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Supplemental Figures 
 
Figure S1. Flowchart describing sequencing cohorts and case collection. 
 

 
 
 
Figure S2. Age of PME onset distribution for all 78 unrelated probands. 

 
 

 

 



 

 

Figure S3. Pathogenic variants in NUS1, DHDDS and ALG10 and dolichol-dependent glycosylation 
pathway.  

 
Abbreviations: DHDDS - Dehydrodolichyl Diphosphate Synthase Subunit; FPP - farnesyl pyrophospatase domain; IPP - isopentenyl pyrophosphatase 
domain; NPC2 - Intracellular cholesterol transporter 2; NUS1 - Nuclear Undecaprenyl Pyrophosphate Synthase 1 (Nogo-B Receptor), TM - 
transmembrane domain 
 

(A) Locations of variants in NUS1. (B) Locations of variants in DHDDS. (C) Locations of variant in ALG10. (D) 
Glycosylation pathway showing involvement of NUS1, DHDDS and ALG10 (in red) (adapted from Stanley P, 
Taniguchi N, Aebi M. N-Glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. 
Essentials of Glycobiology. Cold Spring Harbor (NY); 2015. p. 99-111.)1 

 

  



 

 

Figure S4: Aberrant splicing caused by the deep intronic CLN6 variant.  

 
(A) Agarose gel electrophoresis showing the migration of RT-PCR products amplified from total 
RNA extracted from patient fibroblast cells using primers from exons 4 and 6 of CLN6. From 
patient (P) cells two fragments are amplified. Controls (C) show one strong amplicon. The sizes of 
the two fragments identified in the patient samples, based on sequence analysis, are shown on 
the right. The lower fragment corresponds to the expected product. The fragments seen in 
controls also correspond to the expected product, based on sequence analysis, even if the 
fragments run differently from those in the patient samples.  (B) Partial sequence chromatogram 
of a control individual sample shows expected sequence in the exon 4-exon 5 boundary in the 307-
bp amplicon. Partial sequence chromatogram from the 426-bp amplicon in the patient sample. 
The exon 4 sequence is followed by 119 bp of intronic sequence (shown only in part) before 
beginning of the exon 5 sequence. The position of the homozygous c.486+28T>C variant is pointed 
by an arrow. (C) Schematic representation of intron 4 of CLN6 showing the position of the 
c.486+28T>C patient, the intronic ESE created by the variant and the non-canonical splice site 
(AG/GT) activated. The intronic sequence included in the 426-bp amplicon is shown in pink color 
and the intronic sequence excluded from the mRNA is shown in green. 
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Figure S5. Deletion confirmation of NEU1 was performed by quantitative PCR.  
 

 
Primers for NEU1 in exon 2 and exon 5 as well as adjacent non-deleted control gene C6orf48 were 
normalized to the single-copy gene β-microglobulin (B2M) using the ΔΔCt method in DNA from 
patient PME10, his affected brother and carrier father compared to controls. qPCR was performed 
using the IQ SybrGreen kit (Bio-Rad) on a CFX96 Touch qPCR system (Bio-Rad). Primer efficiencies 
and their linear range were determined by serially diluted genomic DNA and the presence of any 
unspecific amplification was excluded by melting curve analysis and agarose gel electrophoresis. 
All reactions were performed in triplicates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure S6. Chr1q23.2 haplotype encompassing PEX19 c.254C>T (p.A85V) variant.  

 
Shared homozygous-by-descent haplotype (pink) found in the three patients of Maltese origin 
with PEX19 variants.  The haplotype length shared between the two unrelated families is much 
smaller (~1cM) consistent with a distant common ancestor. 
 
  



 

 

Figure S7: Molecular modelling supports CACNA1A p.Asp1633Asn variant loss-of-function effect.  

 

  
 
Symbols and abbreviations: Yellow dashed lines with number: distance between residues in Å; Red sticks: oxygen atoms; Blue 
sticks: nitrogen atoms; VSD: voltage sensor domain; CTD: C-terminal domain; AID: α1-interacting domain; S2, S3, S4: segments 2, 3, 
and 4. Residues involved in the interactions shown in panel (A) are marked by arrows in panel (B). 

