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Do you have any concerns about statistical analyses in this paper? If so, please specify them 
explicitly in your report. 
No 
 
It is a condition of publication that authors make their supporting data, code and materials 
available - either as supplementary material or hosted in an external repository. Please rate, if 
applicable, the supporting data on the following criteria. 
 
   Is it accessible? 
   N/A 
 
   Is it clear?  
   N/A 
 
   Is it adequate?  
   N/A 
 
Do you have any ethical concerns with this paper? 
No 
 
Comments to the Author 
This manuscript reviews helpful material related to the cerebellar Golgi cell - granule cell 
network and places that material in a probabilistic inference framework. As the authors note, in 
prevailing theory, the cerebellum is thought to execute forward model prediction. Although 
prediction requires incorporating uncertainty, the most common formulations of these ideas in 
cerebellar neuroscience often do not afford much role for uncertainty. Among many other places 
where uncertainty should propagate through the cerebellar circuitry, the authors here consider its 
role at the input layer in “weighting” granule cell representations of different information sources 
via activation patterns of the network of inhibitory Golgi cells. 
The topics reviewed are likely to be of use to cerebellar and non-cerebellar researchers, and the 
probabilistic framework is helpful in a field whose most dominant theories are largely non-
probabilistic in nature. The authors also helpfully describe unanswered questions and predictions 
that may be tested in future research. 
I have two general suggestions for the authors’ revision.  
First, the review’s model/hypothesis and language is sometimes too speculative or nonspecific, 
veering a bit far from “review” territory into theoretical hypothesis territory. To take an example, 
P10 “tonic inhibition sets an optimal signal-to-noise ratio, acting as a prior over average or 
expected signal intensity” (as far as I know this is hypothetical, and even as a theory, it’s not 
exactly clear that this solves a necessary uncertainty problem. Aren’t there specific uncertainties 
associated with different modalities?). More generally, the organization of the review sometimes 
takes the form of a list of known features of Golgi anatomy followed by a guess as to how those 
features might contribute to probabilistic inference. It would be helpful for the authors to lay out, 
somewhere near the outset, the set of uncertainties they think are relevant to inference. They can 
refer to this framework as they make their way through the review of Golgi functional anatomy, 
rather than springing on readers wholly new probabilistic concepts throughout the paper. 
Second, in most people’s minds, the state prediction relevant to cerebellar processing is done after 
the input layer, e.g. in the Purkinje cells. This review is framed as addressing the issue of 
confidence, but it’s focused on confidence in the input variables the cerebellum uses for state 
estimation. I agree that input variance is important to determining confidence in the resulting 
state estimation. Still it should be more explicitly described to naive readers that this is the first 
step in the process of inference, and is distinct from computing predictions and the confidence 
level of those predictions (input confidence must be propagated through to the final distribution 
of state estimates etc). The rest of these computations are beyond the scope here, but it will help 
to give readers a concise sense of the overall framework. 
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Other specific comments: 
 
P3 par2 “In this framework, inference and learning are based on probabilistic models entertained 
by the brain, representing somatic and environmental variables or states, their dynamical 
interactions and causal link to sensory input.”  
“Causal link” is not a great descriptor. If the task is probabilistic inference, it is typically not 
relevant whether the connection is causal or correlative. 
 
p.5 par1- “The inhibitory network in the granular layer is simpler than in cerebral cortical 
regions…”  
The authors’ ground their perspective in neocortical top-down inferential inhibitory processing, 
but to do so fairly they should consider addressing a few things more completely. 
First, at the anatomical level there is not really a compelling comparison to be made between the 
extremely complicated intra- and inter-areal top-down feedback modulation of input to the 
neocortex, and the very limited recurrent circuitry of the cerebellum. This should give more 
pause than implied in the present text, and suggests the comparison should be at most a 
conceptual analog rather than a mechanistic one. 
On the other hand, classical cerebellar theories also don’t do justice to what “top-down” 
processing does exist in the cerebellum (by treating the cerebellum as a feedforward structure 
without recurrent excitation, in some cases almost as precondition of the computational theory).  
As the authors note, DCN provides recurrent mossy fiber inputs, and this may indeed be a route 
for a more sophisticated form of feedback modulation. It might be helpful to stress that this 
potential mechanism for modulating inputs is a substantial divergence from classical feedforward 
adaptive filtering theory, and a probabilistic inference framework may provide a starting point 
for explaining this anatomical detail that is ‘inconvenient’ in other theories. 
 
P6 par1 - In the discussion of Golgi cells’ wide axonal arborization vs narrow dendritic column, 
I’m not sure I view this as evidence of a lateral inhibition mechanism, at least as presented, nor 
necessarily as a discrepancy? Granule cell axons are ~1 mm long--perhaps narrow Golgi dendritic 
columns are sufficient to sample from a granule cell population as widely distributed as that 
contacted by the diffuse Golgi axonal branches? 
 
P9 Par 3 in the proof opens with a strange semi-repeat of par2 
The organization of the last two sections “Adaptive filter model” and “Kalman filter model” is a 
bit unclear/jarring. Is the purpose of these sections to contrast them with an alternative model in 
which Golgi cells contribute to Bayesian inference? Is it to explain their shortcomings? Is it to 
explain that if Golgi cells convey uncertainty, that can be incorporated into these models in order 
to solve their shortcomings? In addition, it is unfortunate that this section leads directly into the 
discussion, without any concluding and transitional statements, as it will doubtless confuse 
readers less familiar with this literature by distracting from the central narrative of the review. 
 
P3 par2 “In neural networks, precision weights presynaptic input...” is asserted as a known truth 
rather than as a hypothesis (assuming that is the intention? Otherwise needs citations). 
 
A number of assorted typos/missing words/grammatical issues/partial sentences/run-on 
sentences, please take a look throughout. 
 
 
 
 

Review form: Reviewer 2 
 
Recommendation 
Major revision is needed (please make suggestions in comments) 
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Scientific importance: Is the manuscript an original and important contribution to its field? 
Acceptable 
 
General interest: Is the paper of sufficient general interest? 
Acceptable 
 
Quality of the paper: Is the overall quality of the paper suitable? 
Marginal 
 
Is the length of the paper justified?  
Yes 
 
Should the paper be seen by a specialist statistical reviewer?  
No 
 
Do you have any concerns about statistical analyses in this paper? If so, please specify them 
explicitly in your report. 
No 
 
It is a condition of publication that authors make their supporting data, code and materials 
available - either as supplementary material or hosted in an external repository. Please rate, if 
applicable, the supporting data on the following criteria. 
 
   Is it accessible? 
   N/A 
 
   Is it clear?  
   N/A 
 
   Is it adequate?  
   N/A 
 
Do you have any ethical concerns with this paper? 
No 
 
Comments to the Author 
This perspective/review advances the hypothesis that the inhibitory mechanisms present in the 
granule cell layer of the cerebellum could act as a sensorimotor state estimator that encodes 
uncertainty. The article begins with a rather brief introduction to motor control, probabilistic 
internal models and state estimation. None of these are sufficiently ‘unpacked’ for readers 
unfamiliar with these concepts to understand them. The central question of how the cerebellar 
cortex might compute state estimation is clearly stated and the proposal to examine the 
underlying mechanisms is set out. Moreover, the central idea of the cerebellar cortex encoding 
probability distributions that are used for Bayesian state estimation is interesting. But the authors 
seem to be unaware that it has been proposed before by Paulin (Paulin et al. 2005. J. Neural Eng. 2 
(2005) S219–S234 doi:10.1088/1741-2560/2/3/S06), who has provided compelling arguments for 
state estimation since the early 1990s (Paulin Human Movement Science 12 (1993) 5-16; Paulin, 
Brain Behav Evol 1993;41:39-50). Overall, this manuscript provides a good review of the cellular 
and systems level studies of the cerebellar input layer (excepting those detailed below), but in my 
view it does not provide a convincing link between the underlying mechanisms and behaviours 
to the probabilistic state estimation hypothesis. The review thus provides a rather undeveloped 
description of encoding uncertainty and state estimation and a more complete account of the 
anatomy and physiology of inhibition the input layer and some descriptions of other theories of 
cerebellar function. The figures have some artistic merit but convey little scientific content and 
miss the opportunity to explain the complex concepts discussed. Lastly the manuscript PDF has 
several major formatting errors. The main text was duplicated twice, with the references and 
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conclusion missing from the initial copy of the text. Moreover, in the complete second copy there 
was a duplication of a large block of text in the section on the Kalman filter. In my view the 
manuscript requires a very major rewrite that includes an accessible explanation of exactly what 
probabilistic state estimation is, how uncertainty can be used in motor control and incorporates 
and acknowledges Paulin’s and Latham’s (see below) work on this. Moreover, the text needs to 
be much more focussed on the evidence and mechanisms that could support probabilistic state 
estimation as well as highlighting results that do not fit. 
 
Specific points for consideration 
 
1) Expand on explaining Bayesian state estimation and the encoding of uncertainty. It 
would be useful to have a figure dedicated to explaining this. In addition to the Paulin papers 
mentioned above, omissions include the work of Peter Latham (eg Ma et al. Bayesian inference 
with probabilistic population codes Nat. Neurosci. 2006.) and the work of Bence Ölveczky  - e.g. 
Dhawale et al. The Role of Variability in Motor Learning Annu Rev Neurosci. 2017). In particular, 
given the proposed high dimensional codes in the granule cell population, uncertainty can be 
represented at the level of the granule cell population code; although this does not exclude the 
role of inhibition in shaping the code, its role may depend on how the statistics of mossy fibre 
inputs themselves change with context. 
 
