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S1. Equilibrium Theory

Free energy. We consider shells composed of nshell = 4πR2/a shell subunits, with R the shell

radius and a the subunit area, and nscaf scaffolds. We incorporate the presence of cargo implicitly

through effective attractions between scaffold molecules embodied in the parameter ∆µ. The net

free energy of an assembling shell with radius R is given by
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The first term on the right-hand side of Eq. (S1) represents the free energy due to subunit-subunit

contacts that drive shell assembly, with ghh the energy per subunit. The second term describes the

elastic energy associated with deviations of the shell from its intrinsic spontaneous curvature, with

κ the bending modulus. The next two terms give the entropic penalty for stretching or compressing

scaffold molecules from their preferred length, Rscaf. In this model we have assumed that the

scaffold bridges from the cargo in the interior to the shell surface and thus we set the scaffold

length equal to the shell radius. The following two terms account for attractive scaffold-cargo and

scaffold-shell interactions, and scaffold-scaffold excluded volume interactions, with the excluded

volume per scaffold segment given by ν and the scaffold concentration in the shell given by Cscaf =

nscafNs
4/3πR3 . The final two terms represent the mixing entropy of nscaf scaffolds binding to a shell with

nshell subunits. For simplicity we have assumed that one scaffold can bind to each shell subunit, so

the total number of binding sites is equal to nshell.

By defining the surface density of the scaffolds σs ≡
nscaf
nshell

, the total free energy per subunit

fassem = Fassem
4πR2/a of an assembled shell with radius R can be written as
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Optimal shell size. For all the theoretical results presented in this work, we consider the case

of limiting shell subunits, with the scaffold present in excess at fixed chemical potential µscaf, so

that the term ∆µ in Eq. (S2) is a constant. The equilibrium distribution ρ(n, σs) of shells with n
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subunits can then be calculated by variationally minimizing the total system free energy density

ftot ({ρ(n, σs)}) =
∑
n,σs

ρ(n, σs) fassem(R(n), σs)+

kBT
∑
n,σs

ρ(n, σs)
(
log ρ(n, σs) − 1

)
(S3)

under the constraint of mass conservation: Φ =
∑∞

n,σs
nρ(n, σs) with Φ the total shell subunit

concentration. This obtains a law of mass action

ρ(n, σs) = exp
(
−

[
fassem (R(n), σs) − µh

]
n/kBT

)
(S4)

with fassem given by Eq. (S2) and µh = kBT log(ρhv0) the chemical potentials of free subunits at

their equilibrium concentration ρh with v0 a standard state volume. The optimal shell size n∗ is

then obtained by variationally minimizing Eq. (S4) with respect to n and σs. The first of these

operations results in

n∗
∂ fassem

∂n

∣∣∣∣∣
n∗

+ fassem(R(n∗), σs) − µh = 0. (S5)

It can be shown that above the pseudo-critical subunit concentration (i.e. the subunit concentration

above which there is significant assembly), the term fassem(n∗, σs) − µh ≈ 0 in the limit n∗ � 1.1

To see this, note that at equilibrium the chemical potential of free subunits µh must be equal to the

chemical potential of a subunit in a shell, given by

µ(n) =
1
n

∂ ftot

∂ρ(n, σs)v0
= fassem(R(n), σs) + kBT

log (ρ(n, σs)v0)
n

(S6)

with the last term in Eq. (S6) accounting for the per-subunit free energy due to shell mixing en-

tropy. In the limit of large shell size, the last term becomes negligible for shells at the highest

concentrations (i.e. with n = n∗), resulting in fassem(R(n∗), σs) ≈ µh.

Thus, the peak in the shell size distribution corresponds to the minimum free energy per sub-
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unit; i.e., ∂ fassem(R(n),σs)
∂n

∣∣∣
n∗

= 0, or alternatively:

∂ fassem

∂R
= 0

∂ fassem

∂σs
= 0. (S7)

In Ref. 1 this calculation is performed rigorously, showing that for finite concentration the

optimum shifts to smaller shell sizes, but that this shift is negligible for large n∗.

Finally, note that an analogous analysis could be performed for limiting scaffold molecules,

in which case the peak assembly size would correspond to the minimum free energy per scaffold

molecule.

