Supplementary Material

A comparison of methods in estimating population attributable risk for colorectal cancer in the United States

Hanseul Kim, Kai Wang, Mingyang Song, Edward L. Giovannucci

Supplementary Table 1. Literature-based method: Distribution of exposures in the National Health and Nutrition Examination Survey (NHANES)

Supplementary Table 2. Literature-based method: Relative risks for the associations between risk factors and colorectal cancer in the United States

Supplementary Table 3. Low-risk method: Characteristics throughout follow-up according to cutoff 7

Supplementary Table 4. Additional analysis: Relative risks from studies other than what we used for the literature-based method

Supplementary Table 5. Additional analysis: Population attributable risk (PAR) for colorectal cancer using US-specific relative risk (RR)

Supplementary Table 6. Additional analysis: Minimum and maximum population attributable risk (PAR) for colorectal cancer in the United States, derived from different sources of prevalence estimates for body fatness and cigarette smoking

Supplementary Table 7. Additional analysis: Distribution of exposures from sources other than what we used for the literature-based method

Supplementary Methods

1

Exposure	Exposure category/unit	Prevale	nce, %	
•		Men	Women	
Physical activity**	0-249 MET-m/week	54.8	57.9	
5	250-499 MET-m/week	7.5	9.0	
	500-749 MET-m/week	4.9	6.6	
	750-999 MET-m/week	5.9	5.4	
	≥ 1000 MET-m/week	27.1	21.1	
Body fatness/BMI	Normal (18.5-< 25 kg/m ²)	22.2	28.7	
	Overweight $(25-29.9 \text{ kg/m}^2)$	40.9	29.6	
	Obese ($\geq 30 \text{ kg/m}^2$)	36.3	40.1	
Alcohol	None	29.4	40.7	
	< 1 drink/day	32.0	37.7	
	1-< 4 drinks/day	24.4	16.9	
	\geq 4 drinks/day	14.4	4.8	
Red meat	0-9 g/day	1.1	4.8	
	10-24 g/day	9.5	30.2	
	25-49 g/day	30.3	46.6	
	50-74 g/day	29.5	15.6	
	75-99 g/day	17.9	2.5	
	$\geq 100 \text{ g/day}$	11.7	0.3	
Processed meat	0-4 g/day	0.9	11.7	
	5-24 g/day	29.4	60.0	
	25-49 g/day	41.6	22.8	
	50-74 g/day	19.6	4.4	
	\geq 75 g/day	8.5	1.0	
Dietary fiber	0-9 g/day	9.1	17.5	
	10-19 g/day	53.2	63.3	
	20-29 g/day	30.9	17.8	
	\geq 30 g/day	6.7	1.4	
Dietary calcium	0-199 mg/day	0.0	0.1	
	200-399 mg/day	1.3	3.8	
	400-599 mg/day	7.8	16.2	
	600-799 mg/day	16.9	26.4	
	800-999 mg/day	21.3	24.4	
	≥ 1000 mg/day	52.6	29.1	
Cigarette smoking	Never	50.8	63.2	
	Former	30.2	21.8	
	Current	19.0	15.0	

Supplementary Table 1. Literature-based method: Distribution of exposures in the National Health and Nutrition Examination Survey (NHANES)*

*These were weighted prevalence estimates calculated by Islami et al, 2018^1 for adults ≥ 30 years. Exposure distribution data on alcohol drinking and cigarette smoking were obtained from the National Health Interview Survey (NHIS). Data on all other exposures were obtained from the NHANES.

**Moderate or vigorous activity.

Supplementary Table 2. Literature-based method: Relative risks for the associations between risk factors and colorectal cancer in the United States

