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Figure S1: The distribution of height (a) and BMI (b) in Chinese dataset.
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Figure S2: a, PCA of the combined samples from Chinese cohort and the 1000 Genomes Project.
Chinese are genetically closest to East Asians in the 1000 Genomes project. b, PCA of Chinese
participants only. The first two principal components reflect the longitudinal and latitudinal
differentiation behind Chinese genetic structure. c, Distribution of genotyped individuals by
province. The majority of genotyped samples are from the southeastern area of China. d-g,
Average phenotypic values of male height (d), female height (e), male BMI (f) and female BMI (g)
for provinces with more than 50 samples. Four administrative divisions Xinjiang, Tibet, Qinghai
and Ningxia are shown in grey because their sample sizes are less than 50.
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Figure S3: The PCA projection of IPM Afican participants (a) and UKBB African participants
(b) to the 1000 Genome Project dataset. Kernel density estimation (KDE) of height (c) and its
residual (d).
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Figure S4: The relationship between height and first two principal components in Chinese dataset.
(a) Height against the first principal component grouped by sex; (b) Height against the second
principal component grouped by sex. The black lines represent the fitted regression between height
and corresponding PCs. There is an increasing trend of height along the gradient of the first PC.
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Figure S5: The relationship between height and age in Chinese dataset. (a) Height against age for
males; (b) Height against age for females. The black lines represent the fitted regression between
height and age. There is an decreasing trend of height for older people.
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Figure S6: The relationship between BMI and first two principal components in Chinese dataset.

(a) BMI against the first principal component grouped by sex; (b) BMI against the second principal
component grouped by sex. The black lines represent the fitted regression between BMI and
corresponding PCs. There is an increasing trend of BMI along the gradient of the first PC.
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Figure S7: The relationship between BMI and age in Chinese dataset. (a) BMI against age for
males; (b) BMI against age for females. The black lines represent the fitted regression between
BMI and age. There is an increasing trend of BMI for older people.
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Figure S8: The distribution of residuals of height (a) and BMI (b) after adjusting for covariates
in Chinese dataset.
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Figure S9: Average residual values after adjusting for the covariates of male height (a), female
height (b), male BMI (c) and female BMI (d) in the provinces with more than 50 samples.
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Figure S10:
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Manhattan plots of Chinese height (a) and BMI (f). The z axis shows chromosomal

position, and the y axis shows significance on the —log,, scale. The dashed line marks the threshold

for genome-wide significance (p-value= 5 x 107®). Previously unknown associations are highlighted

with purple dots, with the nearest gene names printed in purple. Known associations are highlighted
with red dots, with the nearest gene names in red text. QQ plots of Chinese height (b) and BMI
(f). c-e Comparison of the effect sizes for the genome-wide significant SNPs identified from the

GWAS of Chinese height versus those identified in previous studies. h-j Comparison of the effect
sizes for the genome-wide significant SNPs identified from the GWAS of Chinese BMI versus those

identified in previous studies.
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Figure S11: The Q-Q plot of GWAS p-values in height (a) and BMI (b) derived from Chinese
dataset and 33,000 UKBB samples. We used the BOLT-LMM v2.3.2 to test for associations
between phenotypes and SNPs. For Chinese population, we included age, sex and first 10 principal
components as covariates. For UKBB, we used the top 20 principal components, age, squared age,
sex, genotyping arrays and sequencing platforms as covariates.
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Figure S12: (a) The heritability of height against chromosome length in million base pair. (b)
The chromosome heritabilities of height estimated from Chinese cohort against those estimated
from UKBB. (c¢) The heritability of BMI against chromosome length in million base pair. (d) The
chromosome heritabilities of BMI estimated from Chinese cohort against those estimated from
UKBB.
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represents the significance threshold after Bonferroni correction (0.05/95). The LDSC software

[1]. We used the LD scores provided by the Alkes Price group (https
org/alkesgroup/LDSCORE/) in the analyses of Chinese cohort and UKBB.

Figure S13
v1.0.0 was used to identify the heritability enrichment for the genome partitions in baseline model

represents the significance threshold after Bonferroni correction (0.05/95).

