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Abstract 

Sequencing of patient-derived xenograft (PDX) mouse models allows investigation of the 

molecular mechanisms of human tumor samples engrafted in a mouse host. Thus, both human 

and mouse genetic material is sequenced. Several methods have been developed to remove 

mouse sequencing reads from RNA-seq or exome sequencing PDX data and improve the 

downstream signal. However, for more recent chromatin conformation capture technologies (Hi-

C), the effect of mouse reads remains undefined. 

We evaluated the effect of mouse read removal on the quality of Hi-C data using in silico 

created PDX Hi-C data with 10% and 30% mouse reads. Additionally, we generated two 

experimental PDX Hi-C datasets using different library preparation strategies. We evaluated 

three alignment strategies (Direct, Xenome, Combined) and three processing pipelines (Juicer, 

HiC-Pro, HiCExplorer) on the quality of Hi-C data. 

Removal of mouse reads  had little-to-no effect on data quality than the results obtained with 

Direct alignment strategy. Juicer pipeline extracted the most useful information from PDX Hi-C 

data. However, library preparation strategy had the largest effect on all quality metrics. 

Together, our study presents comprehensive guidelines on PDX Hi-C data processing. 

Keywords: Hi-C, chromatin conformation capture, Xenografts, PDX, Xenome 

Introduction 

Patient-derived tumor xenograft (PDX) mouse models are indispensable in preclinical and 

translational cancer research. Previous studies have demonstrated that human tumors 

engrafted in immunocompromised mouse models preserve each patient’s genetic heterogeneity 

[1] and response to treatment [2,3]. Consequently, the main application of PDX systems is to 

understand the molecular mechanisms of human cancers within controlled in vivo conditions. 
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With the wide adoption of sequencing technologies, sequencing of PDX samples is now a 

standard [4–7]. 

High-throughput sequencing of PDX samples faces challenges not present when sequencing 

cell lines and homogeneous tissues. Engraftment of human cancer tissue fragments into mice 

leads to the rapid loss of human stroma and invasion of mouse stromal cells [1,3]. 

Consequently, sequencing of PDX tumor samples produces reads derived from both human 

and mouse genomes, with mouse read contamination ranging from 4-7% up to 20% for RNA-

seq and exome data [8], and even 47% on average for whole-genome sequencing data [9]. 

Metastases are even more variable, and we previously identified up to 99% mouse reads in 

PDX RNA-seq data from lung, liver, or brain metastases [4]. Given the high similarity of human 

and mouse genomes, with orthologous gene products on average 85% identical [10], the 

presence of mouse reads introduces uncertainty in the alignment of PDX sequencing data. 

Three strategies have been developed to address the removal of mouse reads from PDX 

sequencing data. The first strategy, referred hereafter as “Direct”, is the direct alignment of PDX 

sequencing data to the human genome. The second, filtering strategy, includes separation of 

human and mouse reads and using only human data for downstream analysis. The Xenome 

tool was among the first tools implementing filtering strategy. It classified reads into the human, 

mouse, both, neither, or ambiguous categories using a 25-mer matching algorithm [11]. Despite 

being relatively old and lacking maintenance, Xenome remains widely used in bioinformatics 

pipelines [12]. We refer to this strategy as “Xenome” throughout. The alignment of reads to 

human and mouse genomes and then filtering reads by best alignment match [8] represents 

another viable approach to separate human and mouse reads. This approach has been 

implemented in Disambiguate [13], bamcmp [14], and XenoCP [15] tools. The third strategy, 

referred hereafter as “Combined”, includes alignment to the in silico combined human-mouse 

reference genome to disambiguate human and mouse reads at the alignment step [4,16]. 
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Each strategy for mouse read removal from PDX sequencing data has its own advantages and 

disadvantages. The filtering and combined strategies require extra efforts, more processing 

time, and in some cases doubling the requirements for computational resources. Several 

studies investigated the benefits of removal of contaminating mouse reads from PDX 

sequencing data. In DNA-seq PDX data, the removal of mouse reads reduced the false-positive 

rate of somatic mutation detection, especially when matching normal samples are not available 

[8,12,13,15,17]. In RNA-seq data, the removal of mouse reads improved gene expression 

quantification [15], correlation with pure human gene expression [8], and enrichment in relevant 

pathways [14]. Benchmarking of all three strategies using DNA sequencing convincingly 

demonstrated that filtering and combined strategies are necessary to minimize false discovery 

rates in detecting genomic variants, with exome sequencing data benefiting the most [17]. The 

general consensus is that the removal of mouse reads from PDX sequencing data improves the 

extraction of human-specific signal from RNA-seq and DNA-seq PDX sequencing data [8,11–

16]. 

Chromatin conformation capture technology and its high-throughput derivatives, such as Hi-C 

[18], have recently emerged as tools to assess the three-dimensional (3D) structure of the 

genome. Changes in the 3D structure of the genome are an established hallmark of cancer [19–

21]. However, the majority of the 3D cancer genomics studies have been performed in vitro 

using cell lines [22–24]. Hi-C sequencing of PDX samples opens novel ways for understanding 

mechanisms of human cancers under controlled in vivo conditions. However, the effect of 

contaminating mouse reads on the quality of PDX Hi-C data, and the choice of the processing 

pipeline, remains undefined.  

Hi-C sequencing data possesses unique qualities need to be considered when evaluating the 

effect of mouse reads in Hi-C PDX data. First, Hi-C paired-end reads are processed individually, 

as single-end data. Second, Hi-C data undergo extensive filtering to extract “valid pairs”, i.e., 
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reads representative or two ligated DNA fragments with proper orientation and distance 

between them [25,26]. Furthermore, in contrast to typical sequencing experiments, processing 

of Hi-C data requires high-performance computational resources as one Hi-C experiment 

produces more than 20X number of reads of a typical RNA-seq experiment [27]. It remains 

uncertain whether efforts for removing mouse reads from PDX Hi-C data are justified and 

meaningfully improve the quality of human Hi-C data. 