2) In section Precision on State estimation, it is discussed that the ability to change granule 
cell integrative properties can be modulate by inhibition, as a function of behavioural context 
(example of dampened auditory inputs in visuomotor task). It is not clear how this links to the 
precision-weighting, or whether this links to a more generalized framework of combining 
saliency and precision. As mentioned in part 1, a clearer description/example of how the 
framework of Bayesian state estimation should incorporate these contexts may be helpful. 
 
3) Closed cortical-cerebellar loops are mentioned but the key paper on this was not cited 
(Kelly and Strick, J. Neurosci., 2003). 
 
4) Predictive coding is mentioned but Kathleen Cullen, one of the main pioneers of this, is 
not cited – e.g. Brooks Carriot and Cullen, Nature Neurosci 2015. 
 
5) Glutamate and GABA spillover within the cerebellar glomerulus is discussed but key 
original papers are omitted . 
 
6) Given that the intrinsic activity of Golgi cells and the spatial properties of their inhibitory 
effect is discussed in some detail it is surprising that their strong local electrical coupling and its 
role in synchronizing and desynchonizing firing is not discussed. The strength, spatial 
dependence of gap junction coupling and synchrony were investigated in Dugue et al., Neuron 
2009; Vervaeke et al., Neuron 2010; van Welie Neuron 2016).  
 
7) Some studies that examined the behavioural outcome of eliminating Golgi cells, and 
altering granule cell inhibition would merit discussion. Example that come to mind include Seja  
et al. . EMBO J 2012;  Chiu et al J. Neurosci. 2005 and Watanabe et al., Call 1998. 
 
8) Is inhibition proposed to strictly increase with uncertainty? Its link to variability of 
inputs may be more stable than its link to behavioural or sensory uncertainty (depending on 
input statistics). 
 
9) In the section “Golgi cells underlie precise granular layer computations”, paragraphs3-4, 
it is not clearly stated what is known physiological and anatomical evidence, versus what are the 
proposed or consensus implications about inhibitory control of the circuit. For example, the 
existence of potential strong feedback circuit is shown in [61], but the ability to dynamically 
modulate granule cells in this feedback manner (at the individual or network level) is still an 
untested hypothesis, especially given the variable kinetics at Golgi cell – granule cell synapses 
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[63]. While the downstream effects of inhibition on individual granule cells is well studied, the 
interaction of different motifs to shape inhibition accordingly needs further experimental 
corroboration. 
 
10) It is unclear why the adaptive filter theory should be completely at odds with the 
precision-weighting. Instead of assuming a stable or uniform set of temporal basis functions, 
inhibition can change the dynamical repertoire of the network, that constrain or shape estimation 
at the output layer. Further, the experimental studies all report granule cell responses to external 
sensory stimuli, without any learning or predictive task component.  
 
 
 

Decision letter (RSPB-2020-2290.R0) 
 
19-Oct-2020 
 
Dear Dr Palacios: 
 
I am writing to inform you that your manuscript RSPB-2020-2290 entitled "Accounting for 
uncertainty: inhibition for neural inference in the cerebellum" has, in its current form, been 
rejected for publication in Proceedings B. The referees think the article could be useful and the the 
topic is certainly interesting, but both have major concerns about the structure and the balance 
between novelty and being overly speculative. They also point to gaps in the literature cited,  
 
So, it seems to me that substantial revisions are necessary and fair bit of work would be needed to 
reach the necessary standard. Because the topic is important, I would be willing to consider a 
resubmission, provided the comments of the referees are fully addressed.  However please note 
that this is neither a provisional acceptance nor a task that can be done quickly and easily. You 
may decide that it's easier to submit elsewhere. 
 
A resubmission would be treated as a new manuscript.  However, we will approach the same 
reviewers if they are available and it is deemed appropriate to do so by the Editor. Please note 
that resubmissions must be submitted within six months of the date of this email. In exceptional 
circumstances, extensions may be possible if agreed with the Editorial Office. Manuscripts 
submitted after this date will be automatically rejected. 
 
Please find below the comments made by the referees, not including confidential reports to the 
Editor, which I hope you will find useful. If you do choose to resubmit your manuscript, please 
upload the following: 
 
1) A ‘response to referees’ document including details of how you have responded to the 
comments, and the adjustments you have made. 
2) A clean copy of the manuscript and one with 'tracked changes' indicating your 'response to 
referees' comments document. 
3) Line numbers in your main document. 
4) Please read our data sharing policies to ensure that you meet our 
requirements https://royalsociety.org/journals/authors/author-guidelines/#data. 
 
To upload a resubmitted manuscript, log into http://mc.manuscriptcentral.com/prsb and enter 
your Author Centre, where you will find your manuscript title listed under "Manuscripts with 
Decisions." Under "Actions," click on "Create a Resubmission." Please be sure to indicate in your 
cover letter that it is a resubmission, and supply the previous reference number. 
 
Best wishes, 
Innes Cuthill 
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Prof. Innes Cuthill 
Reviews Editor, Proceedings B 
mailto: proceedingsb@royalsociety.org 
  
Reviewer(s)' Comments to Author: 
 
Referee: 1 
 
Comments to the Author(s) 
This manuscript reviews helpful material related to the cerebellar Golgi cell - granule cell 
network and places that material in a probabilistic inference framework. As the authors note, in 
prevailing theory, the cerebellum is thought to execute forward model prediction. Although 
prediction requires incorporating uncertainty, the most common formulations of these ideas in 
cerebellar neuroscience often do not afford much role for uncertainty. Among many other places 
where uncertainty should propagate through the cerebellar circuitry, the authors here consider its 
role at the input layer in “weighting” granule cell representations of different information sources 
via activation patterns of the network of inhibitory Golgi cells. 
The topics reviewed are likely to be of use to cerebellar and non-cerebellar researchers, and the 
probabilistic framework is helpful in a field whose most dominant theories are largely non-
probabilistic in nature. The authors also helpfully describe unanswered questions and predictions 
that may be tested in future research. 
I have two general suggestions for the authors’ revision. 
First, the review’s model/hypothesis and language is sometimes too speculative or nonspecific, 
veering a bit far from “review” territory into theoretical hypothesis territory. To take an example, 
P10 “tonic inhibition sets an optimal signal-to-noise ratio, acting as a prior over average or 
expected signal intensity” (as far as I know this is hypothetical, and even as a theory, it’s not 
exactly clear that this solves a necessary uncertainty problem. Aren’t there specific uncertainties 
associated with different modalities?). More generally, the organization of the review sometimes 
takes the form of a list of known features of Golgi anatomy followed by a guess as to how those 
features might contribute to probabilistic inference. It would be helpful for the authors to lay out, 
somewhere near the outset, the set of uncertainties they think are relevant to inference. They can 
refer to this framework as they make their way through the review of Golgi functional anatomy, 
rather than springing on readers wholly new probabilistic concepts throughout the paper. 
Second, in most people’s minds, the state prediction relevant to cerebellar processing is done after 
the input layer, e.g. in the Purkinje cells. This review is framed as addressing the issue of 
confidence, but it’s focused on confidence in the input variables the cerebellum uses for state 
estimation. I agree that input variance is important to determining confidence in the resulting 
state estimation. Still it should be more explicitly described to naive readers that this is the first 
step in the process of inference, and is distinct from computing predictions and the confidence 
level of those predictions (input confidence must be propagated through to the final distribution 
of state estimates etc). The rest of these computations are beyond the scope here, but it will help 
to give readers a concise sense of the overall framework. 
 
Other specific comments: 
 
P3 par2 “In this framework, inference and learning are based on probabilistic models entertained 
by the brain, representing somatic and environmental variables or states, their dynamical 
interactions and causal link to sensory input.” 
“Causal link” is not a great descriptor. If the task is probabilistic inference, it is typically not 
relevant whether the connection is causal or correlative. 
 
p.5 par1- “The inhibitory network in the granular layer is simpler than in cerebral cortical 
regions…” 
The authors’ ground their perspective in neocortical top-down inferential inhibitory processing, 
but to do so fairly they should consider addressing a few things more completely. 
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First, at the anatomical level there is not really a compelling comparison to be made between the 
extremely complicated intra- and inter-areal top-down feedback modulation of input to the 
neocortex, and the very limited recurrent circuitry of the cerebellum. This should give more 
pause than implied in the present text, and suggests the comparison should be at most a 
conceptual analog rather than a mechanistic one. 
On the other hand, classical cerebellar theories also don’t do justice to what “top-down” 
processing does exist in the cerebellum (by treating the cerebellum as a feedforward structure 
without recurrent excitation, in some cases almost as precondition of the computational theory). 
 As the authors note, DCN provides recurrent mossy fiber inputs, and this may indeed be a route 
for a more sophisticated form of feedback modulation. It might be helpful to stress that this 
potential mechanism for modulating inputs is a substantial divergence from classical feedforward 
adaptive filtering theory, and a probabilistic inference framework may provide a starting point 
for explaining this anatomical detail that is ‘inconvenient’ in other theories. 
 