Figure S14
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zero after Bonferroni correction for the 1295 tests (p-value< 0.05/1295) are marked
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Figure S18: Trans-ancestry genetic correlations estimated by popcorn. Positive correlations are
colored in red. Negative correlations are colored in blue. Genetic correlations that are significantly
different from zero after Bonferroni correction for the 37 x 35 = 1295 tests (p-value< 0.05/1295)
are marked with asterisk.
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Figure S19: Genetic correlation estimates generated by popcorn versus those generated by XPASS.
A regression line between the two sets of estimates is added.
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Genetic correlation of 37 traits in FEuropeans estimated by GNOVA. Positive
correlations are colored in red. Negative correlations are colored in blue. Genetic correlations that
are significantly different from zero after Bonferroni correction for the (37 x 36/2) = 666 tests
(p-value< 0.05/666) are marked with asterisk.
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Figure S21: Genetic correlations of 35 traits in East Asians estimated by GNOVA. Positive
correlations are colored in red. Negative correlations are colored in blue. Genetic correlations that
are significantly different from zero after Bonferroni correction for the (35 x 34/2) = 595 tests
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Figure S22: The average height among minority ethnic groups with > 50 samples.
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Figure S23: Memory usage (a) and CPU time (b) for XPA, GCTA-BLUP-combine, and GCTA-
bvBLUP are shown for increasing auxiliary sample sizes when combining Chinese cohort and UKBB
data to construct PRS for height. XPA used only 54.5 hours (including 9 hours for loading data, 3
hours for estimating variance components, and 42.5 hours for computing the posterior means and
estimating fixed effects) and 385Gb to analyze all 430K Chinese and UKBB samples. In contrast,
GCTA-bvBLUP required 1.07Tb when only 150K UKBB samples were included in the analysis,
reaching the memory limit of our server. We note that the memory requirement exceeding this
value is also infeasible for most high performance computational platforms. Therefore, we projected
its CPU time and memory by fitting a quadratic curve using the recorded values. Our projection
suggests that it would cost 570.8 hours and 7.5 Th memory for GCTA-bvBLUP to integrate all 430K
UKBB samples. Note that the memory of a node is often about 512Gb at Yale high-performance
computing server, and the maximum memory of a node at the Hong Kong University of Science
and Technology is about 1.5 Th. Given above observations, we believe that XPA has advantage
over GCTA-bvBLUP in practice as it can leverage the bio-bank scale dataset from the European
population to construct more accurate PRS in minor populations. Both computational time and
memory cost of XPA were linear to the auxiliary sample size, which was consistent with our
observations in the simulation study. We evaluated all approaches with 32 CPU threads on the
platform of Intel Xeon Gold 6152 CPU.
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Figure S24: Proportion enrichment of ethnic groups in the top and bottom PRS quantiles. XPA
successfully prioritizes the heights of the five minor ethnic groups with more than 50 samples in
the test set, whilst BLUP can only predict Tujia and Manchu.
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Figure S25: Tuning the proportion of non-zero effects in LDpred for height: (a) Chinese, (b) BBJ
and (c) UKBB.
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Figure S26: Tuning the proportion of non-zero effects in LDpred for BMI: (a) Chinese, (b) BBJ
and (c) UKBB.
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Figure S27: Tuning the p-value threshold for height: (a) Chinese, (b) BBJ and (¢) UKBB.
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Figure S28: Tuning the p-value threshold for BMI: (a) Chinese, (b) BBJ and (¢) UKBB.
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Figure S29: Tuning the proportion of non-zero effects in LDpred for height: (a) MTAG-Chinese,
(b) MTAG-UKBB.
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Figure S30: Tuning the proportion of non-zero effects in LDpred for BMI: (a) MTAG-Chinese,
(b) MTAG-UKBB.
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Figure S31: Tuning the p-value threshold for height: (a) MTAG-Chinese, (b) MTAG-UKBB.
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Figure S32: Tuning the p-value threshold for BMI: (a) MTAG-Chinese, (b) MTAG-UKBB.
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Figure S33: Predictive R? of height (a) and BMI (b) when XPASS, was applied with different
p-value thresholds. The SNPs to be included in the covariates were selected by applying the p-value
threshold to either the Chinese data or the UKBB data. The LD threshold was set as r2 = 0.1.
The predictive R? of LDpred-inf (Chinese), LDpred-inf (UKBB) and XPASS were also shown as
reference. When the P4+T procedure was applied to the target dataset, including the selected SNPs
as fixed effects further improved the prediction accuracy. In contrast, when the P4+T procedure
was applied to the auxiliary dataset, the predictive R? decreased as the p-value threshold increases.
This observation suggests that when the pre-selected SNPs are specific to the target population,
XPASS, can effectively utilize these signals to improve prediction accuracy.
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Figure S34: Influence of the auxiliary sample size on the prediction performance of XPASS and
XPASS, for predicting height. We trained XPASS and XPASS, by integrating 21,069 Chinese
training samples with 20,000 ~ 300,000 random subsamples drawn from UKBB, where samples
from UKBB could be viewed as the auxiliary dataset. The results are summarized from 10
replications. Dashed horizontal lines mark the results obtained by training with only Chinese
cohort using XPASS (red) or XPASS, (blue). Solid horizontal lines in mark the results obtained
by combining 20K Chinese samples and all 430K UKBB samples using XPASS (red) or XPASS
(blue).
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2 Supplementary Tables