·	In original reports			In this analysis when our different from those in o			
Exposure	Exposure category/unit	Region; Study design		Relative risk (95% CI) E			ve risk
		· ['	Men	Women		Men	Women
Physical	Higher vs. lower (90 th	US and	<u>Colon</u> :	Colon:	0-249 MET-m/week	1.19	1.19
activity ²	percentile vs. 10 th	Europe;	0.84 (0.77, 0.91)	0.84 (0.77, 0.91)	250-499 MET-m/week	1.14	1.14
,	percentile)	Pooled	Rectum:	Rectum:	500-749 MET-m/week	1.09	1.09
,		analysis	0.87 (0.80, 0.95)	0.87 (0.80, 0.95)	750-999 MET-m/week	1.04	1.04
	'	'	'	1	≥ 1000 MET-m/week	Reference	Reference
Body	Normal (18.5-< 25 kg/m ²)	Worldwide;	Reference	Reference	Same	Same	Same
fatness/BMI ³	Overweight $(25-29.9 \text{ kg/m}^2)$	Meta-	1.17 (1.12, 1.22)	1.07 (1.01, 1.14)		1	1
	Obese ($\geq 30 \text{ kg/m}^2$)	analysis	1.38 (1.32, 1.44)	1.17 (1.06, 1.30)		ا '	I
Alcohol ⁴	None	Worldwide;	Reference	Reference	None	Same	Reference
,	Light (0.1-12.5 g/day)	Meta-	1.05 (0.95, 1.16)	0.95 (0.89, 1.01)	< 1 drink/day	1	1.00
,	Moderate (12.6-50 g/day)	analysis	1.21 (1.11, 1.32)	1.07 (0.99, 1.16)	1-< 4 drinks/day	1	1.07
	Heavy (> 50 g/day)	'	1.53 (1.30, 1.80)	1.24 (0.68, 2.25)	\geq 4 drinks/day	I'	1.24
Red meat ⁵	Per 100 g/day increase	Worldwide;	<u>Colon</u> : 1.22	<u>Colon</u> : 1.22	0-9 g/day	Reference	Reference
,	1	Report	(1.06, 1.39)	(1.06, 1.39)	10-24 g/day	1.02	1.02
,	1	- '	<u>Rectum</u> : 1.13	<u>Rectum</u> : 1.13	25-49 g/day	1.06	1.06
,	1	'	(0.96, 1.34)	(0.96, 1.34)	50-74 g/day	1.11	1.11
,	1	'			75-99 g/day	1.16	1.16
	'	'			\geq 100 g/day	1.21	1.21
Processed	Per 50 g/day increase	Worldwide;	<u>Colon</u> : 1.23	<u>Colon</u> : 1.23	0-4 g/day	Reference	Reference
meat ⁵	· · · · · · · · · · · · · · · · · · ·	Report	(1.11, 1.35)	(1.11, 1.35)	5-24 g/day	1.04	1.04
	1		<u>Rectum</u> : 1.08	<u>Rectum</u> : 1.08	25-49 g/day	1.13	1.13
	1	'	(1.00, 1.18)	(1.00, 1.18)	50-74 g/day	1.23	1.23
	'	'		l	\geq 75 g/day	1.33	1.33
Dietary	Per 10 g/day increase	Worldwide;	0.89 (0.82, 0.96)	0.91 (0.87, 0.96)	0-9 g/day	1.42	1.33
fiber ⁵	,	Report	1	1	10-19 g/day	1.26	1.21
	1	'	1	1	20-29 g/day	1.12	1.10
,	1	'		1	\geq 30 g/day	Reference	Reference

Dietary	Per 200 mg/day increase	Worldwide;	0.93 (0.88, 0.99)	0.93 (0.91, 0.95)	0-199 mg/day	1.44	1.44
calcium ⁵		Report			200-399 mg/day	1.34	1.34
					400-599 mg/day	1.24	1.24
					600-799 mg/day	1.16	1.16
					800-999 mg/day	1.08	1.08
					≥ 1000 mg/day	Reference	Reference
Cigarette	Never	US; Meta-	Reference	Reference	Never	Same	Same
smoking ⁶	Former	analysis	1.20 (1.10, 1.30)	1.20 (1.10, 1.30)	Former		
	Current		1.40 (1.20, 1.70)	1.60 (1.40, 1.90)	Current		

Supplementary Tab	ole 3. Low-risk method:	Characteristics* thro	ughaut fallaw-ur	according to cutoff 7
Supplementary ran	JIC J. LOW-HISK IIICHIOU.	characteristics thro	ugnout tonow-up	according to cuton /

