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1 Covariance estimation
The spatial covariance kernel model we used for all µECoG fields was the positive-definite Matérn kernel
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where Kν is the modified Bessel function of the second kind with order ν [1]. The length θ scales the correlation
range, and the unit-less shape parameter ν represents the smoothness of the field at short range. Specifically,
bvc indicates the number of times the process is mean-square differentiable. A value of ν = 0.5 corresponds
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to an exponential decay function, indicative of a locally rough field (see models in [2, 3, 4]). Higher values
introduce a concavity at short range that accounts for increasing local smoothness. Properties of Matérn model
variograms with different ranges and degrees of smoothness are demonstrated in supplemental figure 1(a)-(c).
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Figure S1: Kernel models and optimal prediction. (a) Example Matérn covariance kernels were parameterized
by range (short range θ = 2 mm, long range θ = 4 mm), smoothness (rough ν = 0.5, smooth ν = 1.5),
process power (λ = 500 µV2), and noise power (“nugget” effect, σn = 200 µV2 for F). Total field power is
the “sill” ζ = λ + σn. (b) The range and texture image statistics influence the distribution of low and high
spatial frequencies, respectively, in the power spectral density (PSD). Range affects the size of the main “pass
band” lobe, and smooth texture creates a steeper “stop band” roll-off than rough texture. We used an effective
bandwidth at -30 dB in the PSD to define the Nyquist pitch ∆nyq = BW−1 (• 1.9 mm, N 1.3 mm, � 0.94
mm). (c) Kriging predictors for the point in the center of a 6×6 grid spaced at 1 mm were MSE optimal for
each kernel. Predictors for smooth texture (� and •) used a larger radius of samples than the predictor for
rough texture (N). With added noise, the optimal sharpening filter for � was converted to a noise-reducing
smoothing filter (F).

The spatial power spectral density (PSD) was calculated from the neural field covariance using the Fourier
transform of Eq 1

Sη(k) ∝
[

2ν

θ2
+ (2πk)2

]−(ν+1)

(2)

Here, the range θ modifies the main-lobe corner frequency, and smoothness ν affects the high frequency roll-off,
similar to the time constant and order of an analog resistor-capacitor filter.

The spatial variogram analysis that we employed differed in subtle ways from other studies of correlation
by distance [2, 3, 5, 6, 4]. The most salient difference is a focus on the nature of dissimilarity at short range.
Interpreting dissimilarity is made simpler by the axiomatic meaning of γ(0) = 0 (zero residual variance at zero
distance). In contrast, the Pearson correlation coefficient estimator used in correlograms is more complicated.
The per-definition ρ(0) = 1 unit value of correlation requires normalization by standard deviation estimates,
which lump together signal and noise, and are subject to standard error. Also, the semivariance estimator
γx(s, u) = 1

2var{xs−xu} is indifferent to electrical reference or any constant re-referencing scheme (e.g. common-
averaging referencing) that greatly affects the interpretation of a correlogram curve. Focusing on short-range
dissimilarity free of compounded estimator error provided a clearer view of the noise and smoothness properties
that were critical factors for kriging analysis of sampling predictability.

Spatial variation was considered via spatial spectral analysis in early work with rabbit and human ECoG
[7, 8], and later in rat [9]. These studies utilized strip electrodes of 64 contacts [8] or 16 contacts [9] spaced
at 0.5 mm, and computed periodogram estimates of spatial PSDs. As seen in figure S2, PSDs can also be
modeled with the Matérn spectral density function (eq 2). However, both covariance parameters were distorted
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Figure S2: Computed and model µECoG spatial power spectra. Spatial PSDs were computed via periodogram
by applying a Hamming taper and zero-padding the rows and columns to 16 points. Vertical and horizontal
PSDs were averaged for a single 500 ms block of acute µECoG recording (solid lines with SD error bars).
Range, smoothness, and noise floor parameters were optimized to fit Matérn spatial spectra (dashed lines) to
the normalized spectra. The optimized parameters were θ = 729 µm and ν = 13.2 for the active PSDs and
θ = 736 µm and ν = 4.67 for the passive PSDs. Note that the range parameters are underestimated due to
spectral smoothing introduced by the Hamming taper: the apparent width of the main lobe is upward biased.
The smoothness parameters are overestimated because the spectral roll-offs are confounded by the noise floors.

by spectral estimation. The size of the main-lobe was inflated due to spectral bias introduced by the finite
sampling window, which biased the estimation of the range parameter (although this bias would reduce with a
larger sampling area). The smoothness affects the roll-off behavior of the spectrum (figure S1(b)), but the noise
floor confounded or even obscured this feature, complicating estimation.