Binding free energy of shell subunits. The per subunit shell binding free energy ghh can be

written as

ghh = nbondsεHεhh − T (sH + sconfig) (S8)

with nbonds = 3 the number of bonds per subunit in the shell, shex the translational and rotational

entropy penalty for subunit binding and sconfig = − log(6) accounting for the configurational entropy

associated with the subunit’s six-fold symmetry. εH = −3.15 and sH = −17.7 are taken from Ref. 2

, where they were measured from the dimerization equilibrium constant in simulations of subunits

of a similar model only capable of forming dimers.

Approximations in the elastic energy. For simplicity we have modeled the shell bending en-

ergy by the Helfrich energy for a fluid membrane. For an elastic shell tiled by hexamer subunits,

there are additional contributions arising from energy associated with the 12 five-fold disclinations

subunits required by topology, and elastic interactions between these disclinations. However, as

shown in Ref. 3, the free energy from the defects themselves simply renormalizes the intrinsic

spontaneous curvature radius of the shell, with a favorable or unfavorable defect free energy re-

spectively decreasing or increasing the effective spontaneous curvature radius. Since this does not

qualitatively change the results, we have neglected this term for simplicity here. We note that while
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the defect energy in an elastic shell is typically positive (unfavorable), in the case of microcom-

partments it may be positive or negative since the disclinations are filled by pentamer subunits,

which have a different protein sequence (and thus potentially different binding affinity and differ-

ent preferred binding angles) from the hexamer and pseudo-hexamer proteins that tile the rest of

the shell.

The nature of the inter-defect interactions depends on the dimensionless Foppl von Karman

(FvK) number, γ ≡ YR2/κ for a shell of radius R with Young’s modulus Y and bending modulus

κ. Below a critical value of the FvK number (γc = 154), the shells remain roughly spherical4,5 and

the energy of the inter-disclination elastic interactions is proportional to the shell area. Thus, its

contribution can be subsumed into the subunit-subunit interaction ghh (whose contribution also is

linear in shell area).3 Above the critical value γc the shells facet and the inter-disclination energy is

screened.4 Thus, the form of the Helfrich energy is sufficient to describe the equilibrium bending

energy of the spherical shells that we consider. However, we note that the inter-defect interac-

tions can have a significant effect on the energy landscape and preferred geometry of assembly

intermediates,6,7 and thus would be important to consider for assembly pathways and kinetics.

Scaling analysis

Here we present a more detailed derivation of the asymptotic results presented in the main text.

Optimal shell size

A. Low intrinsic shell curvature, R0 & RE. In this limit the contribution of the intrinsic shell

curvature can be neglected, so the shell and scaffold free energy terms in Eq. 1 of the main text

simplify to

fshell

kBT
=
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)2

(S9)
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Minimizing the free energy at fixed scaffold incorporation σ then results in an optimal shell

size given by Eq. 1 of the main text.

B. High intrinsic shell curvature, R0 < RE. In this regime the preferred curvature of the

shell proteins influences the assembled shell size, so we must consider the full free energy Eq. S2

except we retain the approximation ν = 0. As above, we consider separately the limits in which

the preferred scaffold size is larger or smaller than the characteristic shell size.

(1) Rscaf � R0: In this case we simplify the scaffold confinement free energy by neglecting the

stretching term:
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and minimizing the free energy results in

Req ≈ R0

[
1 + σeq (Rscaf/RE)2

]
. (S13)

(2) Rscaf � R0: In this limit we retain the scaffold stretching free energy term:
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Recognizing that the shell size will remain close to the shell protein spontaneous curvature radius,

we set

Req ≈ R0(1 − ε). (S16)

Inserting this into Eq. (S16), minimizing with respect to ε and σ, and expanding to linear order in
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ε results in
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and an optimal shell size
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.

Maximum and minimum optimal shell sizes

Here we present details on estimating the maximum and minimum shell sizes that lead to signifi-

cant scaffold packaging.

A. Small intrinsic shell curvature, R0 & RE. In this limit the scaffold confinement free energy

dominates over shell bending energy, and thus we assume the confinement free energy is approxi-

mately given by its minimum value fscaf ≈ ∆µ + 2kBT . Scaffold packaging is then determined by a

competition between the free energy driving scaffold packaging ∆µ and the shell bending energy:

fshell

kBT
= R2

E
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1
R
−

1
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)2

. (S19)

Including the scaffold confinement and mixing free energy terms results in an effective free energy

per shell subunit given by:

∆µeff ≡ −(∆µ + 2kBT )σeq − fent (S20)

Setting ∆µeff = fshell results in two solutions corresponding to Eqs. (8) and (9) of the main text.
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B. High intrinsic shell curvature, R0 < RE. As shown above, the shell size remains close to R0

in this limit, so scaffold packaging depends on a competition between its confinement free energy

fscaf and its attractive scaffold-cargo and scaffold-shell interactions represented by ∆µ. The nature

of this competition depends on whether the preferred scaffold size is larger or smaller than the shell

size as follows.

