
Supplementary Material in Bioinformatics:

The optimal discovery procedure for significance analysis

of general gene expression studies

Andrew J. Bass and John D. Storey*

Lewis-Sigler Institute for Integrative Genomics

Princeton University

Princeton, NJ 08544 USA

1 The F -statistic and moderated F -statistic

Suppose gene expression data yijt and explanatory variables xjt are observed for i = 1, 2, . . . ,m

genes, j = 1, 2, . . . , n observations, and t = 1, 2, . . . , Tj measurements of the jth observation. The

most general model we consider in this paper is

yijt = µi(xjt) + γij + εijt, (1)

where µi(·) is the population average mean function of explanatory variables xjt, γij is an individual-

specific random deviation, and εijt
iid∼ Normal(0, σ2

i ). (In the case of RNA-seq data, we may model the

heteroscedastic variance as 1
wijt

σ2
i as discussed in the main paper.) For the case that Tj = 1 for all

j = 1, 2, . . . , n, this model reduces to

yij = µi(xj) + εij , (2)

where γij has been implicitly absorbed into εij .

In dealing with the case that Tj > 1, see [1] for more details. Fitting the model, forming test

statistics, and performing bootstrap sampling is much more complex in this scenario, and it is the main

focus of [1]. Here, we provide details for the simpler case that Tj = 1 for all j = 1, . . . , n. We model

µi(·) according to a d-dimensional set of basis functions, where µi(xj) = αi +
∑d

l=1 βlsl(xj). We can

write this in vector notation. Let s(x) = (s1(x), s2(x), . . . , sd(x)) be the n× d design matrix with entry
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(jl) equal to sl(xj). The matrix s(x) is assumed to be full rank. Also, let 1 be an n-vector composed of

1’s. The model is then

yi = αi1 + s(x)βTi + εi (3)

= αi1 +
d∑
l=1

βilsl(x) + εi

where, for example, yi = (yi1, yi2, . . . , yin)T .

In this case, the null model yi = αi1 +
∑d0

l=1 βilsl(x) + εi is tested versus the alternative model

yi = αi1 +
∑d

l=1 βilsl(x) + εi where 1 ≤ d0 < d and εi are uncorrelated random errors that follow a

Normal distribution with mean zero and variance σ2
i . We are interested in comparing both models to

infer whether βil 6= 0 for at least one of the l = d0 + 1, . . . , d explanatory variables.

Note that a standard linear model can be written as a special case of the above model. Consider

a standard n × d design matrix x composed of d explanatory variables over n observations. Suppose

we also define sl(x) = xl, where xl is the lth column of x corresponding to the n observed values of

explanatory variable l. The above formulation then translates to the model yi = αi1+
∑d

l=1 βilxl + εi,

which is a standard linear model.

The F -test is a classical testing procedure that can be used to compare nested regression models.

The general procedure works as follows. The alternative model is fit using least squares to the observed

data to estimate the parameters (α̂i, β̂i) and the residual vector ei = yi−α̂i1−
∑d

l=1 β̂ilsl(x). Similarly,

the null model is fit to estimate the parameters (α̂i, β̂
null
i ) and the residual vector enull

i = yi − α̂i1 −∑d0
l=1 β̂

null
il sl(x). The test statistic is defined as

Fi =

(∥∥enull
i

∥∥2 − ‖ei‖2
)
/(d− d0)

‖ei‖2 /(n− d− 1)
, (4)

where the theoretical distribution under the null hypothesis follows Fisher’s F -distribution with d−d0 de-

grees of freedom in the numerator and n−d−1 degrees of freedom denominator (denoted Fd−d0,n−d−1).

Intuitively, if there is no difference between both models then Fi should be concentrated around 1. Oth-

erwise, large deviations from 1 provide evidence against the null model. The assumption that the

F -statistic follows an F -distribution under the null hypothesis is only true asymptotically: in practice,

large sample sizes are necessary for reliable inferences.