2 Kriging analysis of auditory cortex fields with simulated noise
We tested the theoretical effects of noise on prediction error by adding controlled amounts of additive Gaussian
white noise (AGWN) to µECoG recorded in rat auditory cortex. For the purpose of this analysis, we treated
the low-noise passive array recordings (0.48% median noise, 0.36%-0.65% IQR) as virtual noise free ground
truth fields. We performed covariance modeling and kriging prediction on 3081 short-time 500 ms batches of
signal in the 5-100 Hz bandpass. After fitting a covariance model and performing cross-validated prediction for
each short-time field, we repeated prediction after adding AGWN to the signal in increments of 5% until 65%.
Noise variance was computed in proportional to the sill variance of the individual snapshots, to normalize SNR.
Prediction error was referenced to the noise-free fields, and thus free of additive noise.

The relative mean square error (relMSE) of kriging prediction inversely depended on the feature scale of
µECoG fields, quantified by the Nyquist pitch (figure S3(a)). The expected kriging error closely explained the
cross-validated residual error (OLS slope b = 0.99, r2 = 0.912). Note that the 0% noise level duplicates the
result as figure 5 in the main text. Increased signal noise primarily biased prediction relMSE to higher levels,
but also increased the rate at which relMSE increased at finer Nyquist pitch. Sampling predictability is depicted
in figure S3(b) as a sequence of sets of Matérn models. For example, the first set are fields predictable only at
0% noise, while the next set are predictable up to 5% noise (but excluding the preceding set). The successive
sets show a shift of the 10% relMSE predictability boundary to lower resolution fields, as in figure 3 in the main
text. As a consequence, the kriging resolution electrode spacing that is sufficient to stabilize prediction error at
10% relMSE shifts to smaller values in an approximately log-linear fashion with increased noise levels (figure
S3(c)). We quantified the median kriging error relative to each noise level in figure S3(d), which confirmed that,
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Figure S3: Predictability of artificially noised µECoG fields. Additive Gaussian white noise (AGWN) from
5% to 65% was introduced to acute recordings (with approximately 0% noise) before interpolating frames by
kriging. (a) AGWN worsened interpolation error, with slightly stronger interactions between high bandwidth-
small scale fields and larger noise levels. The dashed lines trace the mean theoretical relMSE at each decile of
the Nyquist pitch. Linear regression showed strong correspondence between theoretical and observed relMSE
(β = 0.99, r2 = 0.91). (b) Convex hull outlines of the sets of Matérn models that were 10% relMSE predictable
at N% noise. Beyond 30% noise, no fields were 10% relMSE predictable. (c) Distributions for kriging resolution
shifted to smaller electrode spacings in an approximately log-linear fashion with increasing noise. (d) Median
values of the two components of total cross-validated error: measurement distortion (AGWN) and kriging error.

at higher noise levels, interpolated fields are a more faithful estimate of the true neural field than even the raw
measurements, in a MSE sense. For comparison, µECoG recorded with the active array had a median noise
level of 18.5% and a noise-compensated kriging relMSE of 9.3%.