1% 5% 10%
hi, 0.747% (0.408%) | 2.103% (0.721%) | 4.244% (1.086%)
Height | Enrichment | 2.135 (1.147) 1.205 (0.405) 1.213 (0.295)
Predictive R? 17.18% 16.87% 16.63%
hi, -0.301% 0.370% (0.466%) | 1.395% (0.700%)
BMI Enrichment - 0.451 (0.566) 0.845 (0.414)
Predictive R? 5.86% 5.68% 5.62%

Table S1: Application of the extended model to the Chinese and UKBB data. Estimated
heritability and the enrichment of heritability explained by the ‘heterogeneous’ SNPs in Chinese
samples are summarized in the table, with the corresponding standard errors given in the parentheses.
The heritability explained by the ‘heterogeneous’ SNPs is computed as h?, = 6%,/(634 + 625 + 62),
and its enrichment is obtained as (6%, /pa)/((6%24 + 635)/p), where ps and p are the number of
SNPs in A and the total number of SNPs, respectively. The standard errors are obtained by
applying the Jackknife approach with approximately independent LD blocks derived from the EAS
population. Top 1%, 5% and 10% SNPs with highest diff; were considered as ‘heterogeneous’ SNPs.
The predictive R? were also computed for corresponding partition strategies.



Trait name

Full name

sample size (case+-control)

paper link

RA-EAS Rheumatoid Arthritis TRTIHIT,642 ittps://www.nature.com/articles /uature | 28737 message-global—remove
RA-EUR Rhicumatoid Arthritis 14361+43,923 https://www.nature.com /articles /naturc 12873 message-global=remove
T2D-EAS Type 2 Diabetes 36,614+ 155,150 http:/ /jenger.tikenjp:S080/ pheno/ Type-2 Diabetes

I2D-EUR Type 2 Diabetes 459324 https://www.nature.com/articles /s41588-018-0144-6

BMI-BBJ Body Mass Index

https://www.nature.com /articles /g 3051

BMI-Chinese

Body Mass Index

Wttp:/ /www stibd.cn/index. php/en/ R ET

%A0%94%

E7%A9%B6/%ES%BD

Y AFV.EAYBBYB6YEAV.BSY

%95%BOYEG

ViSDY%AE html7layout —edit&id =322

BMI-UKB
BMLGIANT

Body Mass Index
Body Mass Index

https://www nature.com/articles/s41585-01

185,648~795,640

hittps://academic.oup.com/hmg/article/27/20 /3641 /5067345

lieight-BBJ lcight 159095 https://www.nature.com/articles/s11467.
Tiight-Chinese Teight 3203 http://www sribd.cn/index. php/en/ AOVOTTET A To36] A ES A BDYGAF VG EAV BBV BOVUEAV BR/SEV EG /95 BV EG /8D Y A . htmnI layout =cditicid:
height-UKB height 458 https://www.nature.com/articles/s41588-018-0144-6
height-Giant height 50,003~253.280 https://www.nature.com /articles/ug 3097
FDL-EAS High-density-Tipoprotein cholesterol 0657 httpss//www.nature.com/articles /54 1588-018-0047-6
HDL-EUR High-density-lipoprotein cholesterol 188577 bttps://www.nature.com /articles/ug 2797
LDL-EAS Tow-density-lipoprotein cholesterol T2R66 https://www.nature.com/articles 54 1588-018-0047-6
LDL-EUR Low-density-lipoprotein cholesterol 188577 https://www.nature.com/articles /ug.2797
NCIL-EAS Mean corpuscular hemoglobin concentration 08051 httpsy//www.nature.com/articles /s 1588-018-0017-6
MCH-UKBI1+BIL Mean corpuscular hemoglobin 132224 https://www.cell.com /cell /references/S0092-8674(16)31463-5
MCHC-EAS Mean corpuscular hemoglobin concentration 108728 Lttps://www.nature.com/articles /s41588-018-0047-6
MCHC-UKBI1+ BIL | Mean corpuscular hemoglobin concentration 132586 https://www.cell.com/cell/references /S0002-8674(16)31463-5
MCV-EAS Mean corpuscular volume 108256 https://www.nature.com/articles/s41585-018-0047-6
MCV-UKBI+BIL | Mean corpuscular volume 132353 https://www.cell.com/cell/references /S0002-8674(16)31463-5