For small sample sizes, the moderated F -statistic can be used to compare two models. The main

issue with small sample sizes is that the sample variance can often be inflated and unreliable to use in

the traditional F -test. The moderated F -test is an empirical Bayes procedure that borrows information

across genes to provide stable estimates of the sample variance [2]. A rough outline of the hierarchical

model is as follows. The inverse variance across genes are assumed to vary as a scaled chi-square
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distribution, i.e.,
1

σ2
i

∼ 1

ρ0σ2
0

χ2
ρ0 , (5)

where ρ0 is the degrees of freedom and σ2
0 is a scaling factor. Furthermore, the non-zero effect sizes are

assumed to follow a Normal distribution with mean zero and variance proportional to σ2
i . The posterior

mean of σ2
i given the sample variance can be determined from the above hierarchical model, see [2]

for more details. This mean value is used as an improved estimate of the sample variances, where

the sample variances are shrunken towards the prior estimator σ2
0 for more stable estimates. More

specifically, the moderated F -statistic is defined as

Fi =

(∥∥enull
i

∥∥2 − ‖ei‖2
)
/(d− d0)

‖e∗i ‖
2 /((n− d− 1) + ρ0)

, (6)

where ‖e∗i ‖
2 = ‖ei‖2 + ρ0σ

2
0 and the parameters (ρ0, σ

2
0) are estimated from the data [2]. The theo-

retical distribution under the null hypothesis for the moderated F -statistic follows an F -distribution with

d−d0 degrees of freedom in the numerator and (n−d−1)+ρ0 degrees of freedom in the denominator,

Fd−d0,(n−d−1)+ρ0 . For large sample sizes, the statistical power of the moderated F -test will be similar

to the classical F -test.

2 Generating bootstrap empirical null statistics

A standard bootstrap procedure was implemented to generate an empirical null distribution for the

testing procedures as follows.

1. Assume the null model is yi = µ0(x) + εi and the alternative model is yi = µ1(x) + εi where εi
are the random errors.

2. Fit both models to the observed data using least squares or weighted least squares (if per-

observation weights are available). Estimate µ̂1(x) for the alternative model and µ̂0(x) for the

null model. Calculate the test statistic of interest (i.e., the mODP statistic, F -statistic, or moder-

ated F -statistic), denoted by Ti(µ̂0(x), µ̂1(x)) for genes i = 1, 2, . . . ,m.

3. For b = 1, 2, . . . , B bootstrap samples, sample n observations from the studentized residuals

(with replacement) to obtain e∗(b)i . Add these residuals to the null model fit, i.e., y∗(b)i = µ̂0(x) +

e
∗(b)
i . If there are weights, the studentized residuals should be appropriately rescaled.

4. Fit both models to y∗(b)i and obtain µ̂∗(b)0 (x) and µ̂∗(b)1 (x) estimates under the null and alternative

models, respectively. Calculate T ∗(b)i

(
µ̂
∗(b)
0 (x), µ̂

∗(b)
1 (x)

)
for b = 1, 2, . . . , B bootstrap samples
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and genes i = 1, . . . ,m. Note that the hyperparameters of the moderated F -statistic (d0, σ0) are

fixed and so ‖e∗i ‖
2 =

∥∥∥e∗(b)i

∥∥∥2
+ d0σ

2
0 .

5. Calculate the empirical p-values according to

pi =

∑m
a=1

∑B
b=1 1

(
T
∗(b)
a (µ̂

∗(b)
0 (x), µ̂

∗(b)
1 (x)) ≥ Ti(µ̂0(x), µ̂1(x))

)
mB

.

When applying the mODP bootstrap, the above procedure requires a few modifications. First, the

data is adjusted to y′i = yi − µ̂0
i (x) in step (2) to remove ancillary information (i.e., µ̂0

i (x)). The

alternative model is then fit to y′i. (Note that the design matrix from the alternative model is adjusted by

(I −Hnull) where Hnull is the projection matrix under the null model. Additionally, if there are weights,

y′i and the design matrix are appropriately adjusted before fitting the alternative model.) Second, the

studentized residuals are rescaled by the observed sample variance. This enforces that the sample

variance remains the same for all bootstrap iterations. Thus the rescaled studentized residuals in

step (3) are σ̂i

σ̂
∗(b)
i

e
∗(b)
i where σ̂i = ‖ei‖√

n−d−1
is the sample standard deviation of the residuals from the

alternative model and σ̂∗(b)i =

∥∥∥e∗(b)i

∥∥∥
√
n−1

is the standard deviation from the resampled residuals. Finally,

in step (4), the null statistics are recomputed with the module parameters estimated from the observed

data.