P6 par1 - In the discussion of Golgi cells’ wide axonal arborization vs narrow dendritic column, 
I’m not sure I view this as evidence of a lateral inhibition mechanism, at least as presented, nor 
necessarily as a discrepancy? Granule cell axons are ~1 mm long--perhaps narrow Golgi dendritic 
columns are sufficient to sample from a granule cell population as widely distributed as that 
contacted by the diffuse Golgi axonal branches? 
 
P9 Par 3 in the proof opens with a strange semi-repeat of par2 
 
The organization of the last two sections “Adaptive filter model” and “Kalman filter model” is a 
bit unclear/jarring. Is the purpose of these sections to contrast them with an alternative model in 
which Golgi cells contribute to Bayesian inference? Is it to explain their shortcomings? Is it to 
explain that if Golgi cells convey uncertainty, that can be incorporated into these models in order 
to solve their shortcomings? In addition, it is unfortunate that this section leads directly into the 
discussion, without any concluding and transitional statements, as it will doubtless confuse 
readers less familiar with this literature by distracting from the central narrative of the review. 
 
P3 par2 “In neural networks, precision weights presynaptic input...” is asserted as a known truth 
rather than as a hypothesis (assuming that is the intention? Otherwise needs citations). 
 
A number of assorted typos/missing words/grammatical issues/partial sentences/run-on 
sentences, please take a look throughout. 
 
Referee: 2 
 
Comments to the Author(s) 
This perspective/review advances the hypothesis that the inhibitory mechanisms present in the 
granule cell layer of the cerebellum could act as a sensorimotor state estimator that encodes 
uncertainty. The article begins with a rather brief introduction to motor control, probabilistic 
internal models and state estimation. None of these are sufficiently ‘unpacked’ for readers 
unfamiliar with these concepts to understand them. The central question of how the cerebellar 
cortex might compute state estimation is clearly stated and the proposal to examine the 
underlying mechanisms is set out. Moreover, the central idea of the cerebellar cortex encoding 
probability distributions that are used for Bayesian state estimation is interesting. But the authors 
seem to be unaware that it has been proposed before by Paulin (Paulin et al. 2005. J. Neural Eng. 2 
(2005) S219–S234 doi:10.1088/1741-2560/2/3/S06), who has provided compelling arguments for 
state estimation since the early 1990s (Paulin Human Movement Science 12 (1993) 5-16; Paulin, 
Brain Behav Evol 1993;41:39-50). Overall, this manuscript provides a good review of the cellular 
and systems level studies of the cerebellar input layer (excepting those detailed below), but in my 
view it does not provide a convincing link between the underlying mechanisms and behaviours 
to the probabilistic state estimation hypothesis. The review thus provides a rather undeveloped 
description of encoding uncertainty and state estimation and a more complete account of the 
anatomy and physiology of inhibition the input layer and some descriptions of other theories of 
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cerebellar function. The figures have some artistic merit but convey little scientific content and 
miss the opportunity to explain the complex concepts discussed. Lastly the manuscript PDF has 
several major formatting errors. The main text was duplicated twice, with the references and 
conclusion missing from the initial copy of the text. Moreover, in the complete second copy there 
was a duplication of a large block of text in the section on the Kalman filter. In my view the 
manuscript requires a very major rewrite that includes an accessible explanation of exactly what 
probabilistic state estimation is, how uncertainty can be used in motor control and incorporates 
and acknowledges Paulin’s and Latham’s (see below) work on this. Moreover, the text needs to 
be much more focussed on the evidence and mechanisms that could support probabilistic state 
estimation as well as highlighting results that do not fit. 
 
Specific points for consideration 
 
1) Expand on explaining Bayesian state estimation and the encoding of uncertainty. It would be 
useful to have a figure dedicated to explaining this. In addition to the Paulin papers mentioned 
above, omissions include the work of Peter Latham (eg Ma et al. Bayesian inference with 
probabilistic population codes Nat. Neurosci. 2006.) and the work of Bence Ölveczky  - e.g. 
Dhawale et al. The Role of Variability in Motor Learning Annu Rev Neurosci. 2017). In particular, 
given the proposed high dimensional codes in the granule cell population, uncertainty can be 
represented at the level of the granule cell population code; although this does not exclude the 
role of inhibition in shaping the code, its role may depend on how the statistics of mossy fibre 
inputs themselves change with context. 
 
2) In section Precision on State estimation, it is discussed that the ability to change granule cell 
integrative properties can be modulate by inhibition, as a function of behavioural context 
(example of dampened auditory inputs in visuomotor task). It is not clear how this links to the 
precision-weighting, or whether this links to a more generalized framework of combining 
saliency and precision. As mentioned in part 1, a clearer description/example of how the 
framework of Bayesian state estimation should incorporate these contexts may be helpful. 
 
3) Closed cortical-cerebellar loops are mentioned but the key paper on this was not cited (Kelly 
and Strick, J. Neurosci., 2003). 
 
4) Predictive coding is mentioned but Kathleen Cullen, one of the main pioneers of this, is not 
cited – e.g. Brooks Carriot and Cullen, Nature Neurosci 2015. 
 
5) Glutamate and GABA spillover within the cerebellar glomerulus is discussed but key original 
papers are omitted . 
 
6) Given that the intrinsic activity of Golgi cells and the spatial properties of their inhibitory effect 
is discussed in some detail it is surprising that their strong local electrical coupling and its role in 
synchronizing and desynchonizing firing is not discussed. The strength, spatial dependence of 
gap junction coupling and synchrony were investigated in Dugue et al., Neuron 2009; Vervaeke 
et al., Neuron 2010; van Welie Neuron 2016). 
 
7) Some studies that examined the behavioural outcome of eliminating Golgi cells, and altering 
granule cell inhibition would merit discussion. Example that come to mind include Seja  et al. . 
EMBO J 2012;  Chiu et al J. Neurosci. 2005 and Watanabe et al., Call 1998. 
 
8) Is inhibition proposed to strictly increase with uncertainty? Its link to variability of inputs may 
be more stable than its link to behavioural or sensory uncertainty (depending on input statistics). 
 
9) In the section “Golgi cells underlie precise granular layer computations”, paragraphs3-4, it is 
not clearly stated what is known physiological and anatomical evidence, versus what are the 
proposed or consensus implications about inhibitory control of the circuit. For example, the 
existence of potential strong feedback circuit is shown in [61], but the ability to dynamically 
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modulate granule cells in this feedback manner (at the individual or network level) is still an 
untested hypothesis, especially given the variable kinetics at Golgi cell – granule cell synapses 
[63]. While the downstream effects of inhibition on individual granule cells is well studied, the 
interaction of different motifs to shape inhibition accordingly needs further experimental 
corroboration. 
 
10) It is unclear why the adaptive filter theory should be completely at odds with the precision-
weighting. Instead of assuming a stable or uniform set of temporal basis functions, inhibition can 
change the dynamical repertoire of the network, that constrain or shape estimation at the output 
layer. Further, the experimental studies all report granule cell responses to external sensory 
stimuli, without any learning or predictive task component. 
 
 
 

Author's Response to Decision Letter for (RSPB-2020-2290.R0) 
 
See Appendix A. 
 
 
 

RSPB-2021-0276.R0 
 
Review form: Reviewer 2 
 
Recommendation 
Accept as is 
 
Scientific importance: Is the manuscript an original and important contribution to its field? 
Excellent 
 
General interest: Is the paper of sufficient general interest? 
Excellent 
 
Quality of the paper: Is the overall quality of the paper suitable? 
Excellent 
 
Is the length of the paper justified?  
Yes 
 
Should the paper be seen by a specialist statistical reviewer?  
No 
 
Do you have any concerns about statistical analyses in this paper? If so, please specify them 
explicitly in your report. 
No 
 
It is a condition of publication that authors make their supporting data, code and materials 
available - either as supplementary material or hosted in an external repository. Please rate, if 
applicable, the supporting data on the following criteria. 
 
   Is it accessible? 
   N/A 
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   Is it clear?  
   N/A 
 
   Is it adequate?  
   N/A 
 
Do you have any ethical concerns with this paper? 
No 
 
Comments to the Author 
The authors have done a good job in revising the article, which now acknowledges previous 
work on this subject and incorporates the latest research. There are however a few minor typos to 
correct. 
 
Ln 144 F-I  not defined. 
Ln 165 '6' should be subscript 
Ln 205 Huang et al., eLife 2013 could be added here. 
Ln 327 HaMori. The 'M' should not be capitalized.  
 
 
 

Decision letter (RSPB-2021-0276.R0) 
 
24-Feb-2021 
 
Dear Dr Palacios 
 
I am pleased to inform you that your revised manuscript RSPB-2021-0276 entitled "Accounting 
for uncertainty: inhibition for neural inference in the cerebellum" has been accepted for 
publication in Proceedings B. 
 
The referee is happy with your revisions and has recommended publication, but also pointed out 
some minor typos. Therefore, I invite you to make the changes and upload the final version of 
your manuscript. Because the schedule for publication is very tight, it is a condition of 
publication that you submit the revised version of your manuscript within 7 days. If you do not 
think you will be able to meet this date please let us know. 
 