	NHS		HPFS	
	Cutoff <7	Cutoff≥7	Cutoff <7	Cutoff≥7
	(high-risk)	(low-risk)	(high-risk)	(low-risk)
Person-years (% within cohort)	1,775,750 (95)	96,756 (5)	936,616 (95)	48,843 (5)
Age, years	60.7 (11.6)	65.5 (11.3)	63.9 (11.3)	66.7 (11.5)
White, %	98	98	94	95
Physical activity				
Continuous, min/day	21.0 (17.6)	41.2 (21.2)	28.2 (32.7)	61.8 (42.2)
Moderate-to-vigorous intensity activity	24	76	34	89
for ≥30 minutes/day, %	24	70	54	07
Body mass index				
Continuous, kg/m ²	25.6 (4.6)	22.6 (2.4)	25.9 (3.3)	23.3 (1.9)
≥ 18.5 and < 25 kg/m ² , %	54	92	42	92
Alcohol intake				
Continuous, g/day	6.2 (9.4)	3.2 (4.1)	11.3 (14.0)	5.5 (6.5)
<14 (women) or <28 (men) g/day, %	86	99	88	99.6
Red meat				
Continuous, serving/day	0.6 (0.3)	0.3 (0.2)	0.6 (0.4)	0.2 (0.2)
<0.5 serving/day, %	36	94	47	98
Processed meat				
Continuous, serving/day	0.3 (0.3)	0.1 (0.1)	0.3 (0.3)	0.1 (0.1)
<0.2 serving/day, %	38	97	40	98
Dietary fiber				
Continuous, g/day	16.2 (4.4)	23.2 (4.7)	21.6 (5.9)	32.2 (7.5)
≥ 20 (women) or ≥ 30 (men) g/day, %	17	85	7	68
Total calcium intake				
Continuous, mg/day	932.1 (339.9)	1310.2 (338.4)	923.5 (362.0)	1291.4 (408.7)
>1,000 mg/day, %	38	89	32	84
Cigarette smoking				
Pack-years**	23.7 (20.3)	8.8 (12.5)	24.6 (19.0)	11.0 (12.4)
Never smoking or past smoking with pack-years <5, %	54	89	53	92

*Updated information throughout follow-up was used to calculate the means for continuous variables and percentage for categorical variables. All variables are age-standardized except person-years and age.

**Among ever smokers only

Exposure	Study; Exposure category/unit	Region; Study design	Relative ris	Relative risk (95% CI)		
Exposure		Region; Study design	Men	Women		
Physical activity	Kyu et al, 2016 ⁷ *	Worldwide; Meta-analysis				
	< 600 MET-m/week		Reference	Reference		
	600-3999 MET-m/week		0.90 (0.85, 0.95)	0.90 (0.85, 0.95)		
	4000-7999 MET-m/week		0.83 (0.77, 0.90)	0.83 (0.77, 0.90)		
	≥ 8000 MET-m/week		0.79 (0.74, 0.85)	0.79 (0.74, 0.85)		
Body fatness/BMI	Calle et al, 2004^8	Worldwide; Review				
-	Normal (18.5-< 25 kg/m ²)		Reference	Reference		
	Overweight (25-29.9 kg/m ²)		1.5	1.2		
	Obese ($\geq 30 \text{ kg/m}^2$)		2.0	1.5		
	Moghaddam et al, 2007 ⁹	Worldwide; Meta-analysis				
	Normal (18.5-< 25 kg/m ²)		Reference	Reference		
	Overweight $(25-29.9 \text{ kg/m}^2)$		1.16 (1.07, 1.27)	1.03 (0.96, 1.10)		
	Obese ($\geq 30 \text{ kg/m}^2$)		1.40 (1.33, 1.47)	1.07 (0.97, 1.18)		
Alcohol	Fedirko et al, 2011 ¹⁰	Worldwide; Meta-analysis				
	None		Reference	Reference		
	Light (0.1-12.5 g/day)		1.02 (0.92, 1.14)	0.95 (0.89, 1.01)		
	Moderate (12.6-50 g/day)		1.24 (1.13, 1.37)	1.08 (1.03, 1.13)		
	Heavy (> 50 g/day)		1.62 (1.31, 2.01)	1.54 (1.04, 2.29)		
Red meat	Zhao et al, 2017 ¹¹	Worldwide; Meta-analysis				
	Per 100 g/day		1.16 (1.05, 1.29)	1.16 (1.05, 1.29)		
Processed meat	Zhao et al, 2017 ¹¹	Worldwide; Meta-analysis				
	Per 50 g/day		1.22 (1.12, 1.33)	1.22 (1.12, 1.33)		
Dietary fiber	Aune et al, 2011 ¹²	Worldwide; Meta-analysis				
	Per 10 g/day		0.92 (0.82, 1.03)	0.94 (0.89, 0.99)		
Dietary calcium	Keum et al, 2014 ¹³ **	Worldwide; Meta-analysis				
-	Per 300 mg/day		0.92 (0.89, 0.95)	0.93 (0.89, 0.96)		
Cigarette smoking	Liang et al, 2009 ¹⁴	Worldwide; Meta-analysis		,		
- 0	Never		Reference	Reference		
	Former		1.20 (1.04, 1.38)	1.20 (1.04, 1.38)		
	Current		1.15 (1.00, 1.32)	1.15 (1.00, 1.32)		