Systolic blood pressure 136597 https://www.nature.com/articles/s41588-018-0047-6
SysBP-EUR Systolic blood pressure 122771 https:/ /www nature.com/articles/s11585-018-0144-6
TC FAS Total cholesterol 128305 Wttpss//www.nature.com/articles /sH1588-018-0047-6
TC-EUR Total cholesterol bttps://www.nature.com /articles/ug 2797
TG-EAS Triglyceride hittps://www.nature.com/articles /54 1588-018-0047-6
TG-EUR Triglyceride https://www.nature.com /articles/ng 2797
cGFR-EAS Estimated glomerular Altration rate hitips:/ /www nature.com,/articles/sd 588-018-0047-6.
<GFR-EUR Estimated glomerular filtration rate https:/ /www.nebinlm.niligov/pme/articles/PMCG6377354/
BUN-EAS Blood urea nitrogen https://www.nature.com/articles /s 1588-018-0017-6
BUN-EUR Blood urea nitrogen 480608 Dttps://www.nchiulmnih.gov/pc/articles/PMCG377354/
AF-BBJ Atrial Fibrillation 8,150+28,612 https://www.nature.com /articles/ng 3312
AF-UKB Atrial Fibrillation 10,086+233,904 https;//www.gov.uk/government/publications/atrial-fibrillation-prevalence-cstimates-for-local-populations
VCDR-EAS vertical cup-disc ratio 8373 bttps://www.nature.com/articles s11467-017-01913-6
VCDR-EUR vertical cup-disc ratio 23809 httpsy//www.nature.com/articles /SI1167-017-01013-6
DA-EAS Disc Area 7307 https://www.nature.com /articles/s41467-017-01913
DA-EUR Arca 22501 bittps://www.nature.com/articles SI1467-017-01913-6
SMKi-BBJ Smoking Initiation 83810+81,626 httpss//www.nature.com /articles /s41562-019-0557-y.
SMK-UKB Current tobacco smoking 386150 bttps://www.nature.com/articles s41588-019-0481-0
SMKepd-UKB Cigarcttes per day Q0143 https://www.nature.com/articles /51 1588-010-0481-0

Angina 12114+373585

Angina-UKB
CIHD-UKB|

https://www nature.com /articles/s41588-019-0481-0

Chironic ischemic heart disease

144564286335

https://www nature.com/articles/s11588-019-0481-0

CHD-finngen
AIF-UKB

Major coronary heart disease event

351037

http://www.nealelab.is/uk-biobank/

HBP-UKB,

Alcolol intake frequency

360726

http://www.nealelab.is/uk-biobanlk/

Tigh blood pressure

1033814282318

hittps://www.nature.com/articles/s41588-019-0481-0

hayfever-UKB
Asthma-UKB

Hayfever, allergic rhinitis or eczema
Asthma

S307+277120

http://www.nealelab.is/uk-biobank/

11633+318804

http://www .niealelab.is/uk-biobank;

glaucoma-UKB

Glancoma-ICD10(1140)

171 91

http://www nealelab is /uk-biobank/

HF-UKB

heart failure

6501+ 387652

https://doi.org/10.1161/CIRCULATIONAHA. 118.035774

CoCa-UKB

malignant ncoplasi of colon-IDC10{CIS)

2226+358968

http://www.nealelab.is/uk-biobank/

COPD-UKB

Other chronic obstructive pulmonary disease-1CD90(J44)