(1) Rscaf > R0. In this case we focus on the scaffold confinement free energy term, and balance

this against ∆µ:
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)2
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E
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where the +1 on the left hand side of Eq. (S21) accounts for the scaffold stretching term. Re-

arranging to solve for Rscaf results in the maximum shell size Rmax
eq given in Eq. 12 of the main

text.

(1) Rscaf < R0. Here we balance the scaffold stretching term against ∆µ:
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Solving for Rscaf and taking the limit R0 � RE results in Rmin
eq given in Eq. 12 of the main text.

S2. Computational Model Details

Our model represents subunits as rigid bodies comprised of pseudoatoms arranged to capture the

directional attractions and shape of microcompartment hexameric oligomers. In comparison to

earlier studies with patchy spheres (e.g.8–11), multi-pseudoatom subunits better describe the sub-

unit excluded volume shape,12–14 which we find to be important for representing assembly around
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(A)∆µ= −10 (B) ∆µ= −2.5

Figure S1: Equilibrium theory prediction for the amount of packaged scaffold σs as a function of
R0 and Rscaf. Predictions are obtained by numerically minimizing Eq. 1 with RE = 30, and ν = 0.
Results are shown for (A) ∆µ = −10 and (b) ∆µ = −2.5.

many-molecule cargoes. See Ref. 15 for a comparison of these approaches.

Scaffold molecules. Scaffolds are modeled as flexible bead-spring polymers with three do-

mains; cargo-binding beads are at one end, shell-binding beads are at the other end, and beads in

the middle domain have only repulsive interactions with cargo molecules and shell subunits. There

are weak attractive interactions between pairs of scaffold beads.

(A) (B)

Figure S2: (A) End-to-end distance (Rscaf) of scaffolds encapsulated in shells as a function of
scaffold length. For comparison, the unperturbed scaffold sizes (from panel (B)) are shown as gray
‘x’ symbols and a dashed line. (B) End-to-end distance of isolated scaffold molecules (i.e., free in
solution rather than packaged in a shell) as a function of number of segments Ns, with the scaffold
contour length given by Ls = lkNs with lk = 0.5r∗. The plot shows the end-to-end length measured
with weak attractions between scaffold segments, εss = 0.2 (as used in the assembly simulations),
and for comparison, the end-to-end scaling with purely repulsive inter-segment interactions.

The attractive scaffold-cargo interactions lead to collapse of the scaffold-cargo domain, result-

ing in a shorter effective length of encapsulated scaffolds relative to their free end-to-end size.
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Therefore, to compare simulation results against the theoretical model (in Fig. (3)), we estimated

the effective length of the scaffold-cargo domain that would result in a comparable size, resulting

in an effective length of Leff
sc = 2.5 for the actual value Lsc = 7 used in the simulations.

Interaction potentials

In our model, all potentials can be decomposed into pairwise interactions. Potentials involving

shell subunits further decompose into pairwise interactions between their constituent building

blocks – the excluders, attractors, ‘Top’, and ‘Bottom’ pseudoatoms. It is convenient to write

the total energy of the system as the sum of 6 terms:, involving subunit-subunit (Uhh), scaffold-

shell (Ush), scaffold-cargo (Usc) , scaffold-scaffold (Uss), cargo-cargo (Ucc) and shell-cargo (Uhc)

interactions, each summed over all pairs of the appropriate type:

U =
∑

shell i

∑
shell j<i

Uhh +
∑

scaffold i

∑
shell j

Ush +

∑
scaffold i

∑
cargo j

Usc +
∑

scaffold i

∑
scaffold j<i

Uss +

∑
cargo i

∑
cargo j<i

Ucc +
∑

shell i

∑
cargo j

Uhc (S24)

where
∑

shell i
∑

shell j<i is the sum over all distinct pairs of shell subunits in the system,
∑

scaffold i
∑

cargo j

is the sum over all subunit-scaffold particle pairs, etc.

