The American Journal of Human Genetics, Volume 108

Supplemental information

Low-coverage sequencing cost-effectively

detects known and novel variation

in underrepresented populations

Alicia R. Martin, Elizabeth G. Atkinson, Sinéad B. Chapman, Anne Stevenson, Rocky E. Stroud, Tamrat Abebe, Dickens Akena, Melkam Alemayehu, Fred K. Ashaba, Lukoye Atwoli, Tera Bowers, Lori B. Chibnik, Mark J. Daly, Timothy DeSmet, Sheila Dodge, Abebaw Fekadu, Steven Ferriera, Bizu Gelaye, Stella Gichuru, Wilfred E. Injera, Roxanne James, Symon M. Kariuki, Gabriel Kigen, Karestan C. Koenen, Edith Kwobah, Joseph Kyebuzibwa, Lerato Majara, Henry Musinguzi, Rehema M. Mwema, Benjamin M. Neale, Carter P. Newman, Charles R.J.C. Newton, Joseph K. Pickrell, Raj Ramesar, Welelta Shiferaw, Dan J. Stein, Solomon Teferra, Celia van der Merwe, Zukiswa Zingela, and the NeuroGAP-Psychosis Study Team

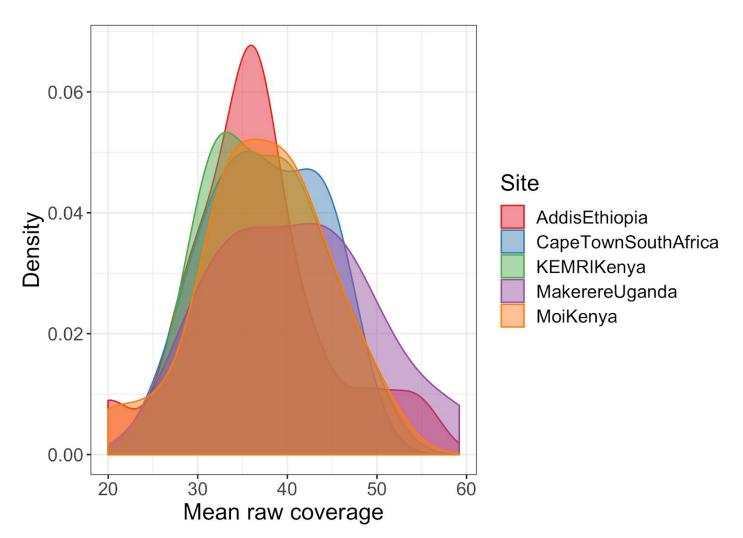
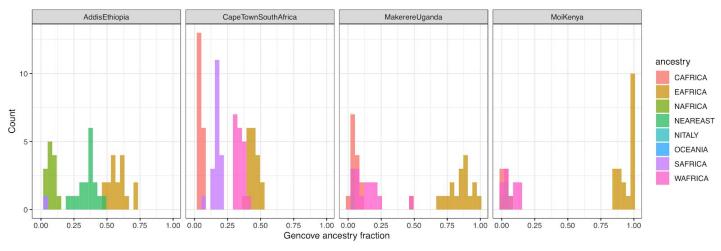
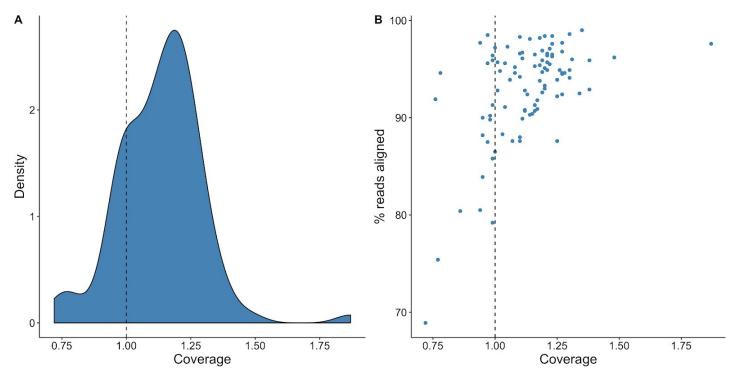
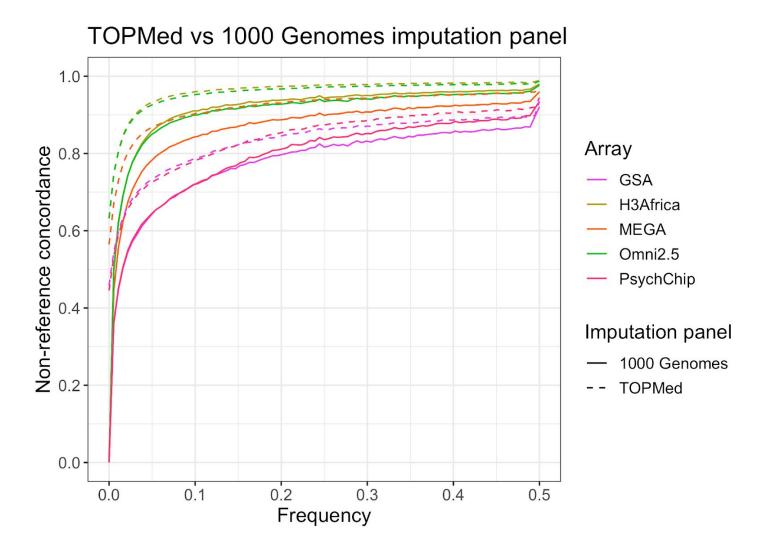