It is important to note that additional steps in the above algorithm may need to be taken when

handling longitudinal data. See ref. [1] for more details.

3 Simulation details

The primary objective in the simulations is to generate replicate datasets of the studies. We use the

biological signal from each study as a baseline: both models are fit to estimate the gene expression

curves under the alternative and null models. The genes assigned to the alternative model had q-values

< 0.1 while genes assigned to the null model had q-values > 0.1. The number of unique curves from

the alternative model was varied by randomly selecting from the population of genes assigned to the al-

ternative model. For each study and number of unique gene expression curves G = 5, 10, 50, 100, 200,

the procedure is outlined below:

1. Use the estimated proportion of true nulls π̂0 to randomly assign the m genes to either the alter-

native or null models. Genes assigned to the alternative model followed one of the g = 1, 2, . . . , G

unique gene expression curves, i.e. µg1(x). Alternatively, the null genes were randomly sampled

from the population of null model fits µ∗0(x).
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ODP F -test Mod. F -test boot. F -test boot. mod. F -test

Dose 0.672 0.803 0.813 0.804 0.793

Endotoxin 0.349 0.605 0.615 0.388 0.397

Kidney 0.585 0.687 0.685 0.684 0.676

Smoker 0.597 0.681 0.681 0.680 0.675

Table S1: Estimated proportion of true nulls.

2. Using the observed signal-to-noise ratio (SNR) distribution from the alternative model, calculate

an appropriate SNRM such that the estimated number of differential expressed genes at a false

discovery rate of 0.1 is close to the observed study. This was done by trial and error: yi =

µg1(x) + σ∗i , where σ∗i is randomly sampled from the population of standard deviations σg√
SNRM

for

g = 1, 2, . . . , G.

3. Randomly sample from the population of standard deviations in the previous step to add noise to

the alternative model yi = µg1(x) + σ∗i and the null model yi = µ∗0(x) + σ∗i for all genes; call this

simulated dataset Y ∗.

4. Apply the testing procedures to Y ∗ and calculate p-values.

5. Repeat steps (3-4) 500 times and calculate the average number of discoveries and the average

false discovery rate for all testing procedures.

The estimated proportion of true nulls are shown in Table 1 and the estimated SNRM for the dose,

endotoxin, kidney, and smoker studies are the 0.86, 0.45, 0.35, and 0.80 quantiles of the SNR distribu-

tion, respectively.

4 True positive enrichment

Consider i = 1, 2, . . . ,m test statistics zi calculated on a gene-by-gene basis from a biological study.

Given these test statistics, we propose a new summary statistic for gene sets based on the proportion

of true positives. The procedure works as follows. For each gene i, we can calculate the local false

discovery rate based on the chosen test statistic:

lfdr(zi) = Pr{null hypothesis i true|zi} = π0
f0(zi)

f(zi)
,

where π0 is the prior probability that a hypothesis test is null, f0(zi) is the null density, and f(zi) is a

mixture of the null and alternative densities [3, 4]. Next, we average the local false discovery rate in
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gene set S,

Λ(S) =
1

|S|
∑
i∈S

(1− lfdr(zi)).

As an example, if we calculated Λ(S) = 0.9 then it corresponds to a gene set with an average of 0.9

true positives. Thus this gene set has a high proportion of true positives. The true positive enrichment

(TPE) can be defined as

TPE(S) =

∑
i∈S(1− lfdr(zi))
|S|(1− π0)

,

where TPE(S) compares the number of expected true positives in gene set S to a randomly assembled

gene set of the same size. An equivalent interpretation is the ratio of the average number of true

positives in set S to the average across all genes, i.e., TPE(S) = Λ(S)
1−π0 . (Note that the average number

of true positives across all genes is 1
m

∑m
i=1(1 − lfdr(zi)) = 1 − π0). Here, the statistic Λ(S) is used

because we are comparing different testing procedures.

The advantages of working in this framework are (i) it is computationally fast to calculate Λ(S) for

all gene sets, (ii) the interpretation of important gene sets is intuitive, and (iii) covariate-adjusted local

false discovery rates can easily be incorporated to improve statistical power.
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