

Supplementary Figure 1. Representative photographs of different floral organs (A) and flowers at different floral developmental stages (B) in *H. coronarium*. SS: styles and stigmas; A: anthers; F: filaments; L: labella; LP: lateral petals; Se: sepals; B: bracts; Le: leaves. Some small floral tissues are indicated by an arrow.

Supplementary Figure 2. Standard curves of methyl benzoate (A) and methyl salicylate (B). The curves were generated by three repeats. The x-axis stands for the content of methyl benzoate or methyl salicylate used for solid-phase microextraction (SPME) and GC-MS detection. The y-axis represents the peak area ratio of methyl benzoate or methyl salicylate to internal standard (IS). Ethyl benzoate (210 ng) was used as IS for methyl benzoate quantification, while methyl benzoate (297.5 ng) as IS for methyl salicylate quantification. Using MS scanning technique of selected ion monitor (SIM), two groups of ions were used to monitor methylated product and internal standard in each sample, respectively. Methyl benzoate was monitored by a group of ions with mass/charge ratio (m/z) 77, 105 and 136, ethyl benzoate by a group of ions with m/z 77, 105 and 150, and methyl salicylate by a group of ions with m/z 92, 120 and 152. The scanning dwell time for each ion was set to 100 ms.

Supplementary Figure 3. Emission of floral methyl benzoate (A) and methyl salicylate (B) after infiltration of substrates BA, SA and SAM into petals in *H. coronarium*. Error bars indicate standard deviation of three biological replicates. Asterisks represent significant differences between treatments and controls by Student's *t*-test (**indicates a significant difference at the level of P < 0.01).

HcBSMT1 HcBSMT2 OsBSMT1 PhBSMT1 AtBSMT1 CbSAMT	: : : :	MLPNTTIMEGEMSIKVEHALHAVGETGETSYVANSRLOE AIHOTKSILAIAVEETYKALHSDQ MGIKVEQALHAVGESETSYATSRLOE AILYTKIVLATTIEEMYKGLLPEH 	 64 53 58 51 74 52
HcBSMT1 HcBSMT2 OsBSMT1 PhBSMT1 AtBSMT1 CbSAMT	: : : : :	NVVVDLGCSSGENTLIMLSHVISVATKLP-RRMELQFFINDLPGNDFNCFFQSIEGFKKREGEIEGDLLVPYY MVVVDLGCSSGSNTFIVVSQVLDI VELR-RMMEMKKPLEVQFFINDLPGNDFNVFQSLDK-KNKVEEESKGELLVPYY MVVADLGCSSGENTLLVVSEVISA ANRSSCDHKSSLVADVQFFINDLPGNDFNTFQSIEL-KKLAEMEF-GKALPPYY ICTADLGCSLGANTFLVVSQLVKIVEKER-KKHGFK-SPEFYFHFNDLPGNDFNTFQSIGA-QED RKHI-GESFGPCF IKVAELGCSSGONSFIAIFEIINTINVLCQHVNKNSPEIDCCINDLPENDFNTFKEVPFFNKE MITNKSSCF IATADLGCSSGFNALFAVTELIKTVEELR-KKMGRENSPEYQIFINDLPENDFNAFFRSI-PIENDVDGVCF # ##	 137 132 137 128 148 122
HcBSMT1 HcBSMT2 OsBSMT1 PhBSMT1 AtBSMT1 CbSAMT	: : : : :	VAGVAGSFYGRLE RASVELEHSSEGIAWLSOVPEGIKIEHGVPINKGNIYWTETSIAKVE AZ YQEQECKD PSTELKLRH VGVAGSFYGRLEFCASVHFFHSSYCIAWLSOVPEDENDQGVSINKGNIYWTETSSSOVEKAYREQYKKD FITELKLRH IAGLPGSFYTRLF:DRSVHLFHSSYCIAWRSKVPDKIASGEVINAGNMYIWETTPPSVVKIYQROFOED SQFIALRH FSGVPGSFYTRLF:SKSLHFVYSSYSIAWLSOVPAGIENNKGNIYMARTSPLSVIKAYYKQVFIDFSNFLKYRS VYGAPGSFYSRLESRNSLHLIHSSYALHWLSOVPAGIENNKGNIYMARTSPLSVIKAYYKQVFIDFSNFLKYRS INGVPGSFYGRLF:RNTHFIHSSYSIAWLSOVPAGIESNKGNIYMANTCPQSVLNAYYKQFOEDHAIFLRGA ## & & &&	 217 212 215 202 222 196
HcBSMT1 HcBSMT2 OsBSMT1 PhBSMT1 AtBSMT1 CbSAMT	: : : : :	TEINVGCRMULVFVGRRKR-TPGNGDFVH YGLIGE INSWILEGTIGE KVD TENLFINGAS FEEVES VIHNEGVEDID IEINI GCMML TELGRRKR-TPGHGDLCH WRLIAF INSWILEGTIGE KVSTENLFING SLEEVKSITHE GUDDL DEIVSGCMVL TELGRKRR-DVLRGEVSY YGLIAG IQSIVGE RVED KLISENLPFYS PSVDEVKAVIROS GLEDIS EEIMK GCMVL TELGRKNR-DVLRGEVSY YGLIAG INST TO KUSSI EEIVSNCRWVL TELGRNTLNDPLYRDCCHFWTILISNST RDUVES CIVES SKILSENNPFYD FNVOETKEVIROS GETIN GEVVP GCRWVL TELGRRSE-DRASTECCLIW GLIAM IN MVSECIIE BEKMK KENIE OVT PSPTEVEAETIKE GSELID & & & & & & & & & & & & & & & & & & &	 296 291 294 281 302 275
HcBSMT1 HcBSMT2 OsBSMT1 PhBSMT1 AtBSMT1 CbSAMT	: : : : :	RAPIFESSWDPFDDSKDDIYAIPNYMRSGKNVANYIRAVVEPLIVHOFCTVILDDEARYAHIVSKHILKKKANHTILVF RVEIFESSWDPFDDSGDDSFDLSNYTKSAKNVADCIRAVVEPLIVHOFCTVILDDEFRYAONVLKHILKEKANHTILVI HIQLFESNWDPQDDSDDDVATLDSVRSGVNVARCIRAVLEPLIARHFCRIVDDLEDMYARNVAQHIEQVKTKYPVIVL RIDTSRVHWNASNNEKNGG	 376 371 374 351 374 352