To address the effect of mouse read removal in PDX sequencing data, we evaluated three 

strategies for preprocessing PDX Hi-C data: Direct, Xenome, and Combined. Using different 

library preparation strategies, we generated two deeply sequenced Hi-C datasets of a 

carboplatin-resistant UCD52 cell line [4,5]. We further created three in silico PDX Hi-C datasets 

with either 10% or 30% of mouse read contamination, mirroring the percent of mouse reads 

observed in our experimental Hi-C data. In particular, we used Hi-C data from normal and 

cancer cells to investigate whether the biological properties, such as copy number variations 

inherent to cancer genomes, impact the quality of Hi-C data. Human Hi-C data without mouse 

reads contamination was used as a baseline. This design allowed us to comprehensively 

quantify the effect of contaminating mouse reads on the quality of Hi-C data and the 

downstream results. 

Although several studies discuss how to process Hi-C data and what tools to use [25,28,29], 

they have not evaluated the effect of mouse read contamination. We evaluated three leading 

pipelines, Juicer [30], HiC-Pro [31], and HiCExplorer [32] in terms of Hi-C data quality, extracted 

biological information, and computational runtime. 

In total, we tested nine combinations of strategies–all pairwise combinations of three strategies 

for mouse read handling (Direct, Xenome, and Combined), and three processing tools (Juicer, 

HiC-Pro, and HiCExplorer)–to generate contact matrices from nine in silico and two 

experimental PDX Hi-C datasets. Furthermore, we assessed the effect of library preparation 
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strategies on the quality of downstream results from Hi-C data. We found that removing mouse 

reads using Xenome or Combined strategies minimally affects the quality of Hi-C matrices and 

information extracted from them, while the Direct alignment yielded comparable-quality results 

without the additional computational overhead. The choice of processing pipeline showed 

detectable differences in data quality and the downstream results, with Juicer extracting the 

most information out of Hi-C data. Ultimately, the choice of library preparation strategy had the 

largest effect on data quality. From these studies, we recommend using the Direct alignment of 

PDX Hi-C data to the human genome. All three pipelines provided good quality results, with 

Juicer pipeline being our top choice. The choice of the library preparation strategy should be 

given a priority. 

Results 

A comprehensive workflow for assessing the impact of mouse read contamination in 

PDX Hi-C data 

Sequencing of biological samples from patient-derived xenograft (PDX) mouse models face a 

challenge of mixed genomic context derived from host (mouse) and graft (human) cells. 

Naturally, the primary goal is to sequence human-specific genomic information; however, highly 

homologous mouse reads may hinder the identification of human genomic information. We 

investigated whether the presence of mouse reads in human Hi-C data negatively affects Hi-C 

data quality, and whether the removal of mouse reads improves the detection of topologically 

associating domains (TADs). Using the in silico and experimentally obtained PDX Hi-C data 

(Table 1, Additional File 1: Table S1), we assessed three alignment strategies for mouse read 

removal and three common pipelines to generate Hi-C matrices (Figure 1). 

Figure 1. PDX Hi-C data analysis workflow. In silico (controlled mixture of human and 10/30% 

mouse Hi-C reads) and experimental PDX Hi-C data (two library preparation strategies) were 
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processed using three read-alignment strategies (Direct: read alignment directly to the human 

genome, Xenome, and Combined: human reads retrieved with either Xenome or via pre-

alignment step to the combined human-mouse genome, respectively). Three pipelines (Juicer, 

HiC-Pro, HiCExplorer) were used to obtain Hi-C matrices. Hi-C data quality and runtime metrics 

were assessed following each processing step. 

Table 1. Summary of in silico and experimental PDX Hi-C data. The proportion of mouse 

reads within experimental PDX Hi-C data was estimated using Xenome/Combined alignment, 

respectively. The optimal resolution was estimated following Direct/Xenome/Combined 

alignment strategy, respectively. 

Hi-C data Description Total reads Proportion of 

mouse reads 

Optimal 

resolution (kb) 

Baseline     

GM12878 Human B-

lymphoblastoids 

486,848,169 0% 7.0 

HMEC Human Mammary 

Epithelial 

456,577,383 0% 7.9 

KBM7 Human 

Myelogenous 

Leukemia 

431,368,621 0% 8.3 

CH12-LX (rep 

1) 

Mouse lymphoma 

cell line 

45,594,869 100% n/a 

CH12-LX (rep 

2) 

Mouse lymphoma 

cell line 

175,930,719 100% n/a 
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in silico PDX     

GM12878 

(10%) 

GM12878 + CH12-

LX (rep 1) 

532,443,038 8.56% 7.0/7.1/7.0 

GM12878 

(30%) 

GM12878 + CH12-

LX (rep 2) 

662,778,888 26.54% 7.0/7.1/7.0 

HMEC (10%) HMEC + CH12-LX 

(rep 1) 

502,172,252 9.08% 7.9/7.9/7.9 

HMEC (30%) HMEC + CH12-LX 

(rep 2) 

632,508,102 27.81% 7.9/7.9/7.9 

KBM7 (10%) KBM7 + CH12-LX 

(rep 1) 

476,963,490 9.56% 8.3/8.3/8.3 

KBM7 (30%) KBM7 + CH12-LX 

(rep 2) 

607,299,340 28.97% 8.3/8.3/8.3 

Experimental 

PDX 

    

UCD52 Library 

1 

Basal-like BRCA cell 

line 

873,892,191 12.16%/12.38% 11.5/11.9/11.7 

UCD52 Library 

2 

Basal-like BRCA cell 

line 

708,069,622 25.78%/29.14% 8.9/9.1/9.0 

The in silico PDX Hi-C data were created by concatenating previously published mouse and 

human Hi-C data [27] (see Methods). Human Hi-C data from GM12878 B-lymphoblastoid cells 

(nearly normal karyotype) and KBM7 myelogenous leukemia (near-haploid karyotype) were 

selected to assess the effect of mouse read contamination in normal and cancer Hi-C data, 
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respectively. HMEC human mammary epithelial cells were selected to parallel breast cancer 

origin of our experimental PDX Hi-C data. Mouse Hi-C data from B-lymphoblast CH12-LX cells 

were used to create the in silico PDX Hi-C data with ∼ 10% and ∼ 30% level of mouse read 

contamination. Human Hi-C data for the corresponding cell lines without mouse reads were 

used as a baseline. 