Subunit-subunit interaction potentials. The subunit-subunit potential Uss is the sum of the

attractive interactions between complementary attractors, and geometry guiding repulsive inter-

actions between ‘Top’ - ‘Top’, ‘Bottom’ - ‘Bottom’, and ‘Top’ - ‘Bottom’ pairs. There are no

interactions between members of the same rigid body. For notational clarity, we index rigid bodies

and non-rigid pseudoatoms in Roman, while the pseudoatoms comprising a particular rigid body

are indexed in Greek. For subunit i we denote its attractor positions as {aiα} with the set comprising

all attractors α, its ‘Top’ position ti, ‘Bottom’ position bi and the ‘M’ pseudoatom at the center of
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the subunit in the plane of the attractors, as mi.

The subunit-subunit interaction potential between two subunits i and j is then defined as:

Uhh({aiα}, ti,bi,mi, {a jβ}, t j,b j,m j) = (S25)

εangleŁ
(∣∣∣ti − t j

∣∣∣ , σt,i j

)
+ εangleŁ

(∣∣∣bi − b j

∣∣∣ , σb

)
+

εangleŁ
(∣∣∣bi − t j

∣∣∣ , σtb

)
+ Ł

(∣∣∣mi −m j

∣∣∣ , σm

)
+

Nai,Na j∑
α,β

εhhM
(∣∣∣aiα − a jβ

∣∣∣ , r0, %, ratt
cut

)
.

(S26)

The function Ł is defined as the repulsive component of the Lennard-Jones potential shifted to zero

at the interaction diameter:

Ł(x, σ) ≡ θ(σ − x)
[(
σ

x

)12
− 1

]
(S27)

with θ(x) the Heaviside function. The functionM is a Morse potential:

M(x, r0, %, rcut) = θ(rcut − x)×[(
e%

(
1− x

r0

)
− 2

)
e%

(
1− x

r0

)
− Vshift(rcut)

]
(S28)

with Vshift(rcut) the value of the (unshifted) potential at rcut.

The parameter εhh sets the strength of the subunit-subunit attraction at each attractor site, Nai

is the number of attractor pseudoatoms in subunit i, and εangle scales the repulsive interactions that

enforce the geometry.

Subunit-subunit interaction parameter values. Attractors: The strength of attractive in-

teractions is parameterized by the well-depth εhh for a pair of attractors on subunits as follows.

Subunit-subunit edge attractor pairs have a well-depth of εhh. Because vertex attractors have mul-

tiple partners in an assembled structure, whereas edge attractors have only one, the well-depth for
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the vertex pairs is set to 0.5εhh. The parameter r0 is the minimum energy attractor distance, set to

0.2, % = 5 determines the width of the attractive interaction, and ratt
cut = 2.0 is the cutoff distance for

the attractor potential.

Repulsive interactions and simulated shell bending modulus: The ‘Top’ and ‘Bottom’ heights,

or distance out of the attractor plane, are set to h = 1/2. The diameter of the ‘Top’ - ‘Bottom’

interaction, which prevents subunits from binding in inverted configurations,16 is σtb = 1.8. A

central excluder ‘M’ with effective diameter σm = 2.026 in the center of subunits prevents subunit

overlaps. The effective diameters of the ‘Bottom’ - ‘Bottom’ interaction σb and the ‘Top’ - ‘Top’

interaction σt determine the shell spontaneous curvature radius as follows: R0 = 22, σb = 1.6,

σt = 2.2; R0 = 8.0, σb = 1.5, σt = 2.3; and R0 = 4.5, σb = 1.4, σt = 2.4.

The bending modulus of α-carboxysomes has not been experimentally estimated, but measure-

ments on β-carboxysome shells obtained κ ≈ 25kBT ,17 which is smaller than for a typical viral

capsid. As noted above, our simulated shell subunits, with diameter 13 nm, are larger than the

hexamer size (7 nm diameter) in a carboxysome. To maintain the characteristic elastic length scale

RE =
√

2aκ of the simulated shells approximately equal to that of β-carboxysome shells RE ≈ 47

nm, despite the large size of model subunits, we set εangle = 0.5kBT , which corresponds to a bend-

ing modulus of about 5-10 kBT ,3 and thus RE ≈ 38 − 54 nm.