HcBSMT1	:	ALKKKA-	:	382	
HcBSMT2	:	ALKKRV-	:	377	
OsBSMT1	:	SIKARR-	:	380	
PhBSMT1	:	SITKIN-	:	357	
AtBSMT1	:	SLTKK	:	379	
CbSAMT	:	SLIRKSD	:	359	

Supplementary Figure 4. Alignment of amino acid sequences of HcBSMTs with representative benzenoid carboxyl methyltransferases. The alignment was performed by ClustalX and shaded with GeneDoc. Amino acid residues shaded in black, gray and light gray represent 100, 80 and 60 % conserved identity, respectively. Dashes indicate gaps inserted for optimal alignment. Residues with "#" below indicate SAM binding sites. The amino acids with "&" below indicate the acid substrate binding sites, which are identified from the crystal structure of CbSAMT (Zubieta et al., 2003).

Supplementary Figure 5. Effect of temperature (A) and pH value (B) on HcBSMT1/2 activity with SAM and BA as substrates. The highest activity with a given reaction condition was set to 100%. All values shown in this figure are averages of three independent measurements. Optimum reaction temperature was determined at different temperature levels (10-40 °C). The optimum pH for HcBSMTs activity was assessed using two buffer systems. Reactions were carried out in 50 mM Bis-Tris propane buffer with pH ranging from 6.5 to 9.0 and in 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer with pH ranging from 5.0 to 6.5.

Supplementary Figure 6. Correlation analysis of methyl benzoate emission and related biosynthetic genes expression in different tissues (A) and during petal development (B). ** indicates a significant correlation at the level of P < 0.01. *** indicates a highly significant correlation at the level of P < 0.001.

Supplementary Figure 7. Expression analysis of *HcBALD1*. (A) *HcBALD1* gene expression quantity in different tissues. *HcACT* gene was used as an endogenous control. SS: styles and stigmas; A: anthers; F: filaments; L: labella; LP: lateral petals; Se: sepals; Pe: pedicels; B: bracts; Le: leaves; Ri: rhizomes. (B) *HcBALD1* gene expression quantity in petals at different floral developmental stages. *HcRPS* gene was used as an endogenous control. Error bars indicate the calculated maximum and minimum expression quantity of three replicates.

Gene	Gene ID	Description	Eull longth (hr)	ODE (hr)	Gene expression quantity (RPKM)			
			Fun-iengin (bp)	OKF (DP)	D1	D4	D6	
HcPAL	comp46957_c0	Phenylalanine ammonialyase	2,449	2,169	222.79	1,166.32	325.79	
HcCTS1	comp39483_c0	COMATOSE	4,983	4,056	10.69	27.49	22.93	
HcCTS2	comp43213_c0	COMATOSE	4,657	3,987	9.63	5.32	4.22	
HcCNL	comp18339_c0	Cinnamoyl-CoA ligase	2,290	1,752	0	479.54	364.13	
HcCHD1	comp17550_c0	Cinnamoyl-CoA hydratase/dehydrogenase	2,783	2,175	315.10	668.73	756.00	
HcCHD2	comp25044_c1	Cinnamoyl-CoA hydratase/dehydrogenase	2,456	2,175	0.62	32.53	2.07	
HcCHD3	comp43947_c0	Cinnamoyl-CoA hydratase/dehydrogenase	2,667	2,169	58.08	50.06	55.32	
HcKAT1	comp37768_c0	3-Ketoacyl CoA thiolase	1,831	1,377	236.35	619.74	1,082.13	
HcKAT2	comp39625_c0	3-Ketoacyl CoA thiolase	1,591	1,305	24.02	39.77	10.29	
HcBALD1	comp17566_c0	Benzaldehyde dehydrogenase	1,927	1,629	86.96	54.40	78.17	
HcBALD2	comp25915_c0	Benzaldehyde dehydrogenase	1,801	1,617	45.85	0.29	0	
HcTE1	comp46336_c0	Thioesterase	1,002	492	123.00	469.45	306.83	
HcTE2	comp41950_c0	Thioesterase	768	486	31.56	2.69	0.56	
HcBCMT1	comp37774_c0	Benzenoid carboxyl methyltransferase	-	-	0.65	7,896.98	7,382.24	
HcBSMT1	comp37774_c0	Benzoic acid/salicylic acid methyltransferase	1,498	1,146	-	-	-	
HcBSMT2	comp37774_c0	Benzoic acid/salicylic acid methyltransferase	1,666	1,131	-	-	-	
HcBCMT2	comp36217_c0	Benzenoid carboxyl methyltransferase	1,251	1,134	5.04	0.44	4.22	
НсВСМТ3	comp48707_c0	Benzenoid carboxyl methyltransferase	1,416	1,095	0.96	5.52	6.63	