The main limitation of in-silico PDX Hi-C data is that human and mouse reads originate from 

different libraries. Although in silico PDX Hi-C data may be sufficient to test the performance of 

aligners on a mixture of highly homologous human and mouse reads, it is unknown whether this 

mixture can recapitulate the complexity of experimental PDX Hi-C data, where, theoretically, 

crosslinking and ligation of human and mouse DNA can occur. To investigate whether the 

removal of mouse reads from experimental PDX Hi-C data improves the quality of Hi-C 

matrices, we generated replicates of Hi-C data from a triple-negative breast cancer PDX 

(UCD52 cells), obtained with two different library preparation strategies (Library 1 and Library 2, 

see Methods). As expected, human-specific replicates of experimental PDX Hi-C data prepared 

with the same library preparation strategy showed high correlation, in contrast to those prepared 

awith different strategy (average Pearson Correlation Coefficient PCC = 0.9963 and 0.9547, 

respectively). Mouse matrices were uniformly correlated irrespective of the library preparation 

strategy (average PCC = 0.9870, Additional File 2: Figure S1). Therefore, replicates of Hi-C 

data were merged for downstream processing. In total, we processed 11 PDX Hi-C datasets 

(Table 1). 

We applied three alignment strategies to remove mouse reads contamination: the Direct 

alignment of PDX Hi-C reads to the human reference genome (“Direct”), the alignment of data 

cleaned of mouse reads data using the Xenome tool [11] (“Xenome”), or using pre-alignment to 

a combined human and mouse genomes (“Combined”, see Methods, Figure 1). Three tools for 

processing of Hi-C data were applied: Juicer [30], HiC-Pro [31], and HiCExplorer [32] (Figure 1). 
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The use of different methods for mouse read removal and processing pipelines allowed for 

finding the optimal strategy for analyzing Hi-C data derived from PDX mouse models. 

Experimental PDX Hi-C data have higher proportion of ambiguously mapped reads 

Xenome accurately estimated the 10%/30% proportion of mouse reads in our in silico PDX Hi-C 

data (Figure 2, Additional File 3: Table S2). We observed a similar proportion of mouse reads in 

our experimental PDX data (approximately 12% and 30%, Table 1). Less than 1% of reads were 

mapped to both or neither human nor mouse genomes, and these results were consistent in the 

in silico and experimental PDX Hi-C data. Compared with in silico PDX data, the number of 

“ambiguous” reads in the experimental data was slightly higher (4-5% vs. 1%, Additional File 3: 

Table S2). Overall, our results indicate that in silico PDX Hi-C data reflect the level of mouse 

reads contamination observed in experimental settings. However, the higher level of 

ambiguously mapped reads suggests unique biological properties in experimental PDX Hi-C 

data and justifies the need for its analysis. 

Figure 2. Proportions of human and mouse reads in experimental and in silico PDX Hi-C 

data. Details of Xenome read separation statistics are shown in Additional File 3: Table S2. 

Removal of mouse reads has negligible impact on Hi-C contacts retrieval rate and their 

quality 

Following data processing using all combinations of alignment strategies and downstream tools, 

we extracted four Hi-C quality metrics from the log files produced by each pipeline (all QC 

metrics are shown in Additional File 4: Table S3). Alignment rate is the proportion of reads 

aligned to the human genome. Valid interaction pairs is the proportion of reads marked as Hi-

C contacts by each tool considering the valid restriction site within a reasonable distance. 

Higher values of those metrics indicate better data quality. Cis/trans ratio is the ratio of intra- 

vs. inter-chromosomal interacting reads. A higher cis/trans ratio indicates an enrichment for 
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within-chromosomal reads, expected in the Hi-C experiments. Long/short ratio is the ratio of 

cis interactions more than 20kb away vs. those less than 20kb away. The expectation is to 

capture more long-distance chromatin interactions, i.e., a long/short ratio with a value higher 

than 1, while the long/short ratio less than 1 indicates long interactions are lost. These Hi-C 

quality metrics allow for the comprehensive definition of optimal alignment strategy and the 

effect of mouse read removal. 

The removal of mouse reads had minimal-to-no effect on the alignment quality metrics of in 

silico and experimental PDX Hi-C data (Figure 3, Additional File 5: Figure S2). Expectedly, the 

alignment rate and the proportion of valid interaction pairs in in silico PDX Hi-C data were 

diminished proportionally to the percent of mouse read contamination (10% or 30%), as 

compared with those in pure human Hi-C data for the corresponding cell lines (Figure 3A, B). 

The removal of mouse reads from in silico PDX Hi-C data did not markedly affect the cis/trans 

ratio and long/short ratio (Figure 3C, D). These results were consistent across cell lines 

(Additional File 5: Figure S2). These results suggest that the Direct alignment strategy of in 

silico PDX Hi-C data performs similarly to using data with explicitly removed mouse reads. 

Similar to the results obtained with in silico PDX Hi-C data, the removal of mouse reads from 

experimental PDX Hi-C data did not markedly affect quality metrics (Figure 3), although more 

variability was observed (~2-4%). Interestingly, although the alignment rate of data prepared 

with Library 2 strategy was lower than that of Library 1-prepared data (Figure 3A), the proportion 

of valid interaction pairs, cis/trans ratio, and, in particular, long/short ratio were higher (Figure 

3B-D). These results suggest that the Library 2-prepared data contain more information about 

intra-chromosomal long- and short-distance chromatin interactions. In summary, these results 

indicate that the removal of mouse reads does not substantially improve or change the 

alignment quality of PDX Hi-C data, but the library preparation strategy has a significant effect. 
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Figure 3. Quality metrics for selecting the optimal PDX Hi-C data processing pipeline. All 

metrics are stratified by the pipeline (Juicer, HiC-Pro, and HiCExplorer) and color-coded by the 

alignment strategy (Green: Direct, Blue: Xenome, Red: Combined). (A) Alignment rate 

representing the proportion of all aligned reads. (B) The proportion of valid interaction pairs as 

determined by each pipeline. (C) The ratio of Cis interacting pairs (i.e., occurring on the same 

chromosome) vs. trans interacting pairs (i.e., between chromosome interactions). (D) The ratio 

of long- vs. short-interacting Hi-C contacts. Dashed lines correspond to the baseline alignment 

quality metrics for Hi-C data without mouse reads. 