1531+359663

http://www.nealelab.is/uk-biobanlk/

Osteoporosis-UKB

Osteaporosis

57364355405

hitp://www.nealelab.is/uk-biobank/

PAD_UKB|

Peripheral artery disease

1230+359961

http://www.nealelab.is /uk-biobank/

PrCacfimgen
UF-UKB

Prostate cancer

63214160699

http://www ncalelab.is/uk-biobank;

Uterine fibroids

5514+188639

bttp://www nealelab is /uk-biobank/

AD-UKB

Atopic dermatitis

0321+351820

http://www.nealclab.is /uk-biobank/

Arthythmia-BBJ
Asthma-BBJ

Arrhythmia
Asthma

178614194592

Tittps://www.nature.com/articles/s41585-020-0640-3

Cataract-BBJ

§216+201592

https://www nature.com /articles/s11585-020-0640-3

Cataract

24622+ 187831

hitps://www.nature.com/articlos/s11585-020-0640-3

CHC_BBJ Clironic hepatitis C 794+206659 Lttps://www.nature.com /articles /s11585-020-0640-3
CHF_BBJ Congestive heart failure 9113+203010 https://www.nature.com/articles /s11588-020-0610-3
CoCa_BBJ Colorectal cancer T062+195 https://www.nature.com /articles/s41588-020-0640-3
COPD_BBJ Chironic obstructive pulmonary disease 3315+201502 bittps://www.nature.com/articles s1588-020-0640-3
Glancoma_BBJ Glancoma 5761206602 https://www.nature.com/articles 51 1588-020-0640-3
ISBBJ Tschemic stroke 176714192383 bttps://www.nature.com/articles s41585-020-0640-3
Osteaporosis BBJ__| Osteoporosis 7788+ 201665 https://www.nature.com/articles 51 1588-020-0640-3
PAD_BBJ Peripheral artery disease 5934208860

https://www nature.com /articles/s41588-020-0640-3

Pollinosis BBJ
PrCaBBJ

Pollinosis

746+206707

https://www.nature.com/articles s11588-020-0640-3

UFBBJ

Prostate cancer

5408+103939

https://www naturc.com/articlos/s11588-020-0640-3

AD_BBJ

Uterine fibroids

5954+95010

bttps://www.nature.com/articles s41588-020-0640-3

Atopic dermatitis

2385+ 200651

Bittps://www.nature.com/articles 54 1588-020-0640-3

Table S2: Sources of 37 traits from EUR and 35 traits from EAS.



3 Supplementary Note

3.1 Sample quality control of Chinese cohort

We first removed non-Chinese and individuals without height records. We also excluded the related
individuals with genetic relatedness exceeding 0.025 to ensure that heritability estimation and PRS
construction are not influenced by related individuals. Only individuals with reported age between
16 and 70, and height between 130 cm and 220 ¢cm were retained. Individuals with the genotyping
rate less than 5% were also removed. Next, we excluded SNPs with one or more of the following
properties: minor allele frequency less than 1%; missing genotypes in more than 5% of the samples;
Hardy-Weinberg equilibrium (HWE) p-value below 0.0001. Finally, we took the overlap of SNPs
between the Chinese dataset and the UKBB dataset. After these steps, we had 32,921 individuals
with 3,776,575 SNPs for GWAS and the individual-level PRS analysis. We computed the genetic
relatedness matrix (GRM) based on genome-wide genotype data, and then performed a randomized
approximation of principal component analysis using plink v2.00 to extract the first 10 principal
components for GWAS and cross-population analysis.

For BMI, we further removed individuals with extreme BMI values (larger than 38 or less than
10). This step results in 29, 147 participants with 3,777,871 SNPs for GWAS and the individual-
level PRS analysis. We conducted approximated PCA using plink v2.00 on these genotypes and
used the first 10 principal components in data analysis.

3.2 Sample quality control of UKBB data

The full UKBB data were downloaded from https://www.ukbiobank.ac.uk. We first extracted
the European whites who have reported their height and age. Then the relatives were removed by a
genetic relatedness threshold 0.025. Only the individuals with reported height between 130 cm and
220 cm were retained. Individuals with genotyping rate less than 5% were also removed. SNPs were
removed if at least one of the following is satisfied: minor allele frequency less than 1%; missing
genotypes in more than 5% of the samples; Hardy-Weinberg equilibrium (HWE) p-value below
0.0001. Finally, we took the overlap of SNPs between the Chinese dataset and the UKBB dataset.
At the end, we had 429, 312 individuals with 3,776,575 SNPs for GWAS and the individual-level
PRS analysis. Using plink v2.00, the approximate PCA was carried out on these genotypes and
the first 20 principal components were included as covariates for data analysis.