 

CACNA1A p.Asp1633 represents a conserved residue. The human sequence either side of Asp1633 is 

homologous with the rabbit Cav1.1 channel, enabling Pymol modelling of the structural impact of the 

p.Asp1633Asn variant identified in patient PME16. (A) Homology modelling of the human Cav2.1 

Asp1633Asn mutation using the cryo-EM structure of the rabbit Cav1.1 channel Wu et al (2015) 

Science 350: aad2395-aad2395, and (2016) Nature 537: 191-196 - PDB accession number 3JBR (B) Amino 

acid sequence alignment of the of the human Cav2.1 channel (GenBank NM_001127222.1; Protein ID = 

NP_001120694.1)  and the rabbit Cav1.1 channel (protein ID = NP_001095190.1), using CLC sequence 

Viewer 7.7  (Qiagen, Aarhus, Denmark). 

 



 

 

In the wild type channel, Asp 1633 is located in segment 2 of the voltage sensor domain IV (VSDIV).  In the 

human Cav2.1 channel, Asp 1633 corresponds to Asp 1186 of the rabbit Cav1.1 channel. Asp 1186 has 

a negatively charged sidechain, which interacts with the positively charged sidechain of Lysine 1245; Lys 

1245 may also interact with the Glutamic acid (Glu) 1164; repulsion may occur between Asp 1186 and 

Glu1164.  

 

In the mutant channel, the acidic Asp residue (with negatively charged sidechain) is replaced by 

the polar/neutral Asn 1186 residue. Asn 1186 may interact with both Lys 1245 and Glu 1164; whereas the 

polar interaction between Lys 1245 and Glu 1164 (that exists also in the wild-type channel) should remain 

unaffected. It's likely that the Asp1186Asn mutation (equivalent with Asp1633Asn) stabilises the interaction 

between the S4 and the S3 segments in VSDIV. Because of the increased interaction between S3-S4, the 

mutation may compromise activation gating. As a result, the typical vertical (outward) movements of the 

S4 segment during activation may be impeded, leading to loss-of-function. 

 

Consistent with the above structural modelling, a Web-based machine learning model, capable of 
predicting loss-of-function (LoF) or gain-of-function effects in voltage gated calcium channels (Heyne HO et 
al. Sci Transl Med, 2020)2, predicted loss-of-function with a probability of 0.77, and pathogenicity with a 
probability of 0.87, for the p.Asp1633Asn variant. 

  



 

 

Supplemental Tables 

Table S1. Major forms of PME with known genetic etiology. 
 

PME subtype 
Inheritance 
pattern 

Gene(s) 
Protein function / 
molecular pathway 

Published 
>20 
independent 
cases 

ULD (EPM1) AR CSTB 
Inhibitor of lysosomal 
cysteine proteases 

Yes 

Lafora disease 
(EPM2A/B) 

AR 
EPM2A, 
NHLRC1 

Glycogen metabolism Yes 

NCLs 
AR 

TPP1, CLN3, 
CLN5, CLN6, 
MFSD8, CLN8  

Lysosomal enzymes or 
membrane proteins 

Yes 

AD DNAJC5 

AMRF (EPM4) AR SCARB2 
Lysosomal membrane 
protein 

Yes 

North Sea PME 
(EPM6) 

AR GOSR2 Golgi vesicle transport Yes 

MERRF Mitochondrial MT-TK^ 
Mitochondrial transfer-
RNA 

Yes 

PME (EPM3) AR KCTD7 
Interaction with 
potassium ion channels 

Yes 

Sialidosis type 1 AR NEU1 
Lysosomal enzyme which 
breaks down 
oligosaccharides 

Yes 

DRPLA AD ATN1 
Accumulation of ATN1 in 
neurons due to repeat 
expansion 

Yes 

MEAK (EPM7) AD KCNC1 
Neuronal voltage-gated 
potassium ion channel 

Yes 

Juvenile 
Huntingtons 

AD HTT Transcription regulation Yes 

Gaucher disease 
type 3 

AR GBA 
Lysosomal enzyme which 
breaks down glycolipid 
glucosylceramide 

Yes 

    

^pathogenic variants in this gene accounting for ~90% of MERRF patients  
 
  



 

 

Table S2. Research variant prioritization score. 