Figure S1 - Mean coverage across 91 NeuroGAP whole genomes.

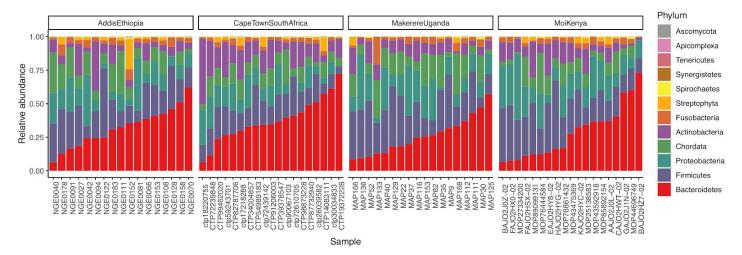

Figure S2 - Ancestry report generated by Gencove.

Figure S3 - Actual WGS coverage when targeting 1X across 95 NeuroGAP samples. A) Coverage across all samples. B) Coverage and percent read alignment.

Figure S4 - Comparison of imputation accuracy from various GWAS arrays in NeuroGAP using the 1000 Genomes versus TOPMed imputation panels. Note: Because the TOPMed imputation panel does not support genotype refinement, imputation quality could not be compared for low-coverage sequencing.

Figure S5 - Phylum-level microbiome variation. Results were generated using Kraken 1.0 with unmapped reads from the 6X coverage downsampled data. All phyla with a non-zero relative abundance across individuals are shown, in order of mean abundance (i.e. bacteroidetes on bottom have the highest mean relative abundance), and individuals are ordered within site based on their relative abundance of the most frequent phylum.

NeuroGAP site	Primary ethnicity	Count
AddisEthiopia	Amhara	8
AddisEthiopia	Oromo	5
AddisEthiopia	Sebat Bet Gurage	1
AddisEthiopia	Sidama	1
AddisEthiopia	Silt'e	1
AddisEthiopia	Sodo Gurage	1
CapeTownSouthAfrica	Xhosa	17
CapeTownSouthAfrica	Other (please specify)	1
CapeTownSouthAfrica	Zulu	1
KEMRIKenya	Mijikenda	10
KEMRIKenya	Kamba	2
KEMRIKenya	Luhya	2
KEMRIKenya	Chonyi	1
KEMRIKenya	Giriama	1
KEMRIKenya	Meru	1
KEMRIKenya	Other (please specify)	1
MakerereUganda	Baganda	3

Table S1 - Counts of primary self-reported ethnicities by project site

Lugbara	3
Banyankore	2
Basoga	2
Iteso	2
Bafumbira	1
Bakonzo	1
Banyoro	1
Karimojong	1
Madi	1
Sabiny	1
Kalenjin	9
Kikuyu	4
Luhya	4
Luo	2
	BanyankoreBanyankoreBasogaItesoBafumbiraBafumbiraBakonzoBanyoroKarimojongMadiSabinyKalenjinKikuyuLuhya

Table S2 - Sensitivity and quality control metrics from downsampling experiment using raw variant callmetrics. The metrics at the top of the table (TOTAL_SNPS through NUM_SINGLETONS) were produced bythe Picard software. Values in the lower rows were produced by custom scripts (Data and Code Availability).Common variants here are defined as having > 5 copies (i.e. MAF>3%).