For BMI, the same QC steps were applied, resulting in 428, 846 samples with 3,777,871 SNPs
for GWAS and the individual-level PRS analysis. We conducted approximate PCA using plink
v2.00 on these genotypes and used the first 20 principal components for data analysis.

3.3 Sample quality control of IPM data

To obtain the ancestries of samples from IPM, we first projected their genotypes to the PC
coordinates derived from the 1000 Genomes Project. The samples with the coordinate of the
first PC > 0.09 and the coordinate of the second PC < —0.1 were identified as Africans, roughly
corresponding to the boundary of African ancestry suggested by the AFR from the 1000 Genomes
Project. We applied the same threshold to remove the ancestry outliers in the self-reported Africans


https://www.ukbiobank.ac.uk

from the UKBB dataset. For both datasets, samples that have phenotypic values more than 4
standard errors away from the mean phenotypic values were identified as outliers and excluded
from the analysis.

SNP-level (Rsq score>0.3) and genotype-per-participant-level (genotype probability>0.9) filters
were used to exclude poorly imputed variants. Genotype QC was performed in PLINK V2.0 after
excluding SNPs with a high missing call rate (>5%), a low minor allele frequency (<0.01) and
deviation from Hardy-Weinberg equilibrium (p-value< 1 x 107¢). After phenotype and genotype
quality control process (with details given in the Supplementary Note), we first merged two African
datasets together, leading to 8,422 confirmed African samples with a total of 2,690,737 overlapping
SNPs. Then we randomly selected 1K samples as testing data and used the remaining 7.4K samples
as training data.

3.4 Height and BMI associations in Chinese population

To analyze the PRS performance in multi-ancestry datasets, we have collected more than 30k Chinese
samples. Here, to study the genetic basis of height and BMI in Chinese population, we conducted
GWAS to identify associations from 3.7 million SNPs in the Chinese population. Covariates
including age, sex, and first 10 principal components were incorporated in the linear mixed model.
Using LD score regression (LDSC) [I], we observed genomic control factor Ay, = 1.20 and LDSC
intercept= 1.026 with standard error (SE=0.014) for height, A\,. = 1.10 and intercept= 0.998
with (SE=0.012) for BMI, respectively. Considering the polygenicity and the sample size, these
statistics suggested no evidence of inflation in our GWAS analysis (Q-Q plots in Figure and g,
and Figure [S11)). After adjusting for the covariates, the residuals of both BMI and height show
no correlation with either sexual or geometric factors, suggesting the confounding factors were
well-controlled (Figure [S§ and [S9).

We used the BOLT-LMM v2.3.2 to test for associations between phenotypes and SNPs. We
first identified the genome-wide significant SNPs using the p-value threshold 5 x 1078, Next, we
conducted LD clumping on the significant SNPs using PLINK v2.0 with the LD threshold of 0.1
and clumping radius of one million base pairs. The nearly independent index SNPs were then
annotated by the ANNOVAR software [2].

The GWAS identified 58 and 7 genome-wide significant loci (i.e., with leading SNP p-value<
5 x 107®) for height and BMI, respectively (Figure and f). Among the 58 height associated
loci, 50 loci were previously known, and 36 of them were reported in EAS [3]. The eight novel
loci include three intragenic ones (TBX2-AS1, LOC101927932 and GSDMC'), one located in the
exonic area of gene MIRLET7BHG and six at the intergenic regions with nearby genes SPAG17,
PMCH, MIR296, TRIB1, CHCHD7 and LOC100272217. All the seven loci of BMI were previously
reported and six of them were found in EAS [3].

To validate the associations identified from the Chinese data, we considered the summary-
statistics datasets released from UKBB, the GIANT consortia [4, [5] and BBJ [6, [7] as validation.
We compared the effect sizes of the genome-wide significant SNPs in our discovery study with those
from the validation studies. For height associated SNPs (Figure —e), all the effects in BBJ were
in the same direction with Chinese cohort. In contrast, a number of SNP effects showed opposite
directions between EAS and EUR. Besides, the slopes obtained by regressing the effect sizes of the
Chinese data on those from the other studies were higher for EAS than for EUR (1.07 for BBJ



compared with 0.65 for UKBB and 0.83 for GIANT), suggesting a more similar genetic architecture
within the EAS population and attenuated sharing of genetic basis between EAS and EUR. For
BMI (Figure [S10h-j), the effect sizes were consistent in directions across all studies, with similar
slopes in regression analysis for all non-Chinese populations (0.54 for UKBB, 0.56 for GIANT and
0.52 for BBJ).