To upload your manuscript, log into https://mc.manuscriptcentral.com/prsb and enter your 
Author Centre, where you will find your manuscript title listed under "Manuscripts with 
Decisions." Under "Actions," click on "Create a Revision." Your manuscript number has been 
appended to denote a revision. You will be unable to make your revisions on the originally 
submitted version of the manuscript. Instead, revise your manuscript and upload a new version 
through your Author Centre. 
 
When submitting your revised manuscript, you will be able to respond to the comments made by 
the referee and upload a file "Response to Referees". You can use this to confirm that you've 
corrected the typos. 
 
Before uploading your revised files please make sure that you have: 
 
1) A text file of the manuscript (doc, txt, rtf or tex), including the references, tables (including 
captions) and figure captions. Please remove any tracked changes from the text before 
submission. PDF files are not an accepted format for the "Main Document". 
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2) A separate electronic file of each figure (tiff, EPS or print-quality PDF preferred). The format 
should be produced directly from original creation package, or original software format. 
PowerPoint files are not accepted. 
 
3) Electronic supplementary material: this should be contained in a separate file and where 
possible, all ESM should be combined into a single file. All supplementary materials 
accompanying an accepted article will be treated as in their final form. They will be published 
alongside the paper on the journal website and posted on the online figshare repository. Files on 
figshare will be made available approximately one week before the accompanying article so that 
the supplementary material can be attributed a unique DOI. 
 
Online supplementary material will also carry the title and description provided during 
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Reply to referees

We would like to thank the referees for their insightful and useful comments, which greatly
improved the review. We hope that the changes described below correspond to what the referees
had in mind.

1st referee:

This manuscript reviews helpful material related to the cerebellar Golgi cell - granule cell
network and places that material in a probabilistic inference framework. As the authors note,
in prevailing theory, the cerebellum is thought to execute forward model prediction. Although
prediction requires incorporating uncertainty, the most common formulations of these ideas in
cerebellar neuroscience often do not afford much role for uncertainty. Among many other places
where uncertainty should propagate through the cerebellar circuitry, the authors here consider its
role at the input layer in weighting granule cell representations of different information sources via
activation patterns of the network of inhibitory Golgi cells.

The topics reviewed are likely to be of use to cerebellar and non-cerebellar researchers, and
the probabilistic framework is helpful in a field whose most dominant theories are largely non-
probabilistic in nature. The authors also helpfully describe unanswered questions and predictions
that may be tested in future research.

I have two general suggestions for the authors revision.
First, the reviews model/hypothesis and language is sometimes too speculative or nonspecific,

veering a bit far from review territory into theoretical hypothesis territory. To take an example,
P10 “tonic inhibition sets an optimal signal-to-noise ratio, acting as a prior over average or expected
signal intensity” (as far as I know this is hypothetical, and even as a theory, its not exactly clear
that this solves a necessary uncertainty problem. Aren’t there specific uncertainties associated with
different modalities?). More generally, the organization of the review sometimes takes the form
of a list of known features of Golgi anatomy followed by a guess as to how those features might
contribute to probabilistic inference. It would be helpful for the authors to lay out, somewhere
near the outset, the set of uncertainties they think are relevant to inference. They can refer to this
framework as they make their way through the review of Golgi functional anatomy, rather than
springing on readers wholly new probabilistic concepts throughout the paper.

Thanks for these suggestions. We have re-expressed some of our claims throughout
the paper to make their hypothetical nature more evident. We have also reorganised
the text to make the structure of the paper easier to follow. In particular, we are now
clearly stating how different neural mechanisms associated to Golgi cell inhibition
(summarised in Figure 3) relate to precision-weighting for state estimation at the
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beginning and conclusion of the section “Golgi cells underlie precise granular layer
computations”; in short, they inform neural dynamics about precision of mossy fibre
input in different ways. We now say (lines 137-158, 239-243 in the manuscript with
highlighted changes):

“The inhibitory network in the cerebellar granular layer is simpler than in cerebral cortical
regions, lacking cellular diversity and extremely complicated intra- and inter-areal top-down feed-
back modulation (cf. [1, 2]); nonetheless, it is suited to effectively balance excitation in granule
cells. Golgi cells act through both a hyperpolarising current that lowers granule cell resting po-
tential – efficiently thresholding or gating MF input – and through an increase in membrane
conductance or shunting inhibition – associated with faster membrane dynamics and ultimately a
biased sensitivity towards synchronous presynaptic activity [3, 4]. As a result, Golgi cells can set
the excitability or responsiveness of granule cells, approximated by the operative point (position
and slope) of their F-I curve, controlling propagation of MF activity within the cerebellar circuit.
From a neural inference perspective, this propagation should be conditional upon the precision of
information transmitted, implying that Golgi cell inhibition is sensitive to signals that are most
relevant for present belief updating. It is therefore necessary to identify which mechanisms may
inform granule cell excitability via inhibition in this context-dependent manner. One distinction
mentioned above is between bottom-up and top-down sources of conditioning; beyond this, various
biophysical mechanisms might determine how Golgi cells operate. In this section, we highlight
those mechanisms that may allow Golgi cell inhibition to perform precision-weighting of the input.
First, we see how inhibition sets neural gain to match average levels of activity. Then, we consider
time-varying inhibition and its modulation by temporal and spatial properties of the input; in
doing so, we characterise the temporal unfolding of MF activity and its spatial organisation as a
proxy for its intrinsic (bottom-up) precision. Finally, we address mechanisms, such as modulation
of Golgi cells by neuromodulators or nucleocortical projections, that do not directly depend or
arise from current MF input, yet control how these are transmitted by changing the endogenous
state of the granular layer; we refer to these as top-down mechanisms signalling expected precision
of the input.”

...

“In conclusion, there appear to be a variety of mechanisms that could inform the granular
layer about precision of MF input, irrespectively of the extremely diversified nature of those input.
These mechanisms condition granule cell excitation through Golgi cell inhibition, which constitutes
the unique local feedback of the network. In this sense, Golgi cells emerge as a crucial hub for
precise state estimation in the cerebellar cortex (Figure 2).”

In addition, as remarked in the comment, there could be specific uncertainties
associated to the different types of mossy fibre input, which in turn could be encoded
differently. The inhibitory mechanisms revised here are common to the granular layer,
and thus might be able to deal with these different types of uncertainties, translating
them into a common granule cell population code. We address these issues at the end
of section “Precision in state estimation” (lines 93-106):
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“The cerebellar cortex receives input via MFs from virtually every part of the brain. This
input is rich, encompassing multiple sensory and motor modalities [5, 6, 7, 8, 9] as well as cogni-
tive domains [10]. Moreover, its nature can be both predictive (e.g. anticipatory reward-related
signals) and postdictive (e.g. sensory feedback) [11, 12, 13], encompassing the entire period of
movement execution (see e.g. [12]). Consequently, at any given time a huge amount of information
can potentially be transmitted to the granular layer via MFs. However, only a fraction of this
information is likely to be relevant at any given moment in time; this fact intimates the necessity
for the cerebellar cortex to select or prioritise some and not other sources of input, so that only
information that is relevant in a particular behavioural context can affect state estimation. For ex-
ample, while engaged in a visuomotor task, postsynaptic responses to MFs conveying confounding
auditory signals might be dampened. With respect to the cerebellar cortex, precision encoded in
various extracerebellar regions must be translated and implemented in a common way within the
granule cell population, in a manner which is instrumental for state estimation, that is, causing
downstream layers to appropriately respond to encoded precision. Accordingly, inhibition in the
input layer of the cerebellum appears capable of operating these fundamental operations.”

——————————————————————————————

Second, in most people’s minds, the state prediction relevant to cerebellar processing is done
after the input layer, e.g. in the Purkinje cells. This review is framed as addressing the issue
of confidence, but it’s focused on confidence in the input variables the cerebellum uses for state
estimation. I agree that input variance is important to determining confidence in the resulting
state estimation. Still it should be more explicitly described to naive readers that this is the first
step in the process of inference, and is distinct from computing predictions and the confidence
level of those predictions (input confidence must be propagated through to the final distribution
of state estimates etc). The rest of these computations are beyond the scope here, but it will help
to give readers a concise sense of the overall framework.

Thanks for the remark. We are now stating more clearly which stage of the hier-
archical inferential processing in the cerebellum we are focussing on. We have made
the following changes in the introduction (lines 37-42):

“These ideas are long-standing, but it remains unresolved how various components of the
cerebellum could specifically contribute to state estimation. In general, only activity and plasticity
of Purkinje cells, the output of the cerebellar cortex, have been associated with this computation;
however, inferential processes occur all the way through the hierarchy of an internal probabilistic
model. Here we consider the first step in cerebellar cortical state estimation, by proposing a
role for inhibition in the granular layer. This network, comprising about half of the neurons in the
mammalian nervous system, relays all extracerebellar input that is directed via mossy fibres (MFs)
to Purkinje cells [14, 15, 16] (Figure 1). The granular layer is made up of excitatory granule cells
and inhibitory Golgi cells, and interactions between these two neuronal populations determine
network responses to external (MF) perturbations. Two aspects are key to understand neural
dynamics within this network: firstly granule cells are numerous but individually receive only a
small number of inputs (four excitatory and four inhibitory connections each on average [17, 18]);
secondly Golgi cells are sparse relative to granule cells, but each neuron contacts hundreds to
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thousands of granule cells through an extended axonal arborisation. Thus, Golgi cell inhibition is
likely to have a big impact on individual granule cell activity and putative inferential processes in
the cerebellum.”

