
PGE1-EA	8.5	442.3	360.2			Negative	15	15-de	leoxy-delta-12,14-PGJ2	16.9	315.2	271.2			Negative	1
13,14-dihydro-15-keto-tetranor-PGE2	8.4	297.2	109.1			Negative	21	20-H	IETE	16.0	319.2	245.3			Negative	1
PGD2-EA	8.7	440.3	271.2			Negative	25	11,12	2-EET-EA	16.1	364.2	62.1			Positive	-2
6,15-diketo-13,14-dihydro-PGF1a	8.9	369.2	113.1			Negative	31	15-H	IEPE	16.2	317.2	219.2			Negative	1
iPE2a-IV	9.3	351.2	193.1			Negative	25	18-H 8 9-F	1ETE FFT-FΔ	16.3	319.2	261.2			Positive	-2
8-iso-15(R)-PGF2a	9.4	353.2	193.1			Negative	27	17-H	IETE	16.5	319.2	247.2			Negative	1
TXB1	9.7	371.2	171.2			Negative	20	12-H	IEPE	16.5	317.2	179.1			Negative	1
8-iso-PGF2a	9.5	353.2	193.1			Negative	27	5,6-E	EET-EA	16.6	364.2	62.1			Positive	-2
TXB2-d4	9.6	373.2	199.1			Negative	15	16-H	IETE	16.5	319.2	233.2			Negative	1
IXB2	9.4	369.2	195.1			Negative	14	5-HE	PE	16.5	317.2	115.1	402.2	104.4	Negative	1
Reiso-PGF1a	9.4	349.2	209.2			Negative	24	Lyso- 15-H	HPAF	16.4	482.3	184.1	482.3	184.1	Negative	-2
11-beta-PGF2a	9.8	353.2	193.1			Negative	25	13-H	IODE	16.6	295.2	195.1			Negative	1
PGD3	9.9	349.2	269.2			Negative	15	9-HO	DDE	16.9	295.2	171.1			Negative	1
5-iPF2a-VI	10.0	353.2	115.1			Negative	21	12-H	IpEPE	16.8	333.2	271.2			Negative	
8-iso-15-keto-PGF2a	10.1	351.2	219.2			Negative	17	20-H	IDoHE	16.9	343.2	241.2			Negative	1
PGF2a-d4	10.2	357.2	197.2			Negative	26	15-H	IETE-d8	17.0	327.2	226.2			Negative	1
8-iso-13.14-dihydro-15-keto-PGF2a	10.2	353.2	195.1			Negative	20	5-пр 15-н	IFTF	10.8	319.2	219.2			Negative	1
LXA5	10.5	349.2	115.1			Negative	15	9-Hp	DODE	17.1	311.2	185.2			Negative	1
8-iso-PGE2	10.6	351.2	271.2			Negative	17	13-K	ODE	17.0	293.2	113.1			Negative	2
PGE2-d4	10.7	355.2	275.2			Negative	19	13-H	IpODE	17.1	311.2	113.1			Negative	1
PGE2	10.6	351.2	271.2			Negative	17	16-H	1DoHE	17.1	343.2	233.2			Negative	1
11-denydro-1XBZ	10.9	367.2	305.2			Negative	17	17-H		17.1	343.2	245.2			Negative	2
15-keto-PGF2a	10.5	355.2	219.2			Negative	17	11-H	IETE	17.1	319.2	167.1			Negative	1
5S,14R-LXB4	11.3	351.3	221.2			Negative	15	13-H	IDoHE	17.2	343.2	193.1			Negative	1
PGK2	11.4	349.2	249.2	349.2	287.2	Negative	15	10-H	IDoHE	17.2	343.2	153.1			Negative	1
PGE1	11.0	353.2	235.2			Negative	16	8-HE	TE	17.3	319.2	155.1			Negative	1
PGD2-d4	11.0	355.2	2/5.2	251.2	222.2	Negative	18	12-H	IETE-d8	17.3	327.2	184.3			Negative	
PGD1	11.1	353.2	235.1	331.2	233.2	Negative	10	14-H	IDORE	17.3	335.2	113.1			Negative	1
11-beta-13,14-dihydro-15-keto-PGF2a	11.4	353.2	183.1			Negative	25	12-H	IETE	17.3	319.2	179.1			Negative	1