We directly investigated the denoising property of kriging by simulating AGWN in virtually noise-free
µECoG fields, as described above. To study filtering efficiency, we computed kriging filters and predicted field
values at the sampled electrode sites, rather than interpolating to new sites. Superficially, the kriging error
equation for filtering shows that the error must be less than the noise. However, the validity of the kriging error
is conditional on the covariance model. Using virtually noise-free µECoG fields, we found that the model-based
kriging error was a highly accurate estimate of the true filtering relMSE (OLS slope b = 1.04, r2 = 0.946).
The effects of feature scale (Nyquist pitch) and noise on filtering error (figure S4(a)) were analogous to the
effects on interpolation error. Increased amounts of noise moved the boundary of covariance models that could
be filtered to 10% relMSE in similar fashion as noise shifting the interpolation predictability boundary (figure
S3(b)). Median filtering error increased with AWGN levels, while the denoising ratio also increased with noise
(figure S3(c)). Although the apparently guaranteed denoising gain is conditional on the fitness of the covariance
model, we found that the actual filtering error was less than every AWGN level in each of the 3081 snapshots.
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Figure S4: Denoising efficiency in artificially noised µECoG fields. Additive Gaussian white noise (AGWN) from
5% to 65% was introduced to acute recordings (with approximately 0% noise) before filtering frames by kriging.
(a) Filtering error deteriorated in higher AGWN, as expected by the model based kriging error. The dashed
lines trace the mean theoretical relMSE at each decile of the Nyquist pitch. Linear regression showed strong
correspondence between theoretical and observed relMSE (β = 1.04, r2 = 0.946). (b) Convex hull outlines of
the sets of Matérn models that were filtered at 10% relMSE in N% noise. (d) Filter error (right) increased with
higher AGWN (left), but the noise reduction ratio also increased.
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3 Strengths and limitations of covariance analysis and kriging
The sum of theoretical kriging error and estimated noise generally predicted frame interpolation error accu-
rately, with most OLS regression slopes ranging between ±10% of a one-to-one relationship. Results on the
mathematical and statistical stability of the kriging predictor compared to kriging mean square error (MSE) are
summarized in detail in [10, 11]. The kriging predictor itself is fairly robust (in both the linear operator and the
statistical predictor senses) to misspecification of the variogram model. On the other hand, the expected MSE
σe = λ − c(s′)TC−1x c(s′) tends to overestimate the realized error for highly correlated samples and in higher
SNR, which agrees with the smaller regression slopes from theta bands in human and NHP. When samples are
less correlated or noisier, the expected MSE tends to underestimate realized error, which may also be seen in
the larger slopes in gamma and higher bandpasses.

Unlike other local interpolators such as splines, the kriging interpolator adapts naturally to SNR. The
“nugget” value pads the diagonal of the data autocovariance matrix such that the BLUP solution ws′ =
[Cη + σnI]

−1
c(s′) is formally equivalent to a Tikhonov (or `2-norm) regularized solution. As such, the pre-

dictor weights adapt by reducing the quadrature sum of iid noise. Figure S1(c) demonstrates how a kriging
filter changes from a sharpening filter to a smoothing filter to minimize prediction error in a higher noise field.
When filtering sampled data in situ as in figure S3 (rather than predicting unsampled signals), the simple
kriging BLUP is identical to a Wiener filter.

We employed a minimal field + noise signal model in the preceding analysis. The noise model was justified
by its explanation of the semivariogram’s vertical offset in known noisy conditions in the active array recording,
for example, and also due to its correlation with electrode impedance in a chronic implant study [12]. However,
it is also possible that one or more physiological processes that become decorrelated within 400 µm contributed
to the minimum residual variance between sites at every inter-electrode distances. Based on the evidence linking
high frequency field potential to neuronal spiking [13, 14, 15, 16, 17] and the observed spatial localization of
high frequency ECoG [18, 19, 20], the contribution of a hypothetical small-scale process is most plausible in high
frequency bands. We are currently designing µECoG arrays with variable inter-electrode distances to investigate
this possibility.

4 Kriging analysis videos
Each supplemental video shows kriging results from one full 500 ms frame of a micro-ECoG recording. The
variogram and estimated kernel are shown in the left panel. Boxes and vertical stripes represent the median and
interquartile range of semivariance values at spatial lags binned at ~400 µm intervals. Box edge size and line
thickness are proportional to the number of electrode pairs within a bin. The heat-map frames show electrode
voltage from the electrode array normalized to ±1. From left to right these frames are: the recorded electrode
signal; the composite kriged field potential from 4X spatial subsampling; the “filtered” signal (field potential
predicted at electrode locations); and the kriged potential on a grid with 4X higher density than the electrode
array. The filtered frames are the best estimate of the noise-free cortical potential, conditioned on the accuracy of
the variogram kernel. The high density image is a combination of on-electrode and between-electrode prediction.
A timeseries plot shows the recorded potential from electrodes located in each array quadrant (TL: top-left,
TR: top-right, etc.). The current sample mapped in the frames is marked by the vertical bar.