——————————————————————————————

Other specific comments:
P3 par2 “In this framework, inference and learning are based on probabilistic models enter-

tained by the brain, representing somatic and environmental variables or states, their dynamical
interactions and causal link to sensory input.”

“Causal link” is not a great descriptor. If the task is probabilistic inference, it is typically not
relevant whether the connection is causal or correlative.

Thanks for the comment. We now say (lines 65-67):

“In this framework, inference and learning are based on probabilistic models entertained by
the brain, representing somatic and environmental variables or states, their dynamical interactions
and link to sensory input [19]”

——————————————————————————————

p.5 par1- “The inhibitory network in the granular layer is simpler than in cerebral cortical
regions”

The authors’ ground their perspective in neocortical top-down inferential inhibitory processing,
but to do so fairly they should consider addressing a few things more completely.

First, at the anatomical level there is not really a compelling comparison to be made between
the extremely complicated intra- and inter-areal top-down feedback modulation of input to the
neocortex, and the very limited recurrent circuitry of the cerebellum. This should give more pause
than implied in the present text, and suggests the comparison should be at most a conceptual
analog rather than a mechanistic one.

On the other hand, classical cerebellar theories also don’t do justice to what “top-down” pro-
cessing does exist in the cerebellum (by treating the cerebellum as a feedforward structure without
recurrent excitation, in some cases almost as precondition of the computational theory). As the
authors note, DCN provides recurrent mossy fiber inputs, and this may indeed be a route for a
more sophisticated form of feedback modulation. It might be helpful to stress that this potential
mechanism for modulating inputs is a substantial divergence from classical feedforward adaptive
filtering theory, and a probabilistic inference framework may provide a starting point for explaining
this anatomical detail that is “inconvenient” in other theories.

Thanks for the useful comments. We now stress the difference between cortical
and cerebellar cortical inhibition in the section “Golgi cells underlie precise granular
layer computations” (lines 137-138):

“The inhibitory network in the cerebellar granular layer is simpler than in cerebral cortical
regions, lacking cellular diversity and extremely complicated intra- and inter-areal top-down feed-
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back modulation (cf. [1, 2]); nonetheless, it is suited to effectively balance excitation in granule
cells. Golgi cells act through both a hyperpolarising current that lowers granule cell resting po-
tential – efficiently thresholding or gating MF input – and through an increase in membrane
conductance or shunting inhibition – associated with faster membrane dynamics and ultimately a
biased sensitivity towards synchronous presynaptic activity [3, 4]. As a result, Golgi cells can set
the excitability or responsiveness of granule cells, approximated by the operative point (position
and slope) of their F-I curve, controlling propagation of MF activity within the cerebellar circuit.
From a neural inference perspective, this propagation should be conditional upon the precision of
information transmitted, implying that Golgi cell inhibition is sensitive to signals that are most
relevant for present belief updating. It is therefore necessary to identify which mechanisms may
inform granule cell excitability via inhibition in this context-dependent manner. One distinction
mentioned above is between bottom-up and top-down sources of conditioning; beyond this, various
biophysical mechanisms might determine how Golgi cells operate. In this section, we highlight
those mechanisms that may allow Golgi cell inhibition to perform precision-weighting of the input.
First, we see how inhibition sets neural gain to match average levels of activity. Then, we consider
time-varying inhibition and its modulation by temporal and spatial properties of the input; in
doing so, we characterise the temporal unfolding of MF activity and its spatial organisation as a
proxy for its intrinsic (bottom-up) precision. Finally, we address mechanisms, such as modulation
of Golgi cells by neuromodulators or nucleocortical projections, that do not directly depend or
arise from current MF input, yet control how these are transmitted by changing the endogenous
state of the granular layer; we refer to these as top-down mechanisms signalling expected precision
of the input.”

And in the discussion (lines 261-269):

“Arguably, neural dynamics underlying state estimation in the cerebellar cortex should nec-
essarily be sensitive to uncertainty associated with inference, as discussed more generally in the
context of cortical functioning [20, 21, 22]. Cortical control of excitation is much more complex than
in the granular layer, hinting at a more sophisticated neural inference. Nonetheless, fine-tuning of
granule cell activity via Golgi cells also seems to be calibrated by a variety of mechanisms, including
top-down signals from cerebellar nuclei, as well as from downstream layers in the cerebellar cortex
itself. This in turn should bear on any theory aiming to explain cerebellar computations. In par-
ticular, recurrent connectivity within it has usually been neglected or oversimplified; in contrast,
a probabilistic inference framework may provide a starting point for explaining this anatomical
detail, as shown in this review.”

——————————————————————————————

P6 par1 - In the discussion of Golgi cells’ wide axonal arborization vs narrow dendritic column,
I’m not sure I view this as evidence of a lateral inhibition mechanism, at least as presented, nor
necessarily as a discrepancy? Granule cell axons are 1 mm long–perhaps narrow Golgi dendritic
columns are sufficient to sample from a granule cell population as widely distributed as that
contacted by the diffuse Golgi axonal branches?

Thanks for highlighting this important point. We now explain that even if extention

5



from parallel fibre could confound lateral inhibition mechanisms, there is still evidence
that local information from mossy fibres and granule cells (via ascending axons) could
preferentially drive Golgi cells, supporting lateral inhibition via the mismatch between
axon and dendrites. Besides, even assuming equal strength/kinetics between parallel
fibres and ascending axons/mossy fibre synapses onto Golgi cells, the existance of
different circuits supports the idea of a different use of local vs global information by
Golgi cells (lines 192-222).

“Along with temporal features of Golgi cell inhibition, the spatial arrangement of Golgi cell
processes may also play a role in the contextualisation of incoming information [23]. Notably, there
is a mismatch between the narrow granular layer region from which Golgi cells receive excitatory
inputs (determined by the dendritic tree), and the region extending hundreds of micrometers over
which they exert inhibitory influence (determined by the axonal plexus). In the present discussion,
lateral inhibition could be linked to representational precision via its effects over correlations among
different streams of MF input. Excitation-inhibition balance at any location in the granular layer
could then reflect – via horizontal mixing of Golgi cell signals – the precision of the local information,
relative to its surround. In practice, this could lead to an increase of fast correlations among
clusters of granule cells that are excited by common MFs, and a simultaneous decrease of slower
correlations across competing patches of granular layer – replicating observations in structures that
share a similar geometry, like the olfactory bulb [24].

This contextual modulation of granule cell excitability relies on spatial constraints of infor-
mation driving Golgi and granule cell populations, which in turn depend on different anatomical
properties of the network. MFs show substantial anisotropic divergence in the granular layer [25],
which enables integration of various sources of information at the level of single granule cells, but
prevents the emergence of ordered, neocortical-like receptive fields. As a consequence, fast corre-
lations among Golgi cells (and inhibited clusters of granule cells) sharing MF input might be more
evident within distributed, scattered groups of cells [26].

Another important anatomical property is the presence of millimiter-long granule-Golgi cell
connections mediated by parallel fibres [27]. Parallel fibres have been linked to extended oscilla-
tions in the granular layer during rest [28], possibly setting a global pace for network computations
and dynamics. Notably, these connections appear to be qualitatively different from local contacts
made by ascending granule cell axons onto Golgi cells, which resemble more the faster and stronger
MF-Golgi cell synapses [29, 30]. It follows that upon localised activation of MF terminals, parallel
fibres might preferentially contribute to slow correlation of granule cells across the transverse axis
[31], while ascending axons precisely entrain spiking of surrounding Golgi cells. Furthermore, the
existence of electrical connections among Golgi cells further increases their sensitivity to temporal
coincidence of local excitation, enhancing synchrony or alternatively asynchrony in and between
granule cell clusters [32, 33, 34]. Therefore, different degrees of correlations might coexist in the
granular layer, following properties of MF input and connectivity structure within the network,
which might result in balanced dynamics of excitation and inhibition reflecting the statistics (pre-
cision) of information encoded.”

——————————————————————————————

P9 Par 3 in the proof opens with a strange semi-repeat of par2
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Thanks for noticing this. This paragraph is no longer present.

——————————————————————————————

The organization of the last two sections Adaptive filter model and Kalman filter model is a
bit unclear/jarring. Is the purpose of these sections to contrast them with an alternative model
in which Golgi cells contribute to Bayesian inference? Is it to explain their shortcomings? Is it to
explain that if Golgi cells convey uncertainty, that can be incorporated into these models in order
to solve their shortcomings? In addition, it is unfortunate that this section leads directly into the
discussion, without any concluding and transitional statements, as it will doubtless confuse readers
less familiar with this literature by distracting from the central narrative of the review.

Thanks for calling our attention to these problems. Unfortunately, because of
limited word count, we had to omit this section.

——————————————————————————————

P3 par2 In neural networks, precision weights presynaptic input... is asserted as a known truth
rather than as a hypothesis (assuming that is the intention? Otherwise needs citations).

Thanks for signalling this. We have added the citation and clarified how this
follows from a view of neural dynamics as supporting inference (lines 64-79).