Supplementary Table 4. Additional analysis: Relative risks from studies other than what we used for the literature-based method

*Results on colon cancer

**Results on total calcium intake

Supplementary Table 5. Additional analysis: Population attributable risk (PAR) for colorectal cancer using US-specific relative risk (RR)

Exposure*	Exposure category/unit	Worldwide RR (95% CI)	US-specific RR (95% CI)	Worldwide PAR, %	US PAR, %
Body fatness/BMI ¹⁵	Normal Obese ($\geq 30 \text{ kg/m}^2$)	Reference 1.33 (1.25, 1.42)	Reference 1.47 (1.33, 1.62)	11	15
Alcoholic drink ⁴	None Light (≤ 12.5 g/day) Moderate (12.6-50 g/day) Heavy (> 50 g/day)	Reference 0.99 (0.95, 1.04) 1.17 (1.11, 1.24) 1.44 (1.25, 1.65)	Reference 0.96 (0.90, 1.03) 1.14 (1.05, 1.24) 1.29 (1.01, 1.66)	7	4
Red meat ¹¹	Highest vs. Lowest	1.12 (1.03, 1.21)	1.07 (0.99, 1.16)	1	0
Processed meat ¹¹	Highest vs. Lowest	1.15 (1.07, 1.24)	1.12 (1.04, 1.21)	1	1
Dietary fiber ¹²	Per 10 g/day	0.90 (0.86, 0.94)	0.92 (0.88, 0.96)	18	14
Dietary calcium ¹³	Per 300 mg/day**	0.92 (0.89, 0.95)	0.93 (0.90, 0.96)	6	5
				Total Es	timate
				37	35

*Exposure categories: Body fatness/BMI (Normal, Obese (≥ 30 kg/m²)); Alcoholic drink (None, Light (≤ 12.5 g/day), Moderate (12.6-50 g/day), Heavy (> 50 g/day)); Red meat (Highest vs. lowest; 0-9 g/day vs. ≥ 100 g/day); Processed meat (Highest vs. lowest; 0-4 g/day vs. ≥ 75 g/day); Dietary fiber (0-9 g/day, 10-19 g/day, 20-29 g/day, ≥ 30 g/day); Dietary calcium (0-199 mg/day, 200-399 mg/day, 400-599 mg/day, 600-799 mg/day, 800-999 mg/day, ≥ 1000 mg/day) **Results on total calcium intake

Supplementary Table 6. Additional analysis: Minimum and maximum population attributable risk (PAR) for colorectal cancer in the United States, derived from different sources of prevalence estimates for body fatness and cigarette smoking

Exposure*	(Minimum PAR, Maximum PAR), %			
	Men	Women		
Physical activity	10	11		
Body fatness/BMI	(16, 17)	(7, 8)		
Alcoholic drinks	13	2		
Red meat	9	5		
Processed meat	12	6		
Dietary fiber	18	17		
Dietary calcium	6	10		
Cigarette smoking	(12, 16)	(12, 16)		
Total estimate	(64, 67)	(53, 56)		

*Exposure categories same as Table 2

Supplementary Table 7. Additional analysis: Distribution of exposures from sources other than what we	
used for the literature-based method*	

Exposure	Source; Exposure category/unit	Prevale	ence, %
		Men	Women
Body	NCD-RisC, 2016		
fatness/BMI	Overweight $(25-29.9 \text{ kg/m}^2)$	38.1	26.6
	Obese ($\geq 30 \text{ kg/m}^2$)	36.5	38.2
	WHO Global InfoBase, 2016		
	Overweight (25-29.9 kg/m ²)	37.2	26.2
	Obese ($\geq 30 \text{ kg/m}^2$)	35.5	37.0
	BRFSS, 2018		
	Overweight (25-29.9 kg/m ²)	40.5	29.5
	Obese ($\geq 30 \text{ kg/m}^2$)	30.6	31.3
Cigarette	NHANES ¹⁶ **		
smoking	Never	27.7	56.6
	Former	47.6	25.8
	Current	24.6	24.2

*Note that prevalence estimates for standard calculations (Supplementary Table 1) were weighted prevalence estimates from NHANES except for alcohol drinking and cigarette smoking that were obtained from the National Health Interview Survey (NHIS). (Islami et al, 2018¹)

**Prevalence estimates were calculated among adults aged 50 to 74. Never-smoker was defined as those having smoked <100 cigarettes in their lifetime.