Juicer pipeline recovers more useful information from PDX Hi-C data 

Although removing mouse reads using either strategy did not substantially affect the alignment 

quality of PDX Hi-C data, we noted pipeline-specific differences (Figure 3, Additional File 6: 

Figure S3), referred by their names for brevity. Specifically, Juicer produced a similar alignment 

rate as HiC-Pro in in silico PDX Hi-C data. However, it recovered nearly 15% more alignable 

reads in experimental PDX Hi-C data. Compared with Juicer and HiC-Pro, HiCExplorer yielded 

~20% lower alignment rate for in silico PDX Hi-C data. Yet, HiCExplorer performed well and 

only slightly inferior to Juicer for the alignment of experimental PDX Hi-C data (Additional File 6: 

Figure S3A). Similarly, Juicer recovered up to a 10% higher proportion of valid interaction pairs 

in in silico PDX data than HiC-Pro and HiCExplorer (Additional File 6: Figure S3B). However, in 

experimental PDX Hi-C data, Juicer recovered nearly twice as many valid interaction pairs as 

the HiC-Pro, and outperformed HiCExplorer by ~2% margin (Additional File 6: Figure S3B). 

These results indicate that Juicer can recover more alignable reads and recover a higher 

proportion of valid interaction pairs. These improvements were particularly pronounced when 

processing experimental PDX Hi-C data. 

A typical Hi-C experiment is expected to detect the majority of interactions within chromosomes 

(cis interactions) as compared with between chromosome (trans) interactions. This should be 
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reflected by a high cis/trans ratio. Juicer produced Hi-C data with a higher cis/trans ratio than 

HiC-Pro and HiCExplorer pipelines. These results were consistent between in silico and 

experimental PDX Hi-C data (Figure 3, Additional File 6 Figure S3C). Importantly, Juicer yielded 

slightly lower long/short ratios compared to other two pipelines (Figure 3D), which reflects the 

fact that Juicer captured more cis interacting interaction (Figure 3C). These results were 

consistent in in silico and experimental PDX Hi-C data (Additional File 6: Figure S3D). Notably, 

all quality metrics were superior in Hi-C data obtained using the Library 2 preparation strategy. 

These results confirm the better performance of Juicer for extracting the maximum amount of 

useful information from PDX Hi-C data. 

Juicer pipeline better recovers short- and long-distance interactions 

The frequency of chromatin interactions follows a power-law decay with the increased distance 

between interacting regions [25]. Subsequently, the power-law exponent is an indicator of the 

rate of the decay, with smaller values corresponding to slower decay due to the presence of 

long-range interactions. Using the Direct alignment strategy, we investigated the effect of mouse 

reads and the pipeline choice on the distance-dependent decay of interaction frequencies. The 

presence of mouse reads did not affect the rate of the decay, and these results were consistent 

across PDXs (Figure 4A, Additional File 7: Figure S4, Additional File 8: Table S4). However, we 

noted that the pipeline choice affected the power-law decay, and this effect was most 

pronounced in experimental PDX Hi-C data (Figure 4A, Additional File 8: Table S4). Juicer-

processed data showed a consistently smaller exponent of the power-law decay of chromatin 

interaction frequencies (Figure 4BC, Additional File 8: Table S4). Experimental PDX Hi-C data 

obtained with the Library 2 preparation strategy showed, on average, smaller and more stable 

power-law exponent (1.83 ± 0.01) than that of Library 1-prepared data (1.99 ± 0.22, Additional 

File 8: Table S4). These results suggest that Juicer better preserves short- and long-distance 

interactions leading to a slower decrease in the average interaction frequency. In summary, our 
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results indicate that Juicer performs best for extracting maximum information from PDX Hi-C 

data, and the choice of library preparation strategy is critical for optimal data quality. 

Figure 4. Slower rate of the distance-dependent decay of chromatin interactions in 

Juicer-processed data. The rate of distance-dependent decay in the presence of mouse reads 

is illustrated with in silico PDX Hi-C data using GM12878 cell line with 10% mouse reads (A) 

and compared to two experimental PDX Hi-C data (B, C). Pipelines used to process the data 

are indicated in the color legend. Results for the Direct alignment strategy are shown. 

The presence of mouse reads has a negligible effect on the detection of Topologically 

Associating Domains 

The most typical use of Hi-C data is to detect common 3D structures, such as topologically 

associating domains (TADs). Using the Direct alignment strategy, we evaluated the number and 

size of TADs detected from data processed by the three pipelines. Compared to the baseline 

(pure human Hi-C data), the number of cell-type-specific TADs was nearly identical at the 10% 

or 30% level of in silico mouse read contamination (Figure 5A, Additional File 9: Table S5). 

These results were consistent irrespectively of the pipeline. These results indicate that the 

presence of mouse reads in PDX Hi-C data has minimal effect on the number of called TADs. 

Juicer-processed data contains fewer TADs 

While mouse read contamination did not markedly affect the number of TADs, the choice of 

processing pipeline had a variable effect on the number of TADs. Expectedly, the total number 

of TADs differed between cell lines used for in silico PDX Hi-C data construction and library 

preparation strategies for experimental PDX Hi-C data (Figure 5A). We observed a smaller 

number of TADs detected in Juicer-processed in silico data, paralleled by the larger TAD size 

(Figure 5B). However, in experimental PDX Hi-C data, HiC-Pro-processed data had the smallest 

number of TADs, followed by Juicer-processed data. These differences were less pronounced 
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in Library 2-prepared data, where more than twice as many TADs were detected as compared 

with the Library 1-prepared data (Figure 5A). In summary, TADs detected from Juicer-

processed data tend to be wider, an effect less pronounced compared to the library preparation 

strategy effect. 