Supplementary Table 1. Analysis of putative genes related to benzenoid biosynthesis.

D1, D4 and D6 represent three flower developmental stages (squaring stage, blooming stage and senescence stage, respectively). RPKM: reads per kilobase of exon model per million mapped reads. Genes cloned in this study were in bold. Two different transcripts (named as *HcBSMT1* and *HcBSMT2*) were cloned under HcBCMT1 unigene.

Supplementary Table 2. Primer sequences used in this study.
--

Supplem	entary rable 2. Finnel sequences used in this study.	
Gene	Forward/reverse primer sequence (5'-3')	Purpose
HcPAL	TCTGCTCATTCTTCGTCGTCC	gene isolation
	CATAGTTCGGATTTCATTGGACAC	C
HcCNL	GAAAACCGAGCATGGTGGTCAA	gene isolation
	GACTCACGAATTATGCACGTGATG	C
HcCHD1	TGGAATTGGATTGGCGGAGATC	gene isolation
	GTTCCAAAGGACGAGCAAGATG	C
HcKAT1	CGTGAACGCTTCTTCTTGGTTC	gene isolation
	TTGCATTTCCGAGGATTGATGTAT	C
HcTE	TAACCTGCGTGCCGAAGATTGA	gene isolation
	CTAGATCGCTGACTGATTTCTTG	C
HcBSMT1	TTCTTGCCCTTCATTCATTGAG	gene isolation
	GAACAAAAGTGTTCTGAGCTTG	C
HcBSMT2	CCCGTAGTTCCATGCTCCAT	gene isolation
	GTTTCAATTTACGTCCACATCAGC	C
HcBSMT1	<i>Eco</i> RI- <u>GAATTC</u> ATGCTCCCTAACACGACAATC	bacterial expression
	NotI-GCGGCCGCAAGCTTTCTTCTTCAAGGCGAAG	Ĩ
HcBSMT2	<i>Eco</i> RI- <u>GAATTC</u> ATGGGTTTGAAGGTGGAGCA	bacterial expression
	NotI-GCGGCCGCATACTCTTTTCTTCAAGGCAATGAC	Ĩ
EGFP	SacI- <u>GAGCTC</u> ATGGTGAGCAAGGGCGAGGAG	transient expression
	KpnI-GGTACCTTACTTGTACAGCTCGTCCATG	Ĩ
HcBSMT1	SacI-GAGCTCATGCTCCCTAACACGACAATC	transient expression
	KpnI-GGTACCTTAAGCTTTCTTCTTCAAGGCG	Ĩ
HcBSMT2	SacI-GAGCTCATGGGTTTGAAGGTGGAGCA	transient expression
	KpnI-GGTACCTTATACTCTTTTCTTCAAGGCAATG	Ĩ
HcPAL	CTCATGTTCGCCCAATTCTC	real-time PCR
	TTATGCTGCTCCGCACTCT	
HcCNL	CTCACTGCCGCAGCAACATG	real-time PCR
	CTCAGCAGGAACTTCTGGATC	
HcCHD1	AACTTATCAGAATCCCAGCAGTC	real-time PCR
	CATCCTTGATGGCGATGAACAG	
HcKAT1	CCAGTCCCACAACTTCTTATCC	real-time PCR
	GCCGTAGAGTTTGTTCCATGTG	
HcTE	CGCACAAGGATTACGAAGACAC	real-time PCR
	GCATCAACGACGAGCAAGGTT	
HcBSMT1	TATTTGCGCGATATGCACATCTTG	real-time PCR
	CATGTAGATATGCATACTAATAATCACC	
HcBSMT2	AGGAGAAAGCCAATCACACC	real-time PCR
	GGCATGATTCAGTTTGACAAG	
HcACT	GTATGTTGCTATTCAGGCTGTCC	real-time PCR
	GAAGAATGGCATGAGGTAGAGC	
HcRPS	TTAGTAGCATCGGCTGCAATAAG	real-time PCR
	CTCTTTTGGGAAGACGGTTGAG	