Scaffold-subunit interactions. The scaffold-subunit interaction is modeled by a short-range

repulsion between pairs of scaffold beads and scaffold-excluder psudoatoms on subunits represent-

ing the excluded volume, plus an attractive interaction between pairs of shell-interacting beads in

scaffolds and subunit ‘Bottom’ pseudoatoms. For subunit i with excluder positions {xiα} and ‘Bot-

tom’ psuedoatom position bi, and scaffold j with bead positions s jβ and shell-interacting beads jγ
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with positions s jγ, the potential is:

Ush({xiα},bi, {s jβ}, {s jγ}) =

Ns∑
β

Nx∑
α

Ł
(
|xiα − s jβ|, σexs

)
+

Nsh∑
γ

εshM
(∣∣∣bi − s jγ

∣∣∣ , r0, %
sh, rsh

cut

)
(S29)

where εsh parameterizes the scaffold-subunit interaction strength, Ns and Nsh are the total number

of beads and the number of shell-interacting beads in each scaffold, Nx is the numbers of excluders

on a shell subunit, σexs = 0.375 and σt = 0.375 are the effective diameters of the excluder - scaffold

repulsions, rsh
0 = 0.375 is the minimum energy attractor distance, the width parameter is %sh = 2.5,

and the cutoff is set to rsh
cut = 3.0.

Scaffold-cargo interactions. The interaction between cargo particles and scaffolds is given by

Usc(ci, {s jα}, {s jβ}) =

Ns∑
α

Ł
(∣∣∣ci − s jα

∣∣∣ , σsc

)
+ (S30)

Nsc∑
β

εscL
(∣∣∣ci − s jβ

∣∣∣ , σsc, rsc
cut

)
(S31)

with L the full Lennard-Jones interaction:

L(x, σ, rcut) =θ(x − rcut)×{
4
[( x
σ

)1
2 −

( x
σ

)6
]
− Vshift(rcut)

}
(S32)

with εsc an adjustable parameter that sets the strength of the scaffold-cargo interaction, Ns as the

total number of scaffold beads, Nsc as the number of beads in the scaffold-cargo binding domain,

σsc = 0.75 as the effective cargo-scaffold excluded volume size, and rsc
cut = 3σsc the interaction
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cutoff length.

Scaffold-scaffold interactions. The scaffold-scaffold non-bonded interaction is modeled by

a Lennard-Jones potential; in addition, segments occupying adjacent positions along the polymer

chain interact through harmonic bonds:

Uss(Ri,R j) =

Kbond

(
Ri j, σs, κ

)
: {i, j} bonded

εssL
(
Ri j, σss, rss

cut

)
: {i, j} nonbonded (S33)

where Ri j ≡ |Ri − R j| is the center-to-center distance between the scaffold beads, εss is the well-

depth of the Lennard-Jones (Eq. S32) potential, σss = 0.5 is the effective scaffold-scaffold excluded

volume size, and rss
cut = 3σss is the interaction cutoff length.

Bonds are represented by a harmonic potential:

Kbond(Ri j, σ, κ) ≡
kbond

2
(Ri j − σ)2. (S34)

Cargo-cargo interactions. The cargo-cargo interaction is modeled by a short-range repulsive

interaction representing the excluded volume of cargo particles, given by

Ucc(ci, c j) = Ł
(
|ci − c j|, σc

)
. (S35)

Shell-cargo interactions. The shell-cargo interaction is modeled by a short-range repulsion

between pairs of cargo particles and cargo-excluder psudoatoms on subunits representing excluded

volume

Uhc({xiα}, c j) =

Nx∑
α

Ł
(
|xiα − c j|, σexc

)
. (S36)
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(A) (B)

(C) (D)

Figure S3: (A) Dependence of the number of encapsulated cargo particles on the scaffold length
for the parameter sets considered in Fig. 3 of the main text. (B) Dependence of the volume fraction
of encapsulated particles (cargo and scaffolds) on the scaffold length for the same parameters
as in (A). (C) Dependence of the shell size on the the scaffold cargo-binding domain fraction
fsc = Lsc/Ls, for R0 = 22, Ls = 64, and Lsh = 7. (D) The pathway order parameter, defined as
the maximum number of unassembled shell subunits adsorbed on scaffold-cargo aggregates at any
point during a trajectory, normalized by the size of the final shell, is shown as a function of the
cargo-binding domain fraction fsc. The pathway transitions to two-step assembly at fsc ≈ 0.3. The
order parameter decreases slightly at high values of fsc because the large scaffold-cargo valence
leads to rapid nucleation of multiple small cargo-scaffold complexes, leading to fewer adsorbed
shell subunits per complex. Other parameter values for (A-D) are as follows. Shell subunit-subunit
affinities: εhh = 3.15 at R0 = 4.5 , εhh = 2.85 at R0 = 8.0 and εhh = 2.65 at R0 = 22; scaffold-subunit
affinity εsh = 2.5, and scaffold-cargo affinity εsc = 1.0.