The choice of library preparation strategy has the largest effect on TAD detection 

We observed nearly twice as many TADs detected in Library 2-prepared data than those 

detected in Library 1-prepared data (Figure 5A). Consequently, the size of TADs detected in 

Library 2-prepared data was smaller (Figure 5B). These results parallel our observation that 

Library 2-prepared data has better quality metrics (Figure 3); however, the recovery of more 

than twice as many TADs was unexpected. Notably, the pipeline-specific differences in TAD 

number and their size detected in Library 2-prepared data were negligible, similar to what we 

observed for the in silico PDX Hi-C data. This is in contrast to Library 1-prepared data, where 

the differences in pipelines were more pronounced (Figure 5). These results suggest that, for 

the optimal library preparation strategy, the differences in pipelines are negligible, emphasizing 

the importance of library preparation strategy. 

Figure 5. The library preparation strategy has the largest effect on TAD detection. The 

number (A) and the width of TADs (B) are similar at different levels of mouse reads and across 

processing pipelines in all but Library 1-prepared experimental PDX Hi-C data. Results for the 

Direct alignment strategy are shown. 

Figure 6. Removal of mouse reads carries a significant computational overhead. An 

example of runtime (A) and storage (B) resources required for processing PDX Hi-C data to 

obtain matrices. Only within-pipeline runtime comparisons are valid, as pipelines used different 

computational resources (see Methods). Results for processing Library 2-prepared PDX Hi-C 
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data are presented. Extra: accounting for time and storage space required to filter mouse reads. 

Main: time and storage determined for processing human reads. 

Technical and runtime considerations 

We compared the runtime and storage requirements for each alignment strategy and pipeline. 

Removal of mouse reads with either Xenome or Combined strategy resulted in smaller datasets 

and, consequently, faster processing time (Figure 6A). However, when considering the 

additional time needed to remove mouse reads (longest for the Combined strategy), processing 

of the original data was the fastest. Together with previous observations of the minimal effect of 

mouse read removal on Hi-C data quality, these results indicate that extra computational time 

used to remove mouse reads may not be beneficial for the quality of downstream results. 

The removal of mouse reads requires extra storage space, with the Combined strategy requiring 

the largest amount of additional storage (Figure 6B). Interestingly, the Juicer pipeline required 

the largest storage space; however, it can be minimized by compressing text files produced by 

it. Expectedly, processing of smaller PDX Hi-C data without mouse reads required less space. 

Together with additional time requirements, extra space for removing mouse reads creates a 

significant computational overhead with negligible benefits as compared with the Direct 

alignment strategy. 

The choice of tools for mouse read removal is an important technical consideration requiring 

significant human time. Xenome, a part of the Gossamer bioinformatics suite, has not been 

updated since January 5, 2017 (as of October 15, 2020). It requires dependencies that can only 

be installed using administrative privileges, which are rarely available for bioinformaticians 

working in a high-performance computing environment. Furthermore, Xenome requires the 

creation of its own genome index, which also contributes to the storage and processing time, 

and was not included in Figure 6. The Combined strategy can be implemented ad hoc, and the 
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combined genomes and indexes can be downloaded using Refgenie [33] (see Methods). 

However, the extra hard drive space and time required for mouse read removal create an 

unnecessary human and computational burden and can contribute to delays in a project. Take 

together, we recommend using the Direct alignment strategy and Juicer pipeline for the most 

optimal computational processing of experimental PDX Hi-C data. 

Discussion 

We have assessed the impact of mouse read contamination on the performance of three 

leading pipelines for Hi-C data processing. Using quality control metrics at the alignment stage, 

we showed that, unlike whole-exome and RNA-seq data from PDX models, Hi-C PDX data are 

unaffected by mouse read contamination. This is not unexpected as Hi-C data processing 

pipelines include a series of filters to select valid pairs [25]. It is highly unlikely for experimental 

PDX Hi-C data to contain human-mouse chimeric reads, and even if such a read pair occurs, 

the probability that it would be recognized as a valid Hi-C contact (i.e., mapped in the proper 

orientation, within a certain distance from the nearest restriction site, etc.) is negligible. Results 

from our study confirm this reasoning and recommend the Direct alignment of PDX Hi-C data to 

the graft (human) genome. 

Our results indicate that the Juicer pipeline consistently recovers more alignable reads, valid 

interaction pairs, and achieves better cis/trans and long/short interaction ratios. The better 

performance of Juicer over the HiC-Pro pipeline can be attributed to the use of the bwa mem 

algorithm that can efficiently handle split-read alignment. In contrast, HiC-Pro uses bowtie2 

aligner with the default “–end-to-end” mapping settings. However, despite HiCExplorer uses bwa 

mem aligner, its performance was marginally inferior to that of Juicer. Our results are in line with 

recommendations to use bwa mem-based pipelines when processing experimental PDX Hi-C 

data, with Juicer being the better pipeline for extracting most useful data. 
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The library preparation strategy appeared to play a major role in downstream data quality. While 

differences in quality metrics between in silico PDX Hi-C datasets can be attributed to the 

differences in sequencing depth (Additional File 1: Table S1), differences in our experimental 

PDX Hi-C data can be directly attributed to the library preparation strategies. Although our 

experimental PDX Hi-C data had nearly twice as many reads as the in silico PDX Hi-C data 

(Table 1), their quality metrics were inferior compared to in silico constructed Hi-C data (Figure 

3). This was most pronounced for Library 1-prepared data, which we speculate is due to the 

presence of nearly 40% read duplicates, as compared to 12-15% duplicates in other datasets 

(Additional File 1: Table S1). However, the higher proportion of dangling ends, self circles, 

dumped reads, singletons etc. may have contributed to the inferior quality of Library 1-prepared 

data (Additional File 4: Table S3). Similar to the ENCODE guidelines [34], our observations 

suggest the importance of controlling duplicates in Hi-C data and. 

