Biophysical Journal, Volume 120

Supplemental information

Sequence effects on internal structure of droplets of associative polymers

Kulveer Singh and Yitzhak Rabin

Supplementary Material: Sequence Effects on Internal Structure of Droplets of Associative Polymers

Kulveer Singh^{1,*} and Yitzhak Rabin^{1,†}

¹Department of Physics, and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel (Dated: July 31, 2020)

I. DROP FORMATION FOR $\epsilon_s = \epsilon_{ns} = 0.8$ AND $r_{ij}^{cut} = 2.5\sigma$

FIG. S 1: Phase separation of polymers without stickers in poor solvent condition for $\epsilon_s = \epsilon_{ns} = 0.8$

II. NO DROP FORMATION FOR $\epsilon_s = \epsilon_{ns} = 0.5$ AND $r_{ij}^{cut} = 2.5\sigma$

t=0

t=500k

FIG. S 2: Phase separation of polymers does not occurs in poor solvent condition $\epsilon_s = \epsilon_{ns} = 0.5$. We evolved the system for very long time (t = 500,000) to eliminate the possibility of slow phase separation.

^{*}Electronic address: kulveersingh85@gmail.com

[†]Electronic address: yitzhak.rabin@biu.ac.il

FIG. S 3: Plot of time evolution of radius of gyration of all monomers in the system for different sequences ($\epsilon_s = 4$).

IV. AVERAGE NUMBER OF CLUSTERS FOR DIFFERENT SEQUENCES

FIG. S 4: Plot shows the average number of clusters in equilibrium state for three different values of ϵ_s for all sequences. For all values we obtained non-monotonic change in average cluster size as we go from s8s to 4ss4 sequence.

V. COMPARISON OF CLUSTERS SNAPSHOTS OF DIFFERENT SEQUENCES FOR THREE DIFFERENT ϵ_s VALUES

FIG. S 5: Snapshots of sticker clusters in equilibrium state for three different values of ϵ_s for all sequences. Shape and size of the clusters changes as ϵ_s value is increased. At small ϵ_s value, large number of small clusters are present in the system of 1s6s1, 2s4s2 and 3s2s3 sequences for $\epsilon_s = 3$ and as ϵ_s increases the number of clusters in the system decreases and their size increases. Long and broad fiber-like structures appears for $\epsilon_s = 5$. For s8s and 4ss4sequences, the number of clusters remains very small ($\sim 3 - 4$) for all ϵ_s but the shape of the clusters changes from cylinderical to planer bilayer as ϵ_s is increased.

FIG. S 6: R_{ss} distribution of isolated associating polymers in poor solvent for s8s, 1s6s1 and 2s4s2 sequences $(\epsilon_s = 4)$.

VII. MORPHOLOGY COMPARISON: 10 BEADS POLYMER WITH TWO STICKERS VS ITS REPEAT UNITS (5 BEADS POLYMER WITH ONE STICKER)

FIG. S 7: Snapshots of sticker clusters inside droplet for different sequences and their repeat units ($\epsilon_s = 4$). Top panel: s8s, 4ss4 and their repeat unit s4. Bottom panel: 1s6s1, 3s2s3 and their repeat unit 1s3.