15



(I) Ls=74(H) Ls=34(G) Ls=19

Figure S4: (A-C) Distribution of shell sizes at three scaffold lengths (A) Ls = 19, (B) Ls = 34,
and (C) Ls = 74. Each plot shows distributions for the three shell spontaneous curvature radii
considered in Fig. 3 of the main text. (D-F) Distribution of asphericity of shells at the same
parameter sets. Asphericity is defined as the α = Rmax/Rmin with Rmax and Rmin the maximum and
minimum radius of shell subunits measured from the center of mass of the shell. (G-I) Snapshots
of assembly products for each of the three scaffold lengths. The blue (top), orange (middle),
and green (bottom) boxes correspond to spontaneous curvature radii of R0 = 22.0, 8.0, and 4.5
respectively.
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Figure S5: The icosahedral bond order parameter Q6 of Ref.18 as a function of scaffold length for
R0 = 22.0, 8.0 and 4.5. Q6 is normalized by the value for perfect icosahedral symmetry, Q6 =

0.663. Snapshots of typical shells with indicated Q6 values are shown. Elongated shells, conical
shells, and small shells with double vacancies have low values of icosahedral order.
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(A) (B)

Figure S6: (A) Dependence of the mean shell radius on the scaffold-subunit and subunit-subunit
affinities. The scaffold length is Ls = 24 (Lsc = 7, Lsm = 10), the shell spontaneous curvature
radius is R0 = 8.0 and the scaffold-cargo affinity is εsc = 1kBT . Note that in the large Ls limit where
relatively few scaffold molecules are packaged, strong subunit-subunit interactions (εss & 3.15 at
R0 = 4.5, εss & 2.85 at R0 = 8 and εss & 2.65 at R0 = 22) are required for complete shell assembly.
(A) Dependence of the mean shell radius on shell-subunit and scaffold concentrations. The scaffold
length is Ls = 64 (Lsc = 7, Lsm = 50), the shell spontaneous curvature radius is R0 = 8.0, and the
scaffold-cargo affinity is εsc = 1.0kBT . In (A) and (B), the parameter values corresponding to the
simulation results of Figs. (2) and (3) are marked on the plot by ‘x’ symbols.
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(B) 

(A) R₀  = 22.0 

unnucleated 

R₀  = 4.5 

(C) 

Figure S7: (A) Fraction of subunits in complete shells for the simulations corresponding to
Fig. 3A,B (main text). We categorize shells as ‘complete’ according to the following criteria.
A complete icosahedral shell composed of nhex hexamers and 12 pentamers has 6nhex + 30 bonds,
with bonds defined as strong interactions between neighboring subunits. However, since our sim-
ulations do not include pentamers, a complete shell has 12 five-fold vacancies, and thus 6nhex − 30
bonds. In the case of small shells, we also observed assembly of two classes of complete, but
non-icosahedral shells: shells that are missing two adjacent pentamers, and shells with tetrameric
holes. Finally, very large shells require extremely long simulation times to assemble completely.
Therefore, we consider shells with more than 300 subunits to be complete if they are missing up
to 3 subunits. An example of an incomplete shell at Ls = 94 and R0 = 22.0 is shown next to the
plot. In this case shell completion did not occur on simulation timescales because multiple nuclei
formed and the concentration of free subunits was depleted before assembly completed. The lower
snapshot to the right of the plot shows an example of a typical failure mode for scaffold molecules
that are much longer than the spontaneous curvature radius (Ls = 94 and R0 = 4.5). (B) Fraction of
subunits in complete shells for the simulations corresponding to Fig. 3C (main text). The snapshot
to the right of the plot shows an example of multi-nucleation at fsc = 0.81, Ls = 64 and R0 = 22.
(C) Fraction of subunits in complete shells for the simulations corresponding to Fig. S6, shown as
a function of the subunit-subunit and scaffold-subunit binding affinities. Because we have focused
on relatively weak subunit-subunit affinities, we observe high yields for all values of εhh in this
range. However, combining high scaffold-subunit interactions with low subunit-subunit interac-
tions results in a kinetic trap corresponding to multiple incomplete shells attached to a cluster of
scaffolds and cargo. The snapshot to the right of the plot shows an example of this behavior for
εhh = 2.65kBT and εsh = 4.0kBT .
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