Despite the lower number of sequencing reads and alignment rate, data obtained with Library 2 

preparation strategy recovered more cis interacting Hi-C contacts spanning longer distances 

(cis/trans ratio and long/short ratio metrics in Figure 3C and Figure 3D, respectively), and slower 

distance-dependent decay (Figure 4, Additional File 8: Table S4). Furthermore, the number and 

size of TADs detected from the Library 2-prepared data was similar to that of detected in in 

silico PDX Hi-C data (Figure 5). This can be attributed to multiple-enzyme genome digestion 

that cut the human genome in more than 16M sites. In contrast, the single-enzyme Library 1 

preparation strategy digests the genome in about 7.2M sites. Given Hi-C data quality 

significantly affects downstream results, we suggest careful inspection of the shallow 

sequencing data prior to the deep-sequencing experiment, giving particular weight to the 

metrics presented in Figure 3. The choice of restriction enzymes should be given the primary 

consideration in designing PDX Hi-C experiments. 
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According to the ENCODE guidelines [34], we expected to recover about 58% of sequenced 

reads as valid Hi-C interactions. While our in silico PDX Hi-C data [27] almost always achieved 

this threshold, our experimental PDXs did not meet these criteria (∼ 28 and ∼ 45 for Library 1 

and Library 2 preparation strategies, respectively, Additional File 4: Table S3). Of note, other 

studies report a much lower rate of valid Hi-C interactions. For instance, the average number of 

valid interactions across 93 Hi-C datasets was 17.72 ± 13.04 [35]. The overall lower percentage 

of valid interactions in our experimental Hi-C data can be partially explained by the fact that the 

genome of carboplatin-resistant UCD52 cells may be affected by genome rearrangements. The 

presence of duplications, deletions, and inversions is known to affect the genome’s 3D 

organization [36] and may have negatively affected the performance of our experimental PDX 

Hi-C data. Our results suggest the need to consider the effect of large-scale genome variation in 

the processing of PDX Hi-C data, in addition to the standard Hi-C data quality metrics.  

Methods 

Generation of experimental PDX Hi-C data 

UCD52 tumors were implanted in mice and once palpable treated with a single dose of 40mg/kg 

carboplatin, as previously described [4,5]. Once the tumors began growing again, they were 

treated with another dose of carboplatin. This was repeated until the tumor was no longer 

responsive to carboplatin. Xenograft tissue samples were processed by Phase Genomics 

(Seattle, WA) and Arima Genomics (San Diego, CA). Data generated using Phase 

Genomics/Arima Genomics library preparation strategy are referred to as “Library 1”/“Library 2”, 

respectively. The following protocols detail each strategy, as provided by the respective service 

providers. 
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Phase Genomics (Library 1) preparation strategy 

Approximately 200 mg of xenograft tissue was finely chopped and then crosslinked for 20 min at 

room temperature (RT) with end-over-end mixing in 1 ml of Proximo Crosslinking solution. The 

crosslinking reaction was terminated with a quenching solution for 20 min at RT with end-over-

end mixing. Quenched tissue was rinsed once with 1X Chromatin Rinse Buffer (CRB), 

resuspended in Proximo Animal Lysis Buffer 1, and then transferred to Dounce Homogenizer 

(Kontes) and homogenized with 12 strokes using the ‘A’ homogenizer. Disrupted tissue in lysis 

buffer was incubated 20 min at RT. Large debris was removed following a 1 min 500xg spin. 

Lysate was recovered and transferred to a clean tube and pelleted by spinning at 17,000xg for 5 

min. The supernatant was removed and pellet washed once with 1X CRB. After removing 1X 

CRB wash, the pellet was resuspended in 100 𝜇𝑙 Proximo Lysis Buffer 2 and incubated at 65°C 

for 10 min Chromatin was irreversibly bound to SPRI beads by adding 100 𝜇𝑙 SPRI beads to 

lysate, incubating for 10 min at RT. Beads were then washed once with 1X CRB. Beads were 

resuspended in 150 𝜇𝑙 of Proximo fragmentation buffer and 5 𝜇𝑙 of Proximo fragmentation 

enzyme (PN LS0027; 5,000 U/ml Sau3AI cutting at ‘GATC’) was added and incubated for 1 

hour at 37°C. The sample was cooled to 12°C, and 2.5 µl of Phase Genomics Finishing Enzyme 

was added (PN LS0030). Sample was incubated 30 minutes at 12°C, adding 6 µl of Stop 

Solution (PN LS0004) at the completion of the incubation. The beads were then washed with 1X 

CRB and resuspended in 100 µl of Proximo Ligation Buffer supplemented with 5 µl of Proximity 

ligation enzyme. The proximity ligation reaction was incubated at RT for 4 hours with occasional 

gentle mixing. After the ligation step, 5 µl of Reverse Crosslinks enzyme (PN BR0012) was 

added and the reaction incubated at 65°C for 1 hour. After reversing crosslinks, the free DNA 

was recovered by adding 100 µl of SPRI buffer to the reaction. Beads were washed twice with 

80% ethanol, air dried, and proximity ligation products were eluted (Elution Buffer, PN BR0014). 

DNA fragments containing proximity ligation junctions were enriched with streptavidin beads 
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(PN LS0020). After washing streptavidin beads twice with PG Wash Buffer 2 (PN BR0004), 

once with PG Wash Buffer 1 (PN BR0016), and once with molecular biology grade water, library 

was constructed using Proximo library reagents (PNs LS0034, LS0035, and BR0017) amplified 

with high-fidelity polymerase (PN BR0018), and size selected using SPRI enriching for 

fragments between 300 and 700 bp. Pooled libraries were sequenced on an Illumina NovaSeq 

6000 instrument using an S4 flow cell. Libraries were de-multiplexed using unique dual indexes 

following standard Illumina methods. 

Arima Genomics (Library 2) preparation strategy 

Hi-C experiments were performed by Arima Genomics (San Diego, CA) according to the Arima-

HiC protocols described in the Arima-HiC kit (P/N : A510008). After the Arima-HiC protocol, 

Illumina-compatible sequencing libraries were prepared by first shearing purified Arima-HiC 

proximally-ligated DNA and then size-selecting DNA fragments from ~200-600bp using SPRI 

beads. The size-selected fragments were then enriched for biotin and converted into Illumina-

compatible sequencing libraries using the KAPA Hyper Prep kit (P/N: KK8504). After adapter 

ligation, DNA was PCR amplified and purified using SPRI beads. The purified DNA underwent 

standard QC (qPCR and Bioanalyzer) and was sequenced on the HiSeq X following the 

manufacturer’s protocols. 