Variant level 

a) Null variant (nonsense, frameshift, canonical +/- 1 or 2 splice sites, 
initiation codon, deletion) 
b) Damaging missense (all in silico tools predict damaging effect) 

2 

c) Conflicting missense (at least 1, but not all in silico tools predict 
damaging effect) 
d) Splicing variant (all in silico tools predict a splicing effect, but variant 
not at canonical +/- 1 or 2 sites) 
e) Inframe deletion 

1 

f) Benign missense (all in silico tools predict benign effect) 
g) Conflicting or benign splicing variant (at least 1 in silico tool predicts 
no splicing effect) 

0 

Pedigree level 

a) Heterozygous de novo variant in established dominant disease gene 
(i.e. parental DNA available) 
b) Comp het variant in established recessive disease gene (i.e. two 
variants in trans) 
c) Homozygous variant in established recessive disease gene with 
pedigree segregation and/or linkage data to support inheritance 
model 

2 

d) Homozygous variant in established recessive disease gene (+/- 
support with F>0 / variant located in runs of homozygosity RoH) 
e) Heterozygous variant in established dominant disease gene 
inherited from affected parent 
f) Heterozygous de novo variant in gene with no established disease 
association 
g) Comp het or homozygous variant in gene with no established 
disease association 

1 

h) Heterozygous variant with undetermined parental inheritance (0.5 if 
segregation known in single parent) 

0 

Gene level 

a) Established PME gene 
b) Established neurological gene (e.g., epilepsy, ataxia) with clear 
patient phenotypic match on clinical review 
c) Established neurological gene with overlapping PME features with 
variants in multiple unrelated patients 

2 

d) Established neurological gene (e.g., epilepsy, ataxia) with some 
patient phenotypic overlap on clinical review 
e) Gene has established biological overlap with known PME genes with 
variants in multiple unrelated patients (0.5 if single patient) 
f) Uncertain clinical/biological match with multiple unrelated patients 

1 

g) Uncertain clinical/biological match in single patient 0 

 
  



 

 

Table S3. Catalogue of short tandem repeats searched for across PME cohort. 

locus long name OMIM inheritance gene location 
gene 
region motif 

DM1 Myotonic dystrophy 1 160900 AD DMPK 19q13 3'UTR CTG 

DM2 Myotonic dystrophy 2 602668 AD ZNF9/CNBP 3q21.3 intron CCTG 

DRPLA 
Dentatorubral-
pallidoluysian atrophy 125370 AD DRPLA/ATN1 12p13.31 coding CAG 

EPM1A 
Myoclonic epilepsy of 
Unverricht and Lundborg 254800 AR CSTB 21q22.3 promotor 

CCCCGCC
CCGCG 

FRAXA Fragile-X site A 309550 X FMR1 Xq27.3 5'UTR CGG 

FRAXE Fragile-X site E 309548 X FMR2 Xq28 5'UTR CCG 

FRDA Friedreich ataxia 229300 AR FXN 9q13 intron GAA 

FTDALS1 

Amyotrophic lateral 
sclerosis-frontotemporal 
dementia 105550 AD C9orf72 9p21 intron GGGGCC 