15-keto-PGE2	11.3	349.2	113.1			Negative	21	11-H	IDoHE	17.4	343.2	149.1	343.2	121.1	Negative	1
Resolvin D2	11.6	375.2	175.1	375.2	141.1	Negative	24	7-HD	DoHE	17.4	343.2	141.1			Negative	1
14,15-LTC4	11.8	626.4	308.2			Positive	-17	9-HE	TE	17.5	319.2	123.1			Negative	1
13,14-dinydro-15-keto-PGF2a	11.7	353.2	113.1			Negative	28	S-HE	LIE-d8	17.4	327.2	116.1			Negative	1
13,14-dihydro-15-keto-PGE2	11.0	351.2	175.1			Negative	24	5-HE	ETE	17.4	319.2	105.1			Negative	1
Resolvin D1	12.0	375.2	141.1			Negative	15	15-H	IETrE	17.5	321.2	221.2	321.2	113.1	Negative	1
LTD4	12.3	497.3	189.1			Positive	-19	PAF-	-d4	17.5	572.4	59.1			Negative	3
5S,6S-LXA4	12.4	351.2	115.1			Negative	15	PAF		17.5	568.4	59.1			Negative	3
14,15-LTE4	12.5	440.3	301.2			Positive	-13	12-H	IPETE	17.6	335.2	153.1			Negative	1
13.14-dihydro-15-keto-PGD?	12.5	351.2	207.2			Negative	10	12-K	DHET-lactone	17.6	31/.2	153.1			Positive	
LTB4-EA	12.7	362.2	189.1			Positive	-16	4-HD	DoHE	17.3	343.2	101.1			Negative	1
LTC4-d5	12.8	631.4	308.2			Positive	-16	5-Hp	DETE	17.9	335.2	129.1			Negative	1
LTC4	12.8	626.4	308.2			Positive	-17	12,13	3-EpOME	18.0	295.2	195.2			Negative	1
LTE4	12.9	440.3	189.1			Positive	-15	9,10-	-EpOME	18.1	295.2	171.1			Negative	1
LTF4	12.9	569.4	251.2			Positive	-16	14,15	5-EET	17.9	319.2	113.1			Negative	
11-trans-LTC4	12.8	626.4	2/1.2			Positive	-20	5-KE	aovl-PAF	18.2	517.2 650.4	203.2			Negative	1
8-iso-PGA1	13.0	335.2	235.2		1	Negative	13	15-H	IEDE	18.2	323.2	223.2			Negative	1
11-trans-LTE4	13.1	440.3	189.1			Positive	-16	AEA		18.3	348.2	62.1			Positive	-1
PGA2	13.0	333.2	271.2			Negative	15	11,12	2-EET	18.4	319.2	167.1			Negative	1
PGJ2	13.1	333.2	271.2			Negative	15	8,9-E	EET	18.5	319.2	127.1			Negative	1
PG62	13.2	333.2	175.1			Negative	19	5,6-E	EE I	18.5	319.2	191.1			Negative	1
8,12-iso-iPF2a-VI-1.5-lactone	13.4	337.2	235.2		<u> </u>	Positive	-12	OFA-	-d4	18.8	323.2	66.1			Positive	-14
8,15-DIHETE	13.8	335.2	127.1			Negative	21	OEA		19.2	326.2	62.1			Positive	-1
17,18-DIHETE	13.8	335.2	247.2			Negative	17	EPA-	-d5	19.5	306.2	262.2			Negative	1
6-trans-LTB4	14.0	335.2	195.1			Negative	14	EPA		19.5	301.2	257.2			Negative	1
5,15-DiHETE	14.0	335.2	173.1			Negative	15	DHA-	l-d5	20.4	332.2	288.2			Negative	1
ITR4 d4	14.0	359.2	113.1	359.2	113.1	Negative	18	DHA	48	20.3	327.2	283.2	211 2	267.2	Negative	
LTB4	14.1	335.2	197.1			Negative	15	AA-d	20	20.5	303.2	303.2	303.2	259.2	Negative	1
10,17-DiHDoHE	14.2	359.2	153.1		1	Negative	17	<u> </u>		20.5			- 55.2		11 - 3	·
13,14-dihydro-15-keto PGJ2	14.2	333.2	175.1			Negative	18									