Supplementary Methods

Assumptions for each of the factors

Physical activity

For the literature-based method, we used relative risk (RR) from a pooled analysis of the US and European studies that examined physical activity². Hazard ratios (HRs) were used to estimate RRs. In their supplementary figure, the authors presented HRs stratified by sex. However, we did not use the stratified values because P for heterogeneity by sex was >0.05 for colon cancer and rectal cancer. As there is ~70% colon cancer and ~30% rectal cancer¹⁷, we took a weighted average of colon cancer and rectal cancer to calculate the RR for CRC: 0.84*0.70 + 0.87*0.30 = 0.849. The non-BMI adjusted HR was 0.849 for 90th versus 10th percentile (i.e., highest vs. lowest category). The median and interquartile range of 6 of the 7 cohorts included was 8 (2-22) MET-hours/week. Therefore, for our physical activity categories (0-249, 250-499, 500-749, 750-999, ≥1000 MET-m/week), we assumed that the HR of 0.849 could be used for the RR comparing ≥1000 MET-m/week category to 0-249 MET-m/week (reference) category.

For each of the categories, we calculated the RRs: 0-249 MET-m/week: 1/0.849; 250-499 METm/week: EXP(LN(0.849)/1000*250)/0.849; 500-749 MET-m/week: EXP(LN(0.849)/1000*500)/0.849; 750-999 MET-m/week: EXP(LN(0.849)/1000*750)/0.849; ≥1000 MET-m/week: 1

Body fatness/body mass index (BMI)

According to the WCRF/AICR report⁵, there was a significant non-linear dose-response relationship for BMI. We used a meta-analysis of studies for BMI that stratified by sex³. There were 12 cohorts from all over the world, and 5 out of 12 cohorts were from the US.

Alcohol intake

According to the WCRF/AICR report⁵, there was a significant non-linear dose-response relationship for alcohol intake. We used a dose response meta-analysis of 66 studies from the world and 27 studies were from North America⁴.

Red meat and processed meat intakes

10

We used a dose-response meta-analysis from the WCRF/AICR report for red meat and processed meat intakes⁵. For robustness, we used studies for colon cancer and studies for rectal cancer, separately, not studies that looked at combined CRC. As there is ~70% colon cancer and ~30% rectal cancer¹⁷, we took a weighted average of colon cancer and rectal cancer to calculate the RR for CRC.

For red meat, there was no sex-specific RR reported. We assumed that there is no heterogeneity by sex. There were 11 studies for colon cancer (summary RR = 1.22 per 100 g/day) and 8 studies for rectal cancer (summary RR = 1.13 per 100 g/day). For the RR of CRC, we calculated the weighted average: 1.22*0.70 +1.13*0.30 = 1.193. For each of the categories, we calculated the RRs: 0-9 g/day: 1; 10-24 g/day: EXP(LN(1.193)/100*12.5); 25-49 g/day: EXP(LN(1.193)/100*32.5); 50-74 g/day: EXP(LN(1.193)/100*57.5); 75-99 g/day: EXP(LN(1.193)/100*82.5); ≥ 100 g/day: EXP(LN(1.193)/100*107.5)

For processed meat, there was no sex-specific RR reported. We assumed that there is no heterogeneity by sex. There were 12 studies for colon cancer (summary RR = 1.23 per 50 g/day) and 10 studies for rectal cancer (summary RR = 1.08 per 50 g/day). For the RR of CRC, we calculated the weighted average: 1.23*0.70+ 1.08*0.30 = 1.185. For each of the categories, we calculated the RRs: 0-4 g/day: 1; 5-24 g/day: EXP(LN(1.185)/50*12.5); 25-49 g/day: EXP(LN(1.185)/50*35); 50-74 g/day: EXP(LN(1.185)/50*60); \geq 75 g/day: EXP(LN(1.185)/50*85)

Fiber intake

We used a dose-response meta-analysis from the WCRF/AICR report for dietary fiber intake⁵. There were 6 studies for men and 11 studies for women.