Depth	0.5X	1X	2X	4X	6X	10X	20X	All reads
		13,036,89	15,716,01	20,958,98	23,352,34	24,955,95	25,136,68	26,093,64
TOTAL_SNPS	9,236,562	1	9	7	1	4	0	4
PCT_DBSNP	0.81	0.79	0.83	0.77	0.74	0.72	0.73	0.71
DBSNP_TITV	2.11	2.13	2.15	2.16	2.17	2.18	2.18	2.18
NOVEL_TITV	1.6	1.6	1.84	1.92	1.95	1.98	1.93	1.9
TOTAL_INDELS	1,330,023	1,813,310	2,382,243	2,962,429	3,311,102	3,269,766	3,033,225	3,034,130
PCT_DBSNP_INDELS	0.77	0.68	0.58	0.49	0.45	0.46	0.5	0.5
DBSNP_INS_DEL_RATIO	0.81	0.76	0.7	0.67	0.66	0.65	0.66	0.66
NOVEL_INS_DEL_RATIO	0.51	0.48	0.41	0.37	0.39	0.49	0.63	0.66
TOTAL_MULTIALLELIC_ SNPS	51,827	114,941	193,097	324,576	395,427	458,749	471,974	406,266
NUM_IN_DB_SNP_MULTI ALLELIC	44,922	94,856	152,005	237,526	277,126	307,149	305,615	264,302
TOTAL_COMPLEX_INDE LS	195,879	414,268	625,125	828,820	996,225	1,117,219	1,211,503	1,238,754
NUM_IN_DB_SNP_COMP LEX_INDELS	182,848	375,943	544,172	684,130	778,092	833,033	867,798	876,455
SNP_REFERENCE_BIAS	0.38	0.38	0.41	0.45	0.47	0.5	0.5	0.51
NUM_SINGLETONS	1,161,967	2,215,593	3,777,977	7,040,205	8,697,345	9,579,361	9,264,341	9,505,281
			14,346,30	23,134,83	26,670,67	28,641,51	28,468,20	31,926,97
n_hom_ref (mean)	3,171,751	7,898,931	4	4	3	0	5	5

n_het (mean)	45,177	170,224	621,024	1,795,694	2,720,851	3,630,054	4,109,947	4,148,694
n_hom_alt (mean)	322,066	736,349	1,414,176	1,984,122	2,056,318	2,013,028	1,986,839	1,924,021
Fraction singletons present in full set	0.04	0.09	0.2	0.45	0.62	0.8	0.93	1
Fraction of 2-5 copy sites in full set	0.09	0.21	0.42	0.7	0.81	0.88	0.94	1
Fraction common variants in full set	0.55	0.74	0.88	0.95	0.97	0.98	0.99	1
Genome-wide concordance	0.22	0.42	0.66	0.86	0.93	0.97	0.98	1

Table S3 - Raw SNP and indel non-reference variant concordance from low-coverage genomes with full coverage genomes prior to genotype refinement or imputation. Concordance is averaged across variants of all allele frequencies.

Depth	SNPs	Indels
0.5X	0.12	0.10
1X	0.17	0.12
2X	0.30	0.19
4X	0.54	0.35
6X	0.70	0.49
10X	0.84	0.65
20X	0.91	0.83

Table S4 - Non-reference concordance across methods and technologies.Values reported are across allSNPs shown in Figure 4.

Depth/array	Method	Overall non-reference concordance
6X	BEAGLE	0.975
4X	BEAGLE	0.959
6X	Gencove	0.949
4X	Gencove	0.94
H3Africa	BEAGLE	0.932
Omni2.5	BEAGLE	0.926

2X	Gencove	0.924
2X	BEAGLE	0.91
1X	Gencove	0.904
MEGA	BEAGLE	0.892
0.5X	Gencove	0.875
PsychChip	BEAGLE	0.829
GSA	BEAGLE	0.816
1X	BEAGLE	0.815
0.5X	BEAGLE	0.681

Table S5 - Average non-reference concordance across technologies and allele frequencies for eachpopulation. Values for each site show non-reference concordance. The same imputation reference panel,1000 Genomes phase 3 data, was used for all analyses, including as input to both BEAGLE and Gencove.

