Supplemental

Supplemental Figure 1. Proportion of missense mutations in *LMNA* versus all known disease-associated mutations (Human Gene Mutation Database). *LMNA* vs. expected: Fisher's exact test, p<0.0001.

Phenotype		Geographic Origin					
		Europe	Africa	Americas	Oceania	Asia	Unknown
Striated	Myopathy	17 (35%)	-	7 (15%)	3 (6%)	16 (33%)	5 (10%)
	Cardiomyopathy	282 (56%)	5 (1%)	78 (16%)	-	73 (15%)	62 (12%)
	Both	254 (53%)	2 (<1%)	55 (12%)	-	61 (13%)	105 (22%)
	Total	552 (54%)	7 (1%)	140 (14%)	3 (<1%)	150 (15%)	172 (17%)
Lipodystrophy/Metabolic		76 (24%)	-	16 (5%)	-	20 (6%)	203 (64%)
Neuropathy		-	44 (96%)	1 (2%)	-	-	1 (2%)
Progeria		22 (18%)	3 (2%)	31 (25%)	-	13 (11%)	54 (44%)
Bone/Skin		14 (44%)	3 (9%)	4 (13%)	-	8 (25%)	3 (9%)
Overlap		56 (72%)	2 (3%)	13 (17%)	1 (1%)	3 (4%)	3 (4%)
Total		721 (45%)	59 (4%)	205 (13%)	4 (<1%)	194 (12%)	436 (27%)

Supplemental Table 2. Reported patient geographic origin by phenotype.

R - Lipodystrophy
Neuropathy
Progeria
Bone/Skin
Overlap

Phenotype by amino acid gained

Phenotype by amino acid lost

Supplemental Figure 2. Phenotype sorted by amino acid change. A) Phenotype by amino acid lost: the most commonly gained amino acid residues as a result of missense mutations charted by the phenotype observed. B) Phenotype by amino acid lost: the most commonly lost amino acid residues as a result of missense mutations charted by the phenotype observed.

Striated

49

В

Phosphorylation change	Mutation	Possible P-site	Possible Kinase (family)	
	L52P	51	CDK, MAPK	
	A278P	277	CDK, MAPK	
Gain	L302P	301	CDK, MAPK	
Gain	Q396R	398	PKA	
	T528R	533	(Akt)	
	G635D	(632, 652)	CK2	
	P4R	3	MAPK, CDK	
	T10I	10	PKA, PKC	
	S22L	22	CDK, MAPK	
	R48P	51	PKC	
	S277P	277	PKA, PKC	
	R298C	301	PKC	
	R388C	390	PKA	
	R388H	390	PKA	
	S395L	395	PKC	
	R401C	403, 404	PKA, PKC	
Loss	R427G	429	PKA	
LUSS	D461Y	458	CK2	
	R455P	458	PKC	
	R482L	480	PKC	
	R482Q	480	PKC	
	R482W	480	PKC	
	R541C	546	(Akt)	
	R545C	548	(CHEK1/2, Akt)	
	R527C	(525, 533, 534)	РКС	
	R527H	(525, 533, 534)	РКС	
	R527L	(525, 533, 534)	PKC	
	R527P	(525, 533, 534)	РКС	

Supplemental Table 3. A list of putative kinase P-sites that were predicted to be gained or lost by both computational tools, sorted by phosphorylation site.

Supplemental Figure 3. Predicted phosphorylation changes by disease status and phenotype. A) Predicted phosphorylation in disease vs. benign groups: the proportion of patients with variants associated with disease or not predicted to result in loss, gain, both, or no change in phosphorylation. B) Predicted phosphorylation changes by phenotype: the proportion of patients by phenotype with variants predicted to result in loss, gain, both, or no change in phosphorylation specified to result in loss, gain, both, or no change in phosphorylation.

Supplemental Figure 4. Example verification of predicted structural changes. Modeling of point mutations and visualization performed using DynaMut (see Methods). Depicted are two example hotspot missense mutations from both rod (PDB: 6JLB chain A, residues 46-247) and tail (PDB: 1IFR, residues 432-544) domains, either predicted to undergo significant structural change or be structurally preserved. From left to right: 1) global structure depicted in the form of coiled domain or globular domain, with red indicated increased flexibility in the protein induced by the mutation; 2) Cartoon of wild-type residue (in mint green) and neighboring interactions, color coded based on key; 3) Cartoon of mutant residue (in mint green) and neighboring interactions, with lost interactions from mutations labeled by arrow(s). Interactions are largely preserved in the bottom half panel, with only relatively minor interactions lost, if any. VdW, Van der Waals. **Supplemental Table 1.** Compiled mutational (cDNA variant, amino acid change, exon, domain, mutation type) and clinical data (phenotype, heterozygosity status, sex, and geographic origin) from all sources in this study (Human Intermediate Filament Database, Universal Mutation Database, UniProt, and literature review), comprising 1890 individuals and 404 unique mutations. Possible post-translational modification associated with each residue, according to UniProt, are also included.