“Many aspects of brain functioning can be phrased in terms of probabilistic inference and
learning processes [35, 36, 37]. In this framework, inference and learning are based on probabilistic
models entertained by the brain, representing somatic and environmental variables or states, their
dynamical interactions and link to sensory input [19]. Central to this argument is the notion
of uncertainty, describing the spread or variance of belief distributions assumed to be implicitly
encoded by neural activity. Whatever the exact form of this encoding, one can argue that the
variance of the implicit distributions depends in first place on the quality of data available to the
network. In other words, uncertainty represented in neural activity should be a function of input
precision, a measure of the reliability of input that determines how much this drives belief updating
(Box).

In biological neural networks, precision naturally translates into population gain [21], which
scales or weights presynaptic input and adjusts its capacity to elicit voltage changes in the target
population. The underlying idea is that a neural circuit is a system with endogenous or autonomous
dynamics, whose activity is not entirely determined by external stimuli; its response to events can
contextually vary, conditioned on their precision. Here we assume that inputs reporting more
precise representations are associated with higher population gain, that is, a stronger impact
on downstream network dynamics – whose output in turn is implicitly linked to more precise
distributions.”

——————————————————————————————
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A number of assorted typos/missing words/grammatical issues/partial sentences/run-on sen-
tences, please take a look throughout.

We have amended these errors.

——————————————————————————————

2nd referee:

This perspective/review advances the hypothesis that the inhibitory mechanisms present in
the granule cell layer of the cerebellum could act as a sensorimotor state estimator that encodes
uncertainty. The article begins with a rather brief introduction to motor control, probabilistic
internal models and state estimation. None of these are sufficiently unpacked for readers unfamiliar
with these concepts to understand them.

Thanks for highlighting this: we have split the first paragraph of the introduction
to better express the link between sensorimotor control, internal models for state
estimation and uncertainty in those estimates (lines 22-36 in the manuscript with
higlighted changes):

“Sensorimotor coordination or control can be regarded as the realisation of expected sensation
via movement. It involves interactions between an agent and its environment; like when a mouse
is actively gathering information with its whiskers. In order to control these interactions, the
brain must be able to approximate or predict the consequences of forthcoming action. This relies
on accurate estimates of behaviourally relevant states (such as whisker position) generated by
an underlying model of how states relate to one another. Estimates are intrinsically uncertain,
reflecting stochasticity in sensory channels and dynamics of states. Hence, when considering the
neural implementation of an estimation process, it is desirable that neural circuits are capable of
representing estimates conditioned on their associated uncertainty; in other words, the underlying
models ought to be probabilistic.

The cerebellum has long been posited to instantiate probabilistic internal models for estimation
of rapidly varying external states [38], whether somatic, such as limb kinematics [39], or environ-
mental, for example moving targets [40]. In the cerebellum, these models are deemed to support
sensorimotor control [41, 42, 43], as well as more abstract mental representations [44], by comple-
menting ongoing neural computations in other brain regions with internally generated, delay-free
probabilistic estimates of stochastic external dynamics, built upon past experience and integrating
multiple sources of noisy information.”

——————————————————————————————

The central question of how the cerebellar cortex might compute state estimation is clearly
stated and the proposal to examine the underlying mechanisms is set out. Moreover, the central
idea of the cerebellar cortex encoding probability distributions that are used for Bayesian state
estimation is interesting. But the authors seem to be unaware that it has been proposed before by
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Paulin (Paulin et al. 2005. J. Neural Eng. 2 (2005) S219S234 doi:10.1088/1741-2560/2/3/S06),
who has provided compelling arguments for state estimation since the early 1990s (Paulin Human
Movement Science 12 (1993) 5-16; Paulin, Brain Behav Evol 1993;41:39-50).

Overall, this manuscript provides a good review of the cellular and systems level studies of
the cerebellar input layer (excepting those detailed below), but in my view it does not provide
a convincing link between the underlying mechanisms and behaviours to the probabilistic state
estimation hypothesis. The review thus provides a rather undeveloped description of encoding
uncertainty and state estimation and a more complete account of the anatomy and physiology of
inhibition the input layer and some descriptions of other theories of cerebellar function. The figures
have some artistic merit but convey little scientific content and miss the opportunity to explain
the complex concepts discussed.

Lastly the manuscript PDF has several major formatting errors. The main text was duplicated
twice, with the references and conclusion missing from the initial copy of the text. Moreover,
in the complete second copy there was a duplication of a large block of text in the section on
the Kalman filter. In my view the manuscript requires a very major rewrite that includes an
accessible explanation of exactly what probabilistic state estimation is, how uncertainty can be
used in motor control and incorporates and acknowledges Paulin’s and Latham’s (see below) work
on this. Moreover, the text needs to be much more focussed on the evidence and mechanisms that
could support probabilistic state estimation as well as highlighting results that do not fit.

Thanks for the detailed comments. We have now expanded the description of
uncertainty encoding and state estimation and made the figures more pertinent (see
replies to specific points of consideration below). Now we also aknowledge papers
from Paulin in the introduction (line 32):

“The cerebellum has long been posited to instantiate probabilistic internal models for esti-
mation of rapidly varying external states [38], whether somatic, such as limb kinematics [39], or
environmental, for example moving targets [40]. In the cerebellum, these models are deemed to
support sensorimotor control [41, 42, 43], as well as more abstract mental representations [44],
by complementing ongoing neural computations in other brain regions with internally generated,
delay-free probabilistic estimates of stochastic external dynamics, built upon past experience and
integrating multiple sources of noisy information.”

And in the box (128):

“In order for network dynamics in the cerebellum to reflect inferential processes, it is necessary
that uncertainty in state estimation influences neural activity. There exist different models of how
probability distributions can be encoded by neural populations (see [45] for an example in the
cerebellum), some of which highlight the possibility that neural activity scales with the precision
of the encoded distribution [46], while becoming sparser as an effect of divisive normalisation [47]
(panel B). Notably, activity levels in recipient populations result from a combination of input and
population gain/responsiveness, which here we associate with input precision. In other words, we
argue that (un)certainty in neural representations is determined by the quality of information in
the input driving those representations (panel C). Notice that input precision-weighting relies on
the capacity of the network to assess this precision. Here we address this possibility and propose
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that Golgi cells in the cerebellar granular layer mediate the link between neural dynamics and state
estimation, by making network excitability sensitive to and reflective of uncertainty in inferential
processes.”

——————————————————————————————

Specific points for consideration

1) Expand on explaining Bayesian state estimation and the encoding of uncertainty. It would
be useful to have a figure dedicated to explaining this. In addition to the Paulin papers mentioned
above, omissions include the work of Peter Latham (eg Ma et al. Bayesian inference with proba-
bilistic population codes Nat. Neurosci. 2006.) and the work of Bence lveczky - e.g. Dhawale et
al. The Role of Variability in Motor Learning Annu Rev Neurosci. 2017). In particular, given the
proposed high dimensional codes in the granule cell population, uncertainty can be represented at
the level of the granule cell population code; although this does not exclude the role of inhibition
in shaping the code, its role may depend on how the statistics of mossy fibre inputs themselves
change with context.

Thanks for indicating this shortcoming in the review. We expanded the explana-
tion of Bayesian state estimation and uncertainty encoding with text in the box and
changed the figure to make this information more explicit (lines 109-133). We also
cite relevant references (line 126)

Box1 “When investigating the functions of a neural network, we usually try to identify which
features of the body or world are encoded in the activity of its constituent neurons. Underlying
this approach is the assumption that there is a mapping between the activity of the network
and the outer states. Because this mapping is indirect – mediated by vicarious input about the
system – it licenses an interpretation of neural circuits as internal models inferring causes of their
input, like a patch of V1 reflecting the possible presence of a luminous bar projected onto the visual
field. Importantly, this mapping is necessarily probabilistic, because the dynamics and interactions
between states and sensory signals are noisy. By accounting for this stochasticity, neuronal activity
comes to reflect probability distributions over states.

The cerebellum is thought to instantiate internal models for motor and cognitive calibration
and adaptation. Neural activity in this region has indeed been observed to accurately encode
dynamics of somatic or environmental states, such as whisker position in the mouse cerebellum
[48]. These representations in turn contribute to sensorimotor coordination by refining motion [49]
and sustaining or altering neural activity in other brain regions, such as the neocortex [50, 51, 52, 53]
(panel A).

In order for network dynamics in the cerebellum to reflect inferential processes, it is necessary
that uncertainty in state estimation influences neural activity. There exist different models of how
probability distributions can be encoded by neural populations (see [45] for an example in the
cerebellum), some of which highlight the possibility that neural activity scales with the precision
of the encoded distribution [46], while becoming sparser as an effect of divisive normalisation [47]
(panel B). Notably, activity levels in recipient populations result from a combination of input and
population gain/responsiveness, which here we associate with input precision. In other words, we
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argue that (un)certainty in neural representations is determined by the quality of information in
the input driving those representations (panel C). Notice that input precision-weighting relies on
the capacity of the network to assess this precision. Here we address this possibility and propose
that Golgi cells in the cerebellar granular layer mediate the link between neural dynamics and state
estimation, by making network excitability sensitive to and reflective of uncertainty in inferential
processes.”

——————————————————————————————

2) In section Precision on State estimation, it is discussed that the ability to change granule
cell integrative properties can be modulate by inhibition, as a function of behavioural context
(example of dampened auditory inputs in visuomotor task). It is not clear how this links to the
precision-weighting, or whether this links to a more generalized framework of combining saliency
and precision. As mentioned in part 1, a clearer description/example of how the framework of
Bayesian state estimation should incorporate these contexts may be helpful.