Construction of in silico PDX Hi-C data 

Publicly available Hi-C data from Rao et al. 2014 study [27] (GSE63525) were used to construct 

in silico PDX Hi-C data. Three human and one mouse cell line Hi-C data were selected (Table 

S1). To construct in silico PDX data containing a mixture of human and mouse reads, FASTA 

files from human and mouse cell lines were concatenated to form Hi-C datasets containing 

approximately 10% and 30% mouse reads (Table 1). If read length differed between human and 
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mouse datasets, reads were trimmed from 3’ end to 96bp (smallest read length) using cutadapt 

(v2.7, [37]) before concatenation. 

Removal of mouse reads from PDX Hi-C data 

Three mouse read removal strategies were evaluated: Direct, Xenome, and Combined (Figure 

1). In the Direct alignment strategy, all reads were mapped to the human reference genome 

version GRCh38/hg38 using only autosomal and sex chromosomes. In the Xenome approach, 

PDX Hi-C reads were processed with the Xenome tool [11] from the gossamer GitHub repository 

[38], and human only FASTA reads were kept. In the Combined strategy, the combined human-

mouse genome was created by concatenating autosomal and sex chromosomes from hg38 and 

mm10 genomes. Chromosome names were renamed with “hg38_” or “mm10_” prefixes. Both 

species-specific and combined genomes, as well as the corresponding bowtie2 and bwa 

indexes, are available for download using refgenie v.0.9.3 [33]. Scripts to download and 

organize refgenie’s assets are provided (see “Data and code availability” section).  

Raw reads were first mapped with bwa mem -SP5 (v.0.7.17 [39]) to the combined genome, and 

the resulting BAM files were then subsetted with samtools (v.1.3.1 [40]) to keep reads mapping 

to the hg38 chromosomes. bedtools bamtofastq (v.v2.17.0 [41]) was then applied to convert 

the hg38-BAM files back to FASTQ format. 

Processing human Hi-C data and PDX Hi-C data 

All Hi-C data were processed with three pipelines with default settings: (1) Juicer (v.1.6 [30]), 

(2) HiC-Pro (v.3.0.0 [31]); and (3) HiCExplorer (v. 3.5.1 [32]). Sites for Phase Genomics 

cutting enzyme (GATC) were detected using (1) generate_site_positions.py, (2) 

digest_genome.py, and (3) findRestSite scripts that come with each tool, respectively. Sites 

for Arima Genomics cutting enzyme (^GATC, G^ANTC) were obtained from [42] (used for HiC-

Pro and HiCExplorer), and generated with the generate_site_positions.py for Juicer 
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pipeline. The optimal data resolution was identified using Juicer’s script 

calculate_map_resolution.sh and set to 10 Kb to analyze 3D genome structures for all Hi-C 

data. 

Switching between Hi-C file formats and matrix normalization 

Each pipeline adapts its own format for storing the data. Juicer saves the contact matrices into a 

binary .hic format. HiC-Pro stores results as a text file in the sparse data matrix .matrix and 

genomic coordinate .bed formats. HiCExplorer uses an HDF5-based binary .h5 file format. To 

compare data produced by each pipeline, the data at 10kb resolution were converted to the 

HiCExplorer-compatible .h5 format. HiC-Pro raw text-based contact matrices were directly 

converted to h5 format with the HiCExplorer’s hicConvertFormat tool with the default settings. 

Juicer’s toolbox was used to extract raw text-based contact matrices with the following 

command: juicer_tools_1.13.02.jar dump observed NONE file.hic chrom chrom BP 

10000 outputName.txt. The text files were then converted to HiC-Pro format using a 

customized R script and converted to h5 format with the HiCExplorer’s hicConvertFormat tool. 

All h5 files were then normalized using the HiCExplorer’s hicCorrectMatrix tool on a per 

chromosome basis using the Knight and Ruiz (KR) method. 

Distance-dependent decay of chromatin interaction frequencies 

HiCExplorer’s hicPlotDistVsCounts tool was applied on the KR corrected matrices to 

calculate the enrichment of Hi-C contacts at various genomic ranges, with a ‘maxdepth’ set to 

20,000,000. The poweRlaw R package v.0.70.4 was used to estimate the exponent of the 

power-law decay. 
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Analysis of Topologically Associating Domains (TADs) 

HiCExplorer’s hicFindTADs tool was applied on the KR-normalized matrices to calculate a 

genome-wide TAD separation score with ‘minDepth’, ‘maxDepth’, and ‘step’ set to 30 Kb, 100 

Kb, and 10 Kb, respectively. ‘thresholdComparisons’, and ‘delta’ were set to 0.05 and 0.01, ‘fdr’ 

method was chosen for ‘correctForMultipleTesting’. The size of the TADs was calculated as the 

difference between start and end coordinates, measured in Mbp. 

Technical considerations 

All jobs were run on a high-performance computer cluster under the CentOS v.6.7 operating 

system and the PBS job submission system PBSPro_12.2.1.140292. The Juicer pipeline was 

run on 1 CPU; the other pipelines were run on 16 CPUs. Due to administrative restrictions, only 

time and storage space were captured. The processing scripts are available at 

https://github.com/dozmorovlab/PDX-HiC_processingScripts. 

Additional Files 

Additional File 1: Table S1. Datasets used in the current study. Selected quality metrics 

were obtained using FastQC v.0.11.8. 

Additional File 2: Figure S1. Correlation between Hi-C matrices obtained from each 

replicate of experimental PDX samples. Experimental PDX Hi-C data were processed 

through Xenome to separate human and mouse reads. Human Hi-C matrices showed very high 

correlation, most pronounced for Library 2 preparation strategy (A). As expected, mouse Hi-C 

matrices were similar irrespectively of library preparation strategy. Pearson correlation 

coefficients were calculated for 1Mb matrices (non-zero elements only) and averaged across all 

chromosomes. 

https://github.com/dozmorovlab/PDX-HiC_processingScripts
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Additional File 3: Table S2. Xenome alignment statistics. 