By partitioning the genome by chromosomes, we found the heritability of height explained by
a chromosome was largely proportional to the chromosome length (Figure , consistent with
previous studies conducted in EUR, [4]. We further conducted a heritability enrichment analysis
using the baseline model in the stratified LDSC. We found that all the significantly enriched
functional regions in EAS are also enriched in Europeans (Figure and . By subsampling
the UKBB to the same sample size with Chinese, the enrichment patterns are very similar for
the Chinese and UKBB datasets (Figure and [S16). The comparative study of GWAS results
suggest that the genetic architectures of height and BMI are largely overlapped between EAS and
EUR.

3.5 PRS performance in different ethnic groups of the Chinese popu-
lation

Because the Chinese population is comprised of individuals from various ethnic backgrounds
(Supplementary Fig, the PRS performance may also vary across ethnic groups. To study the
behavior of PRS in different minority-ethnic groups, we computed the enrichment of each ethnic
group in different PRS-defined groups as the ratio between the proportion of an ethnic group in
each PRS quantiles to its proportion in the whole test set. The results from six ethnic groups
with more than 50 samples in the testing dataset are summarized in Fig[S24] For all the PRS
models, there is no enrichment for Han Chinese as the ratio is nearly one across the PRS range.
For the PRS derived by BLUP using the Chinese data only, Tujia and Manchu were enriched in
the bottom and top quantiles, respectively. This is consistent with the relative height of these two
ethnic groups in the population (Supplementary Fig.. However, BLUP failed to stratify the
other ethnic groups based on the Chinese training data. By incorporating the UKBB dataset in
training, XPA not only stratified the Tujia and Manchu people, but also captured the enrichment
of Mongols (the highest group) and Hui people (the third highest group) in the top quantile and
Zhuang people (the shortest group) in the bottom quantile. These results suggest that the PRS
derived by XPA can effectively stratify the subgroups in Chinese population, despite their different
ethnic backgrounds.

3.6 Trans-ancestry genetic correlations estimated by XPASS

The success of XPA and XPASS relies on the robust estimate of trans-ancestry genetic correlation.
In addition to risk prediction, the trans-ancestry genetic correlation has the value of representing
the shared genetic basis between populations.

Here, we applied XPASS to estimate trans-ancestry genetic correlations for a wide spectrum of
complex phenotypes, including complex traits/diseases as well as cellular and organismal phenotypes,
to provide a global picture of genetic architecture shared between EAS and EUR. Our analysis
includes 37 traits from EUR and 35 traits from EAS, where 28 of them are matched pairs (Figure



. We also estimated the pair-wise genetic correlations of the phenotypes within each population
using GNOVA [g] (Figure and [S21)). We used the individuals from the 1000 Genomes project as
external reference panels. For Europeans, 417 independent samples with 1,313, 833 SNPs were used
for constructing the reference panel. For East Asians, 337 independent samples with 1,209,411
SNPs were used in analysis. Because the sets of variants vary across studies, we only considered
the SNPs from the third phase of the International HapMap project phase 3 (HapMap3), resulting
in 850,000 SNPs on average included for estimating the genetic correlation after overlapping
procedure. For XPASS, we included the first 5 and 20 principal components as covariates for EAS
and EUR reference panels, respectively. The summary statistics of GWAS used in the analysis are
summarized in Supplementary Table 1.

Out of the the 28 matched traits, XPASS identified 27 traits that are significantly correlated
between the two populations (p-value < 0.05/28). Six traits, including type-2 diabetes (T2D),
systolic blood pressure (SBP), low-density lipoprotein (LDL), mean corpuscular hemoglobin (MCH),
Disc Area (DA) and Glaucoma, were highly correlated between EAS and EUR (p > 0.9). The
estimated glomerular filtration rate (eGFR) had the lowest genetic correlation. We estimated the
trans-ancestry correlation of height as 0.67 (SE=0.018) and BMI as 0.63 (SE=0.034), consistent
with previous findings [9].