HD Huntington disease 143100 AD HTT 4p16.3 coding CAG 

HDL2 Huntington disease-like 2 606438 AD JPH3 16q24.3 exon CTG 

SBMA Kennedy disease 313200 X AR Xq12 coding CAG 

SCA1 Spinocerebellar ataxia 1 164400 AD ATXN1 6p23 coding CAG 

SCA2 Spinocerebellar ataxia 2 183090 AD ATXN2 12q24 coding CAG 

SCA3 Machado-Joseph disease 109150 AD ATXN3 14q32.1 coding CAG 

SCA6 Spinocerebellar ataxia 6 183086 AD CACNA1A 19p13 coding CAG 

SCA7 Spinocerebellar ataxia 7 164500 AD ATXN7 3p14.1 coding CAG 

SCA8 Spinocerebellar ataxia 8 608768 AD 
ATXN8OS/ATX
N8 13q21 utRNA CTG 

SCA10 Spinocerebellar ataxia 10 603516 AD ATXN10 22q13.31 intron ATTCT 

SCA12 Spinocerebellar ataxia 12 604326 AD PPP2R2B 5q32 promotor CAG 

SCA17 Spinocerebellar ataxia 17 607136 AD TBP 6q27 coding CAG 

SCA36 Spinocerebellar ataxia 36 614153 AD NOP56 20p13 intron GGCCTG 

FECD3 
Fuchs endothelial corneal 
dystrophy 3 613267 AD TCF4 18q21.2 intron CTG 

FAME1 
Familial adult myoclonic 
epilepsy 1 601068 AD SAMD12 8q24 intron TTTCA 

FAME2 
Familial adult myoclonic 
epilepsy 2 607876 AD STARD7 2q11.2 intron TTTCA 

FAME3 
Familial adult myoclonic 
epilepsy 3 613608 AD MARCHF6 

5p15.31-
p15.1 intron TTTCA 

FAME6 
Familial adult myoclonic 
epilepsy 6 618074 AD TNRC6A 16p12.1 intron TTTCA 

FAME7 
Familial adult myoclonic 
epilepsy 7 618075 AD RAPGEF2 4q32.1 intron TTTCA 

 
Abbreviations: AD, autosomal dominant; AR, autosomal recessive; X, X-linked 
  



 

 

Supplemental Methods 

## Brain co-Expression gene analysis ## 

## .R code 

# load required R packages 

library(corrplot) 

library(ggrepel) 

library(RColorBrewer) 

library(magrittr) 

library(tidyverse) 

library(dynamicTreeCut) 

library(DescTools) 

library(data.table) 

library(WGCNA) 

library(dendextend) 

library(gProfileR) 

library(RUVcorr) 

library(qgraph) 

options(stringsAsFactors = FALSE) 

# read in matrices 

brainSpan_dir <- " " 

samps <- fread(paste0(brainSpan_dir, "/genes_matrix_csv/columns_metadata.csv")) 

genes <- fread(paste0(brainSpan_dir, "/genes_matrix_csv/rows_metadata.csv")) 

matrix <- fread(paste0(brainSpan_dir,  

                       "/genes_matrix_csv/expression_matrix.csv")) %>% 

  as.matrix(., rownames=1) %>% 

  t  

 

colnames(matrix) <- genes[,gene_symbol] 

rownames(matrix) <- samps[,column_num] 

# Cleaning data 

## Identify genes and samples with an excess of missing data 

## identify time points of interest.  

samp.interest <- samps[,age] %like any% c("%pcw", "%mos", "%yrs")  

## remove genes with excess of missing data and select samples of interest 

include.matrix <- matrix[samp.interest, ] 

gsg<- WGCNA::goodSamplesGenes(include.matrix, 

                              minNSamples = nrow(samps)/2) 

                              #tol = 1) 

## summarise 

gsg$goodSamples %>% table 

gsg$goodGenes %>% table 

 

## remove genes with excess of missing data and select samples of interest 

clean.matrix <- include.matrix[ , gsg$goodGenes] 

## Remove genes with  expresion == 0 for >50% samples 

n.expressed.gt0 <- apply(clean.matrix, 2, function(x) length(x[x>0])) 

keep.expressed.gt0.50pc <- n.expressed.gt0 >= nrow(clean.matrix)*0.5 

keep.unique <- !duplicated(colnames(clean.matrix)) 

## collate list of genes to keep. 

table( keep.expressed.gt0.50pc) 

keep.genes <- keep.expressed.gt0.50pc & keep.unique 

## filter for genes to keep and log2 transform   

temp.matrix <- clean.matrix[, keep.genes] 

c <-  matrix(1, nrow = nrow(temp.matrix), ncol=ncol(temp.matrix)) 

temp.matrix.c <- temp.matrix + c  

clean.log.matrix <- log(temp.matrix.c, 2) 

clean.log.matrix  %>% hist 

samps.matrix  <- samps[samp.interest] 

## calculate weights 

samps.matrix <- samps.matrix[ , weights:=sapply(samps.matrix[,donor_id],  

                                                function(x)                                                         

1/sqrt(sum(samps.matrix[,donor_id]==x)))]  

# Define known and candidate PME genes 

PME.genes <- c("CSTB", "KCNC1", "EPM2A", "NHLRC1", "NEU1", "GBA", "CLN6",  

               "DNAJC5",  

               "SCARB2", "GOSR2", "ASAH1", "KCTD7", "CERS1", "ATN1", "CLN3",  

               "CLN5",  

               "HTT", "TPP1", "MFSD8", "CLN8") 