For each of the categories, we calculated the RRs:

For men: 0-9 g/day: 1/EXP(LN(0.89)/10*30); 10-19 g/day:0.89/EXP(LN(0.89)/10*30); 20-29 g/day:

EXP(LN(0.89)/10*20)/EXP(LN(0.89)/10*30); ≥30 g/day: 1

For women: 0-9 g/day: 1/EXP(LN(0.91)/10*30); 10-19 g/day:0.91/EXP(LN(0.91)/10*30); 20-29 g/day: EXP(LN(0.91)/10*20)/EXP(LN(0.91)/10*30); >30 g/day: 1

Calcium intake

11

We used a dose-response meta-analysis from the WCRF/AICR report for dietary calcium intake⁵. There were 3 studies for men and 9 studies for women.

For each of the categories, we calculated the RRs: 0-199 mg/day: 1/EXP(LN(0.93)/200*1000); 200-399 mg/day: 0.93/EXP(LN(0.93)/200*1000); 400-599 mg/day: EXP(LN(0.93)/200*400)/EXP(LN(0.93)/200*1000); 600-799 mg/day: EXP(LN(0.93)/200*600)/EXP(LN(0.93)/200*1000); 800-999 mg/day: EXP(LN(0.93)/200*800)/EXP(LN(0.93)/200*1000); ≥1000 mg/day: 1

Cigarette smoking

We used a meta-analysis of US studies for cigarette smoking⁶. There were 3 cohorts for men and 4 cohorts for women.

Details on the low-risk method

We used the Nurses' Health Study (NHS) and Health Professionals Follow-up Study (HPFS) for the low-risk method, which are two ongoing US cohorts that enrolled 121,700 registered female nurses aged 30 to 55 years in 1976¹⁸ and 51,529 male health professionals aged 40 to 75 years in 1986¹⁹, respectively. In both cohorts, participants completed a detailed questionnaire about their lifestyle and medical information at baseline and every two years thereafter with over 90% of follow-up. This study was approved by the institutional review boards of the Brigham and Women's Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required.

Participants also provided dietary information through validated food frequency questionnaires (FFQs) every 4 years. Among participants who returned the baseline questionnaires (1980 for the NHS and 1986 for the HPFS, when we first collected detailed dietary and lifestyle information), we excluded those who had a history of cancer (except nonmelanoma skin cancer), or ulcerative colitis; with a BMI of <18.5 kg/m²; reported implausible energy intakes (<500 or >3500 kcal/d for women; <800 or >4200 kcal/d for men); or with missing data on lifestyle exposures. After these exclusions, 60,275 women and 41,544 men were included in the analysis.

Height, body weight, cigarette smoking, and physical activity were self-reported through biennial questionnaires. Cigarette smoking was evaluated based on both pack-years and the current status that was reported biennially. Physical activity was assessed by the total hours per week for moderate-to-vigorous intensity activity (including brisk walking) that requires the expenditure of at least 3 metabolic equivalents per hour. Alcohol use and diet were self-reported every 4 years by the FFQs.

In the cohorts, we calculated person-years of follow-up for each participant from the date of returning the baseline questionnaire until the date of CRC diagnosis, death, loss to follow-up, or end of follow-up (June 30, 2014, for the NHS and January 31, 2014, for the HPFS), whichever came first.

To transform servings to grams for red and processed meat, we used the following formula: Grams of red meat = sum of (Beef, pork or lamb as a sandwich in servings/day)*84.54, (Beef or lamb as a main dish in servings/day)*140, (Pork as a main dish in servings/day)*140.78, (Hamburger, regular in servings/day)*85, and (Hamburger, lean in servings/day)*85

Grams of processed meat= sum of (Bacon in servings/day)*16, (Hot dogs in servings/day)*46.05, (Salami, bologna sandwich in servings/day)*56, (Chicken or turkey hot dogs or sausage in servings/day)*50.72, and (Other Processed meats in servings/day)*54

Details on the additional analyses

In the additional sensitivity analyses for the literature-based method, we sought to explore the impact of the following components in the literature-based method: 1) choice of risk factors, 2) different sources of RR estimates, and 3) different sources of exposure prevalence estimates.