Along with changes in the box (reply to 1)), we have made the following changes to
the section “Precision in state estimation” in order to make clearer the relationship
between gain modulation in neural network activity and precision-weighting in state
estimation, and how this connects to behavioural contingences (lines 64-106).

“Many aspects of brain functioning can be phrased in terms of probabilistic inference and learn-
ing processes [35, 36, 37]. In this framework, inference and learning are based on probabilistic
models entertained by the brain, representing somatic and environmental variables or states, their
dynamical interactions and link to sensory input [19]. Central to this argument is the notion of un-
certainty, describing the spread or variance of belief distributions assumed to be implicitly encoded
by neural activity. Whatever the exact form of this encoding, one can argue that the variance of
the implicit distributions depends in first place on the quality of data available to the network. In
other words, uncertainty represented in neural activity should be a function of input precision, a
measure of the reliability of input that determines how much this drives belief updating (Box).

In biological neural networks, precision naturally translates into population gain [21], which
scales or weights presynaptic input and adjusts its capacity to elicit voltage changes in the target
population. The underlying idea is that a neural circuit is a system with endogenous or autonomous
dynamics, whose activity is not entirely determined by external stimuli; its response to events can
contextually vary, conditioned on their precision. Here we assume that inputs reporting more
precise representations are associated with higher population gain, that is, a stronger impact
on downstream network dynamics – whose output in turn is implicitly linked to more precise
distributions.

This brings us to two key points: first, the quality or precision of information is not reducible to
its content, meaning that neural mechanisms signalling what is represented can be different from
those signalling how it should be represented. For instance, the identity and activity pattern of
upstream neurons can be related to the nature of a stimulus encoded, whereas the postsynaptic gain
to the amount of information transmitted. Second, the precision of an input, realised as population
gain and ultimately translated into patterns of excitation-inhibition balance, is related to the
concurrent behavioural context. This can be exemplified through attentional gain modulation in
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visual and auditory cortex [20, 21, 54], where contextualisation (weighting) of sensory stimuli by
their precision can be accomplished via temporal coincidence of pre and postsynaptic activity,
increasing probability of conversion of pre to postsynaptic spikes. In this case, gain-by-synchrony
depends on both bottom-up (e.g. intrinsic saliency of the stimulus) and top-down (attentional)
effects [55, 56, 57], which are a function of behaviour. It follows that the extent to which a stimulus
can be relevant for ongoing inference – under a certain behaviour – translates into precision-
weighting of that stimulus via gain modulation.

The cerebellar cortex receives input via MFs from virtually every part of the brain. This input
is rich, encompassing multiple sensory and motor modalities [5, 6, 7, 8, 9] as well as cognitive do-
mains [10]. Moreover, its nature can be both predictive (e.g. anticipatory reward-related signals)
and postdictive (e.g. sensory feedback) [11, 12, 13], encompassing the entire period of movement
execution (see e.g. [12]). Consequently, at any given time a huge amount of information can
potentially be transmitted to the granular layer via MFs. However, only a fraction of this in-
formation is likely to be relevant at any given moment in time; this fact intimates the necessity
for the cerebellar cortex to select or prioritise some and not other sources of input, so that only
information that is relevant in a particular behavioural context can affect state estimation. For ex-
ample, while engaged in a visuomotor task, postsynaptic responses to MFs conveying confounding
auditory signals might be dampened. With respect to the cerebellar cortex, precision encoded in
various extracerebellar regions must be translated and implemented in a common way within the
granule cell population, in a manner which is instrumental for state estimation, that is, causing
downstream layers to appropriately respond to encoded precision. Accordingly, inhibition in the
input layer of the cerebellum appears capable of operating these fundamental operations.”

——————————————————————————————

3) Closed cortical-cerebellar loops are mentioned but the key paper on this was not cited (Kelly
and Strick, J. Neurosci., 2003).

We have added the original paper on corcito-cerebellar loops (line 121).

“The cerebellum is thought to instantiate internal models for motor and cognitive calibration
and adaptation. Neural activity in this region has indeed been observed to accurately encode
dynamics of somatic or environmental states, such as whisker position in the mouse cerebellum
[48]. These representations in turn contribute to sensorimotor coordination by refining motion [49]
and sustaining or altering neural activity in other brain regions, such as the neocortex [50, 51, 52, 53]
(panel A).”

——————————————————————————————

4) Predictive coding is mentioned but Kathleen Cullen, one of the main pioneers of this, is not
cited e.g. Brooks Carriot and Cullen, Nature Neurosci 2015.

Thanks for indicating the work of Kathleen Cullen. We have added this citation
when introducing cerebellar-based internal probabilistic models (line 34):

12



“The cerebellum has long been posited to instantiate probabilistic internal models for estimation
of rapidly varying external states [38], whether somatic, such as limb kinematics [39], or environ-
mental, for example moving targets [40]. In the cerebellum, these models are deemed to support
sensorimotor control [41, 42, 43], as well as more abstract mental representations [44], by comple-
menting ongoing neural computations in other brain regions with internally generated, delay-free
probabilistic estimates of stochastic external dynamics, built upon past experience and integrating
multiple sources of noisy information.”

——————————————————————————————

5) Glutamate and GABA spillover within the cerebellar glomerulus is discussed but key original
papers are omitted.

Thanks for the remark; we now cite Rossi, Hamman, neuron 1998 for GABA
spillover, DiGregorio, Nusser, Silver, Neuron 2003 and Nielsen, DiGregorio, Silver,
Neuron 2004 for glutamate spillover (line 164).

“A substantial component of inhibition is tonic, hinging on constantly activated extrasynaptic re-
ceptors that are responsive to ambient levels of neurotransmitter concentration [58]. This persistent
form of inhibition, arising in part from non-vesicular sources of GABA [59, 60], is favoured by the
synaptic organisation of the granular layer. Most if not all synaptic connections to granule cells are
indeed located in special structures called glomeruli, which form isolated microenvironments where
neurotransmitter (both GABA and glutamate) can accumulate and easily diffuse [18, 61, 62, 63].
In these compartments, ambient concentrations of GABA are sufficient to persistently activate
high-affinity α6δ-subunit containing GABAA receptors [64]. In vivo, tonic inhibition minimises
granule cell responsiveness to uncorrelated, temporally scattered inputs [65], while maintaining
an exquisite sensitivity to salient (e.g. sensory-evoked) stimuli [66]. Therefore, tonic inhibition
appropriately fixes granule cell excitability to match the average levels of MF activity, establishing
a slowly changing threshold on neural gain discriminating noise from signals. In mathematical
terms, this may be equivalent to a prior over expected precision of the input required for its prop-
agation. At a behavioural level, loss of motor coordination resulting from the disruption of tonic
inhibition, for example due to alcohol consumption [67], might then reflect global alterations in
representational uncertainty.”

——————————————————————————————

6) Given that the intrinsic activity of Golgi cells and the spatial properties of their inhibitory
effect is discussed in some detail it is surprising that their strong local electrical coupling and its
role in synchronizing and desynchonizing firing is not discussed. The strength, spatial dependence
of gap junction coupling and synchrony were investigated in Dugue et al., Neuron 2009; Vervaeke
et al., Neuron 2010; van Welie Neuron 2016).

Thanks for highlighting this gap in the review. We now mention Golgi-Golgi cell
electrical connections in the context of short- and long-range correlations and spatial
localisation of information (lines 210-222).
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“Another important anatomical property is the presence of millimiter-long granule-Golgi cell
connections mediated by parallel fibres [27]. Parallel fibres have been linked to extended oscilla-
tions in the granular layer during rest [28], possibly setting a global pace for network computations
and dynamics. Notably, these connections appear to be qualitatively different from local contacts
made by ascending granule cell axons onto Golgi cells, which resemble more the faster and stronger
MF-Golgi cell synapses [29, 30]. It follows that upon localised activation of MF terminals, parallel
fibres might preferentially contribute to slow correlation of granule cells across the transverse axis
[31], while ascending axons precisely entrain spiking of surrounding Golgi cells. Furthermore, the
existence of electrical connections among Golgi cells further increases their sensitivity to temporal
coincidence of local excitation, enhancing synchrony or alternatively asynchrony in and between
granule cell clusters [32, 33, 34]. Therefore, different degrees of correlations might coexist in the
granular layer, following properties of MF input and connectivity structure within the network,
which might result in balanced dynamics of excitation and inhibition reflecting the statistics (pre-
cision) of information encoded.”

——————————————————————————————

7) Some studies that examined the behavioural outcome of eliminating Golgi cells, and altering
granule cell inhibition would merit discussion. Example that come to mind include Seja et al. .
EMBO J 2012; Chiu et al J. Neurosci. 2005 and Watanabe et al., Call 1998.