# MT-TK expression data not available in resource 

cand.genes <- c("STUB1", "CHD2", "NUS1", "DYNC1H1", "DHDDS", "CACNA1A",  

                "CAMTA1",  

                "PEX19", "APOA1BP", "ALG10", "CACNA2D2", "RARS2") 

all.genes <- c(PME.genes, cand.genes) 

# Generate Correlation matrix 

weights <- samps.matrix %>% 

  .[match(rownames(clean.log.matrix), column_num)] %>% 

  .[, weights] 

cor.matrix <- cov.wt(clean.log.matrix,  

              wt = weights,  

              cor = TRUE)$cor 



 

 

# Function to plot heatmap matrix 

plotCandidatesCorr <- function(cor.matrix = cor.matrix,  

                               candidates = all.genes,  

                               colours = colours, 

                               order = "hclust", 

                               title = "") { 

  candidates.corr <- cor.matrix[rownames(cor.matrix) %in% candidates,  

                                colnames(cor.matrix) %in% candidates]  

    if(order=="hclust") { 

    genes.corr <- data.table(gene = colnames(candidates.corr)) 

    label.cols <- data.table(gene = candidates, 

                             col = colours) %>% 

      .[genes.corr, on = "gene", col] %>% 

      .[corrMatOrder(candidates.corr, order= order, hclust.method= "median")] 

    corrplot(candidates.corr, 

             order = "hclust", 

             hclust.method= "median", 

             method = "color", 

             addrect = 6, 

             tl.col = label.cols, 

             tl.cex = 0.8, 

             tl.srt = 60)  

  } else  { 

    if(order=="original") { 

      genes.corr <- candidates1[candidates1 %in% colnames(candidates.corr)] 

      candidates.corr <- candidates.corr[genes.corr , genes.corr] 

       

      label.cols <- data.table(gene = candidates, 

                               col = colours) %>% 

        .[gene %in% genes.corr, col]  

 } else { 
    genes.corr <- data.table(gene = colnames(candidates.corr)) 

    label.cols <- data.table(gene = candidates, 

                             col = colours) %>% 

      .[genes.corr, on = "gene", col] %>% 

      .[corrMatOrder(candidates.corr, order= order)] 

    } 

    corrplot(candidates.corr, 

             order = order, 

             method = "color", 

             tl.col = label.cols, 

             tl.cex = 0.8, 

             tl.srt = 60, 

             title = title)  

} 

} 

# Generate heatmap figure 

plotCandidatesCorr(cor.matrix = cor.matrix,  

                   candidates = unique(c(PME.genes, cand.genes)), 

                   colours = c(rep("black", times=length(PME.genes)), 

                               rep("dimgrey", times=length(cand.genes)))) 

# Test for evidence of excessive co-expression 

## P-value 

calcCoExpPval <- function(candidates=all.genes, cor.matrix=cor.matrix) { 

    candsVal <- cor.matrix[rownames(cor.matrix) %in% candidates,  

                         colnames(cor.matrix) %in% candidates] %>% 

    replace(., lower.tri(., TRUE), NA) %>% 

    melt %>% 

    as.data.table %>% 

    setnames(., c("gene1", "gene2", "corr")) %>% 

    .[gene1 != gene2] %>% 

    .[,corr] %>% 

    na.omit %>% 

    abs %>% 

    median 

randomVals <- list() 

  for (i in 1:5000) {  

    random <- sample(colnames(cor.matrix),  

                     length(candidates[candidates %in%  

                                           colnames(cor.matrix)])) 

    randomVals[[i]] <- cor.matrix[rownames(cor.matrix) %in% random,  

                                  colnames(cor.matrix) %in% random] %>% 

      replace(., lower.tri(., TRUE), NA) %>% 

      melt %>% 

      as.data.table %>% 

      setnames(., c("gene1", "gene2", "corr")) %>% 

      .[gene1 != gene2] %>% 

      .[,corr] %>% 

      na.omit %>% 

      abs %>% 

      median 

    } 



 

 

    sortedVals <- randomVals %>% 

    unlist %>% 

    sort  

  pVal <- 1-ecdf(sortedVals)(candsVal) 

  return(pVal) 

} 

calcCoExpPval(candidates=all.genes, cor.matrix=cor.matrix) 
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