1) To address how inclusion/exclusion of certain risk factors affects the population attributable risk (PAR) estimates, we included only the "convincing" factors (and cigarette smoking) and excluded the factors that have been defined as "probable" by the WCRF/AICR⁵ from the calculation of PAR. To be specific, we calculated the proportion of CRC attributable to lifestyle factors excluding red meat, dietary fiber, and dietary

calcium, resulting in these 5 factors: physical activity, body fatness/BMI, alcoholic drinks, processed meat, and cigarette smoking.

2) To find the different sources of RRs, we performed searches in PubMed. Recent meta-analyses (published within 20 years) were the most preferred source of RRs, followed by large pooled analyses (or a review that summarized the literature). RRs had to provide the most relevant information to our study (e.g., sexspecific RRs); studies that reported RRs that matched our predefined exposure category levels were preferred. For each of the risk factors, we calculated PARs with different RRs and provided a range of PAR estimates (minimum PAR, maximum PAR) that could be obtained with more than one source of RR. In addition, we performed a sensitivity analysis with RRs stratified by countries to assess whether using US-specific RRs results in different PAR estimates compared to using worldwide RRs.

3) To assess how different sources of prevalence estimates change the PAR, we evaluated different prevalence estimates for the two factors: body fatness and cigarette smoking. Not enough information was provided on other factors. Prevalence estimates had to be sex-specific and nationally representative. In addition, the sources had to match the defined categories for BMI (normal, overweight, and obese) and cigarette smoking (never, former, and current).

References

1. Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, McCullough ML, Patel AV, Ma J, Soerjomataram I, Flanders WD, Brawley OW, et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. *CA: a cancer journal for clinicians* 2018;**68**: 31-54.

2. Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, Adami HO, Blair CK, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. *JAMA Intern Med* 2016;**176**: 816-25.

3. Xue K, Li FF, Chen YW, Zhou YH, He J. Body mass index and the risk of cancer in women compared with men: a meta-analysis of prospective cohort studies. *European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP)* 2017;**26**: 94-105.

4. Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, Scotti L, Jenab M, Turati F, Pasquali E, Pelucchi C, Galeone C, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. *British journal of cancer* 2015;**112**: 580-93.

5. World Cancer Research Fund International/American Institute for Cancer Research, Continuous Update Project Report: Diet, Nutrition, Physical Activity and Colorectal Cancer, 2017.

6. Carter BD, Abnet CC, Feskanich D, Freedman ND, Hartge P, Lewis CE, Ockene JK, Prentice RL, Speizer FE, Thun MJ, Jacobs EJ. Smoking and mortality--beyond established causes. *N Engl J Med* 2015;**372**: 631-40.

7. Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K, Vos T, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. *BMJ (Clinical research ed)* 2016;**354**: i3857.

8. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. *Nature reviews Cancer* 2004;**4**: 579-91.

9. Moghaddam AA, Woodward M, Huxley R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology* 2007;**16**: 2533-47.

10. Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, Negri E, Straif K, Romieu I, La Vecchia C, Boffetta P, Jenab M. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. *Annals of oncology : official journal of the European Society for Medical Oncology* 2011;**22**: 1958-72.

11. Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, Guo M, Zhao Q. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. *Oncotarget* 2017;**8**: 83306-14.

12. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, Norat T. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. *BMJ (Clinical research ed)* 2011;**343**: d6617.

13. Keum N, Aune D, Greenwood DC, Ju W, Giovannucci EL. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. *International journal of cancer* 2014;**135**: 1940-8.

14. Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. *International journal of cancer* 2009;**124**: 2406-15.

15. Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H. Obesity and risk of colorectal cancer: a systematic review of prospective studies. *PloS one* 2013;8: e53916.

16. Stokes A, Preston SH. How smoking affects the proportion of deaths attributable to obesity: assessing the role of relative risks and weight distributions. *BMJ Open* 2016;**6**: e009232.

17. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2020. *CA: a cancer journal for clinicians* 2020.

18. Colditz GA, Manson JE, Hankinson SE. The Nurses' Health Study: 20-year contribution to the understanding of health among women. *J Womens Health* 1997;**6**: 49-62.

19. Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ. Prospective study of alcohol consumption and risk of coronary disease in men. *Lancet* 1991;**338**: 464-8.