Additional File 4: Table S3. Summary statistics used to compare the efficacy of the three 

Hi-C pipelines. Tool-specific alignment statistics are shown in the corresponding worksheets. 

Statistics shown in Figure 3 are highlighted in red. 

Additional File 5: Figure S2. Quality metrics assessed to select the optimal PDX Hi-C data 

processing pipeline strategy. Observations using HMEC and KBM7 cell lines confirm the 

results shown in Figure 3. All metrics are stratified by the processing pipeline (Juicer, HiC-Pro, 

and HiCExplorer) and color-coded by the alignment strategy (Green: Direct alignment. Blue: 

Xenome selected alignment of human reads. Red: Combined human-mouse genome alignment 

strategy). (A) Alignment rate representing the proportion of all aligned reads. (B) The proportion 

of valid interaction pairs as determined by each pipeline. (C) The ratio of Cis interacting pairs 

(i.e., occurring on the same chromosome) vs. trans interacting pairs (i.e., between chromosome 

interactions). (D) The ratio of long- vs. short-interacting Hi-C contacts. Dashed lines correspond 

to the baseline alignment quality metrics for Hi-C data without mouse reads. 

Additional File 6: Figure S3. Juicer pipeline extracts more useful information from in 

silico and experimental PDX Hi-C data, irrespectively of the alignment strategy. The same 

data as shown in Figure 3 and Supplementary Figure S2 grouped by the mouse read removal 

strategy emphasizes the better performance of the Juicer pipeline to extract high-quality Hi-C 

data irrespectively of mouse removal strategy. Green: Juicer. Blue: HiC-Pro. Red: HiCExplorer. 

Dashed line: threshold marking the ratios equal to one. 

Additional File 7: Figure S4. The presence of mouse reads does not affect distance-

dependent decay of chromatin interaction frequencies in in silico PDX Hi-C data. The data 

for the three levels of mouse read contamination are shown on each panel. Due to the high 
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similarity of the distance-dependent decay, plots show a high degree of overlap. Green: no 

mouse reads. Blue: 10% mouse reads. Red: 30% mouse reads. 

Additional File 8: Table S4. Exponent of the distance-dependent power-law decay of 

chromatin interaction frequencies. Data from HiCExplorer’s hicPlotDistVsCounts function 

was used to estimate the exponent using poweRlaw R package. 

Additional File 9: Table S5. The number of TADs detected in each PDX Hi-C sample by 

each pipeline. Results for the Direct alignment strategy are shown. 

Availability of source code and requirements 

Project name: PDX Hi-C processing 

Project home page: https://github.com/dozmorovlab/PDX-HiC_processingScripts 

Operating systems(s): Linux 

Programming language: Shell, R (> = 4.0) 

Other requirements: None 

License: MIT 

Any restrictions to use by non-academics: None 

Availability of supporting data 

Accession numbers to download the publicly available Hi-C data used in this study are listed in 

Table S1. Experimental PDX Hi-C data will be available at SRA upon publication (submitted). All 

codes necessary to reproduce the analyses are available at 

https://github.com/dozmorovlab/PDX-HiC_processingScripts. 

https://github.com/dozmorovlab/PDX-HiC_processingScripts
https://github.com/dozmorovlab/PDX-HiC_processingScripts
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Dear Editor, 

We are submitting our manuscript “Chromatin conformation capture (Hi-C) sequencing of patient-derived 
xenografts: analysis guidelines” to be considered for publication in GigaScience. This manuscript will be 
the reference paper for the genomics community that uses chromatin conformation capture sequencing 
(Hi-C) of patient-derived xenograft (PDX) models. 

Sequencing of PDX samples produces a mixture of human and mouse genetic material. Extracting human 
signal is the natural goal; consequently, methods for removing mouse reads have been developed for PDX 
RNA-seq and whole genome/exome sequencing technologies. To our knowledge, this manuscript is the 
first that investigates the effect of mouse reads in PDX Hi-C data. Moreover, our experimental datasets, to 
be available on SRA, will be the first publicly available PDX Hi-C data. 

Our manuscript is submitted under the “Research” category. The main highlights of our work are: 

• 11 PDX Hi-C datasets that include: 1) two deeply sequenced experimental PDX Hi-C datasets, 
obtained with two different library preparation strategies (Phase Genomics and Arima Genomics), 
and 2) nine in silico PDX Hi-C datasets 

• Three alignment strategies to account for mouse reads: 1) direct alignment to the human genome, 
2) Xenome tool to separate mouse reads, 3) alignment to the combined human-mouse genome. 

• Three most popular Hi-C processing pipelines: 1) Juicer, 2) HiC-Pro, 3) HiCExplorer 

• Comprehensive assessment of all pairwise combinations of alignment strategies and processing 
pipelines on Hi-C data quality and downstream results 

• Code to reproduce all steps of our analyses 

• The main conclusion is that the direct alignment strategy and Juicer processing pipeline are the 
most optimal for PDX Hi-C data processing. Our work additionally highlights the importance of 
library preparation strategy. 

One Hi-C dataset takes ~60Gb of storage, 30-80 hours of processing time, and on the order of terabytes 
of intermediate storage. Our computationally intensive work aims to save significant time and resources, 
and provide clear recommendations for others working with PDX Hi-C data. Our testing of different pipelines 
and library preparation strategies generalizes to any Hi-C data. We expect our manuscript will be of interest 
to a broad audience of researchers working with chromatin conformation capture data. 

Experimental PDX Hi-C data will be available at SRA upon publication. Accession numbers to download 
the publicly available Hi-C data used in this study are listed in Additional File 1: Table S1. All codes 
necessary to reproduce the analyses are available at https://github.com/dozmorovlab/PDX-
HiC_processingScripts. We also want to assure that this manuscript is not being considered for publication 
elsewhere. 

On behalf of all authors, 
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