Depth/array	Method	AddisEthiopia	CapeTownSouthAfric a	KEMRIKenya	MakerereUganda	MoiKenya
6X	BEAGLE	0.961	0.964	0.971	0.97	0.968
4X	BEAGLE	0.939	0.946	0.958	0.956	0.953
H3Africa	BEAGLE	0.922	0.91	0.949	0.941	0.94
Omni2.5	BEAGLE	0.918	0.902	0.944	0.935	0.934
6X	Gencove	0.908	0.909	N/A	0.929	0.927
4X	Gencove	0.899	0.9	N/A	0.923	0.92
2X	Gencove	0.883	0.882	N/A	0.911	0.908
2X	BEAGLE	0.877	0.892	0.919	0.913	0.907
MEGA	BEAGLE	0.88	0.861	0.918	0.901	0.902
1X	Gencove	0.862	0.862	N/A	0.894	0.891
0.5X	Gencove	0.831	0.833	N/A	0.869	0.865
PsychChip	BEAGLE	0.808	0.798	0.864	0.836	0.839
GSA	BEAGLE	0.796	0.782	0.854	0.822	0.827
1X	BEAGLE	0.771	0.795	0.835	0.82	0.813
0.5X	BEAGLE	0.639	0.663	0.709	0.683	0.68

Table S6 - Costs of reagents for sequencing and genotyping options including sequencing volume discounts. We aggregated list prices of reagents from Illumina's website as of April 10, 2020. These prices notably do not include sample and library preparation costs, which we assume to be comparable between GWAS arrays and sequencing approaches. The H3Africa array is not commercially listed on Illumina's site and is thus not included here. Sequencing reagent costs assume Illumina's list price of the NovaSeq 6000 S4 Reagent Kit. Bulk pricing listed at \$240,000 for 10 flow cells (\$24,000/flow cell), \$456,000 for 20 flow cells

(\$22,800/flow cell), and \$768,000 for 40 flow cells (\$19,200/flow cell) reduces costs at large scales. Rows are sorted based on the largest bulk purchasing cost.

Depth/Array	List cost	Bulk purchasing (10 flow cells for \$240,000)	Bulk purchasing (20 flow cells for \$456,000)	Bulk purchasing (40 flow cells for \$768,000)
30X	1,320.83	\$1,000.00	\$950.00	\$800.00
20X	\$880.55	\$666.67	\$633.33	\$533.33
Omni2.5	\$184.43	\$184.43	\$184.43	\$184.43
6X	\$264.17	\$200.00	\$190.00	\$160.00
MEGA Global	\$119.00	\$119.00	\$119.00	\$119.00
4X	\$176.11	\$133.33	\$126.67	\$106.67
PsychChip	\$71.38	\$71.38	\$71.38	\$71.38
2X	\$88.06	\$66.67	\$63.33	\$53.33
GSA	\$49.00	\$49.00	\$49.00	\$49.00
1X	\$44.03	\$33.33	\$31.67	\$26.67
0.5X	\$22.01	\$16.67	\$15.83	\$13.33
H3Africa	Unknown	Unknown	Unknown	Unknown

Table S7 - Compute times for genotype refinement and imputation using BEAGLE. We assume a computational cost of \$0.02 / CPU hour run on custom machines with 11 Gb of RAM as these were run across ~1000 shards on Google Cloud preemptible nodes. Costs were divided across 93 samples, 2 of which were dropped from analysis due to contamination. Some values are missing because job failures required multiple iterations of resubmissions.

Depth/Array	Step	Total run time (s)	Cost per sample
0.5X	Refinement	3218175	\$0.19
1X	Refinement	5443643	\$0.33
2X	Refinement	8962256	\$0.54
4X	Refinement	14103035	\$0.84
0.5X	Imputation	576078	\$0.03
1X	Imputation	536017	\$0.03
2X	Imputation	581023	\$0.03
Omni2.5	Imputation	381759	\$0.02
H3Africa	Imputation	362223	\$0.02
MEGA	Imputation	326611	\$0.02
PsychChip	Imputation	292045	\$0.02
GSA	Imputation	287468	\$0.02