Among all 1,295 trans-ancestry pairs of traits, 171 were significantly correlated after Bonferroni
correction (p-value < 0.05/1521), suggesting pervasive shared genetic basis between the two
populations. In particular, multiple pairs of traits strongly correlated within EUR largely remain
between EAS and EUR. Examples include positive genetic correlations between triglyceride levels
(TG) and T2D, BMI and heart-related diseases, and BMI and smoking behaviors as well as negative
genetic correlations between height and chronic ischemic heart disease (CIHD), high-density
lipoprotein (HDL) and TG, and eGFR and BMI [10].

We compared the estimates generated by XPASS with those generated by popcorn [11] and
summarized the results in Figure [S19 We found that the estimated correlations were highly
consistent between XPASS and popcorn. Besides, XPASS identified 164 pairs of significantly
correlated traits in total, including all 81 significant correlations reported by popcorn.

3.7 Extended Variance Component Model for Accounting for Allele
Frequency Difference

To assess the effect of allele frequency difference on the prediction accuracy, we extended the XPASS
model to include an additional genetic component that captures the effects of SNPs with large allele
frequency differences across populations. From our real data analysis, we did not observe significant
enrichment of heritability among these SNPs. As a result, we did not obtain a better PRS by
modeling the effect sizes of these SNPs as an additional variance component in the extended model.

We first partitioned the p SNPs into two disjoint sets according to the frequency difference

diff; = 12| . The set A included all the ‘heterogeneous’ SNPs with large allele
\/2f17j(17f1’j)+2f2,j(lffgyj)

differences and the set B contains the remaining SNPs that are not in A. Let X{' € R"*P4 and
X3t € R™2*P4 denote the standardized genotype matrices of ‘heterogeneous’ SNPs and X € Rm1xrs
and X2 € R™*P5 denote the standardized genotype matrices of the remaining SNPs for populations

one and two, respectively. We related the phenotypes and genotypes using the extended linear



models:
Y1 =Zyw; + Xfﬁf + Xfﬁf + €,

y2 = Zows + X?Bf + XQB/BZB +&,

where w; € R and wy € R* are fixed effects of covariates, 3 = [67, 1%, ..., B, |7 € RP4 and
B = [ﬁé‘fl, BﬁQ, e ,B{fp A}T € RPA are vectors collecting the effect sizes of the ‘heterogeneous’ SNPs
from the two populations, 87 = [, 8, ..., 60,,]" € RP® and BF = (87, B3, ..., B3, )" € RP®
are vectors collecting the effect sizes of the remaining SNPs from the two populations, and
e ~N(0,0%1,,) and & ~ N(O, agIm) are independent errors. We considered probabilistic structures
to the SNPs in sets A and B as

A 0 2
(B}ai]) NN(( )’< 014 pAO'I;UQA))’ =1, . .pa,
Bs.; 0/ \paoia0aa O34
518]') 0 o7 PBO1BO2B .
: NN ) 1B ) = 17"'7 )
(52% 0 PBO1BO2B U%B J bB

respectively, where 02, and o3, are the variance components of the ‘heterogeneous’ SNP effects in
the two populations, respectively, p4 is the trans-ancestry genetic correlation of the ‘heterogeneous’
SNP effects, o35 and o35 are the variance components of the remaining SNP effects in the two
populations, respectively, and pp is the trans-ancestry genetic correlation of the remaining SNP
effects. With this flexible statistical structure of genetic effects, the variance and genetic correlation
of ‘heterogeneous’ SNPs are allowed to be different from the remaining SNPs. We can estimate
the parameters and obtain the posterior means of 34 and 3% using GWAS summary statistics in
the similar way as in XPASS. To evaluate the impact of the ‘heterogeneous’ SNPs on prediction
performance, we applied this extended model to the height and BMI datasets. We estimated
the heritability explained by the two components, evaluated the enrichment of heritabilities of
the ‘heterogeneous’ component, and constructed PRS from the extended model. Recall that the
predictive R? of the original XPASS model is 17.63%. As summarized in [Table S1] we observed
neither significant enrichment of heritability in the ‘heterogeneous’ SNPs, nor improvement of
prediction performance when these SNPs were introduced as an additional component in the model.
Our results suggest that modeling the effect sizes of SNPs with large allele frequency difference
may not be the key to improve PRS.
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