4.1 Acute rat auditory cortex (supplemental videos S1-S4)
Kernel estimates and kriging statistics in tables 1-3.
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Table S1: Variogram kernel parameters.
Video ∆nyq mm θ mm ν σn µV2 ζ µV2 λ µV2 ∆10%

vid S1 (passive) 0.70 1.33 1.99 36.75 4024.14 3987.39 1.19
vid S2 (active) 1.07 2.14 1.76 1029.00 11837.56 10808.56 1.46
vid S3 (passive) 0.48 1.19 1.02 26.25 3248.19 3221.94 0.67
vid S4 (active) 0.87 2.48 0.69 1029.00 6630.99 5601.99 0.54

Table S2: Cross-validated kriging results. Percentages relative to signal variance (ζ).
Video CV err µV2 CV err % theor. err total % noise % kriging err %

vid S1 (passive) 199.93 4.97 4.66 0.91 3.74
vid S2 (active) 1497.66 12.65 12.91 8.69 4.22
vid S3 (passive) 433.33 13.34 15.52 0.81 14.71
vid S4 (active) 1759.38 26.53 28.05 15.52 12.53

Table S3: High-density kriging results. Percentages relative to process variance (λ). (These are estimates only,
and not measurable.)

Video on-site err µV2 on-site err % off-site err µV2 off-site err %

vid S1 (passive) 23.84 0.60 29.87 0.75
vid S2 (active) 192.49 1.78 192.68 1.78
vid S3 (passive) 24.15 0.75 128.99 4.00
vid S4 (active) 357.61 6.38 431.21 7.70

4.2 Human motor cortex 4-300 Hz (supplemental videos S5-S7)
Kernel estimates and kriging statistics in tables 4-6.
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Table S4: Variogram kernel parameters.
Video ∆nyq mm θ mm ν σn µV2 ζ µV2 λ µV2 ∆10%

vid S5 1.38 3.12 1.29 43.66 4349.56 4305.90 2.15
vid S6 1.16 2.66 1.24 69.22 4647.07 4577.85 1.76
vid S7 1.25 3.43 0.78 62.49 2119.94 2057.45 1.33

Table S5: Cross-validated kriging results. Percentages relative to signal variance (ζ).
Video CV err µV2 CV err % theor. err total % noise % kriging err %

vid S5 280.91 6.46 5.59 1.00 4.59
vid S6 405.20 8.72 8.67 1.49 7.19
vid S7 289.29 13.65 14.40 2.95 11.45

Table S6: High-density kriging results. Percentages relative to process variance (λ). (These are estimates only,
and not measurable.)

Video on-site err µV2 on-site err % off-site err µV2 off-site err %

vid S5 31.23 0.73 49.62 1.15
vid S6 50.68 1.11 85.74 1.87
vid S7 45.37 2.21 94.70 4.60

4.3 Human motor cortex bandpasses (supplemental videos S8-S12)
Kernel estimates and kriging statistics in tables 7-9.
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Table S7: Variogram kernel parameters.
Video ∆nyq mm θ mm ν σn µV2 ζ µV2 λ µV2 ∆10%

vid S8 (4-7 Hz) 0.95 2.10 1.37 0.97 102.47 101.50 1.51
vid S10 (15-30 Hz) 1.08 2.35 1.40 0.96 83.36 82.39 1.72
vid S11 (30-60 Hz) 0.71 1.69 1.12 0.75 15.53 14.78 0.93
vid S12 (75-300 Hz) 0.58 1.14 1.89 2.27 23.17 20.90 0.79

Table S8: Cross-validated kriging results. Percentages relative to signal variance (ζ).
Video CV err µV2 CV err % theor. err total % noise % kriging err %

vid S8 (4-7 Hz) 16.02 15.63 10.68 0.95 9.73
vid S10 (15-30 Hz) 9.46 11.34 8.49 1.16 7.33
vid S11 (30-60 Hz) 3.72 23.98 25.92 4.81 21.12
vid S12 (75-300 Hz) 10.08 43.51 39.51 9.80 29.72

Table S9: High-density kriging results. Percentages relative to process variance (λ). (These are estimates only,
and not measurable.)

Video on-site err µV2 on-site err % off-site err µV2 off-site err %

vid S8 (4-7 Hz) 0.82 0.81 1.95 1.92
vid S10 (15-30 Hz) 0.74 0.90 1.30 1.58
vid S11 (30-60 Hz) 0.55 3.71 1.00 6.78
vid S12 (75-300 Hz) 1.45 6.93 1.84 8.82
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