Thanks for the remark and for reporting these relevant works. We now say in the
last paragraph of the discussion (lines 270-285):

“Testing these ideas requires both a theoretical and experimental efforts. Here we have assumed
a general principle, namely, that precision in neural representations should affect their propagation
across the different stages of inference – by tuning population gain. However, future work should
aim at investigate the exact nature of this probabilistic encoding throughout the cerebellar circuit.
From the experimental side, testing these ideas requires tracking and manipulation of spatiotem-
poral properties of excitation-inhibition balance in the granular layer, as MF input is transformed
into parallel fibre output. The exact shape of ensuing activity patterns depends on many fac-
tors, including kinetics variability at the Golgi-granule cell synapses [68], which might result from
plastic mechanisms in the granular layer [69]. Previous works have examined the consequences
of altering excitation levels in this network, showing a direct link to motor impairment, including
tremors, ataxia and reduced reflex adaptation [67, 70, 71]. Interestingly, Golgi cell ablation alters
the spatiotemporal patterns of activity in the granule cell population without necessarily produc-
ing overexcitation, as the result of compensatory mechanisms such as reduced NMDA activity
[72]. This highlights the importance of fine-grained granule cell activity patterns for downstream
computations [71] – here argued to be the result of Golgi cell-mediated precision-weighting at the
first stage of state estimation in the cerebellar cortex. Ultimately, technical advances in the field
[73, 74] will make possible to verify or not these ideas.”

——————————————————————————————

8) Is inhibition proposed to strictly increase with uncertainty? Its link to variability of inputs may
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be more stable than its link to behavioural or sensory uncertainty (depending on input statistics).

We describe a possible link between uncertainty in mossy fibre input and granule
cell population gain mediated by Golgi cell inhibition. This implies that on average
excitatory and inhibitory currents in granule cells might become more balanced with
higher uncertainty, and more skewed with lower uncertainty. Also, this reasoning
requires a link between behavioural and sensory uncertainty and the uncertainty im-
plicit in mossy fibre input, which can be encoded in it’s statistics (e.g. synchrony and
frequency). We address these points in the section “Precision in state estimation”
(lines 64-92)

“Many aspects of brain functioning can be phrased in terms of probabilistic inference and learn-
ing processes [35, 36, 37]. In this framework, inference and learning are based on probabilistic
models entertained by the brain, representing somatic and environmental variables or states, their
dynamical interactions and link to sensory input [19]. Central to this argument is the notion of un-
certainty, describing the spread or variance of belief distributions assumed to be implicitly encoded
by neural activity. Whatever the exact form of this encoding, one can argue that the variance of
the implicit distributions depends in first place on the quality of data available to the network. In
other words, uncertainty represented in neural activity should be a function of input precision, a
measure of the reliability of input that determines how much this drives belief updating (Box).

In biological neural networks, precision naturally translates into population gain [21], which
scales or weights presynaptic input and adjusts its capacity to elicit voltage changes in the target
population. The underlying idea is that a neural circuit is a system with endogenous or autonomous
dynamics, whose activity is not entirely determined by external stimuli; its response to events can
contextually vary, conditioned on their precision. Here we assume that inputs reporting more
precise representations are associated with higher population gain, that is, a stronger impact
on downstream network dynamics – whose output in turn is implicitly linked to more precise
distributions.

This brings us to two key points: first, the quality or precision of information is not reducible to
its content, meaning that neural mechanisms signalling what is represented can be different from
those signalling how it should be represented. For instance, the identity and activity pattern of
upstream neurons can be related to the nature of a stimulus encoded, whereas the postsynaptic gain
to the amount of information transmitted. Second, the precision of an input, realised as population
gain and ultimately translated into patterns of excitation-inhibition balance, is related to the
concurrent behavioural context. This can be exemplified through attentional gain modulation in
visual and auditory cortex [20, 21, 54], where contextualisation (weighting) of sensory stimuli by
their precision can be accomplished via temporal coincidence of pre and postsynaptic activity,
increasing probability of conversion of pre to postsynaptic spikes. In this case, gain-by-synchrony
depends on both bottom-up (e.g. intrinsic saliency of the stimulus) and top-down (attentional)
effects [55, 56, 57], which are a function of behaviour. It follows that the extent to which a stimulus
can be relevant for ongoing inference – under a certain behaviour – translates into precision-
weighting of that stimulus via gain modulation.”

And in the caption of figure 3:

15



“Tuning of the system’s excitability controls precision of representations. Left: the excitation-
inhibition balance in the granular layer (circular blue and pink arrows) is a function of both MF
input and neural mechanisms signaling its precision by tuning Golgi cell inhibition. Right: within a
population, specific neurons might exhibit higher or lower synaptic gain, depending for instance on
stimulus overlap with their receptive field, while at a network level, population gain associated with
precision of upstream representations dictates the responsiveness of neural ensembles. Golgi cell
inhibition sets population gain, such that the balance of excitation and inhibition in granule cells
reflects precision-weighted input; and encodes neural representations whose precision determines
their transmission and influence on downstream integrative layers via parallel fibres. In A, MF
input is coupled with high population gain and strongly drives granule cells, pushing excitation
(pink bar) to overcome inhibition (blue bar). The ensuing population activity then represents
states with high precision, exemplified by the red distribution. In B, MF input convey less reliable
information, and the low gain brings inhibition to balance excitation, making the network almost
unresponsive. The small network output, in turn, encodes state estimates with low precision, which
will not be effective in driving neural inference downstream.”

——————————————————————————————

9) In the section Golgi cells underlie precise granular layer computations, paragraphs3-4, it is not
clearly stated what is known physiological and anatomical evidence, versus what are the proposed
or consensus implications about inhibitory control of the circuit. For example, the existence of
potential strong feedback circuit is shown in [61], but the ability to dynamically modulate granule
cells in this feedback manner (at the individual or network level) is still an untested hypothesis,
especially given the variable kinetics at Golgi cell granule cell synapses [63]. While the downstream
effects of inhibition on individual granule cells is well studied, the interaction of different motifs to
shape inhibition accordingly needs further experimental corroboration.

Thanks for the remark. We have re-expressed some of our claims throughout this
section to make their hypothetical nature more evident (lines 159-243).

“A substantial component of inhibition is tonic, hinging on constantly activated extrasynaptic re-
ceptors that are responsive to ambient levels of neurotransmitter concentration [58]. This persistent
form of inhibition, arising in part from non-vesicular sources of GABA [59, 60], is favoured by the
synaptic organisation of the granular layer. Most if not all synaptic connections to granule cells are
indeed located in special structures called glomeruli, which form isolated microenvironments where
neurotransmitter (both GABA and glutamate) can accumulate and easily diffuse [18, 61, 62, 63].
In these compartments, ambient concentrations of GABA are sufficient to persistently activate
high-affinity α6δ-subunit containing GABAA receptors [64]. In vivo, tonic inhibition minimises
granule cell responsiveness to uncorrelated, temporally scattered inputs [65], while maintaining
an exquisite sensitivity to salient (e.g. sensory-evoked) stimuli [66]. Therefore, tonic inhibition
appropriately fixes granule cell excitability to match the average levels of MF activity, establishing
a slowly changing threshold on neural gain discriminating noise from signals. In mathematical
terms, this may be equivalent to a prior over expected precision of the input required for its prop-
agation. At a behavioural level, loss of motor coordination resulting from the disruption of tonic
inhibition, for example due to alcohol consumption [67], might then reflect global alterations in
representational uncertainty.
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On top of a persistent inhibitory conductance, feedforward and feedback synaptic loops enable
Golgi cells to dynamically modulate granule cells by following rapid variations in network activity
[30] – although the exact contribution of these loops is still unknown. Phasic inhibition under-
lies balanced dynamics of excitation and inhibition in granule cells. Notably, phasic inhibition
from Golgi cells can promptly track changes in MF spiking behaviour while, at the same time,
accumulate over Golgi cell spike trains to match input firing rates [63, 68, 75, 23]. The ensuing
coordination of excitation and inhibition, on a timescale ranging from few to hundreds of mil-
liseconds, can determine which input patterns elicit responses based on the evoked instantaneous
balance. Accordingly, when inhibition is temporally matched to excitation, granule cell firing is
reduced but becomes more similar across cells [76]: in vivo, this could favour for example selective
transmission of the synchronous and invariant component of MF stimuli to Purkinje cells, by virtue
of its stronger impact on postsynaptic neurons. Moreover, inhibition can preserve temporal infor-
mation in granule cell output by rapidly trailing excitation and forcing a sharp integration window
of couple of milliseconds for EPSCs [75]. Overall, balanced dynamics could increase the capacity
of granule cells to reliably transmit temporally structured information – here associated with high
precision representations. This is in agreement with the general observation that the granular
layer faithfully encodes extracerebellar activity [77, 78, 79, 80, 81]; and resonates with the idea of
a precision-weighting mechanism relying on inhibition and sensitive to bottom-up dynamics, such
as synchrony in MF input enhancing temporal coordination across subsets of Golgi cells [34].

Along with temporal features of Golgi cell inhibition, the spatial arrangement of Golgi cell
processes may also play a role in the contextualisation of incoming information [23]. Notably, there
is a mismatch between the narrow granular layer region from which Golgi cells receive excitatory
inputs (determined by the dendritic tree), and the region extending hundreds of micrometers over
which they exert inhibitory influence (determined by the axonal plexus). In the present discussion,
lateral inhibition could be linked to representational precision via its effects over correlations among
different streams of MF input. Excitation-inhibition balance at any location in the granular layer
could then reflect – via horizontal mixing of Golgi cell signals – the precision of the local information,
relative to its surround. In practice, this could lead to an increase of fast correlations among
clusters of granule cells that are excited by common MFs, and a simultaneous decrease of slower
correlations across competing patches of granular layer – replicating observations in structures that
share a similar geometry, like the olfactory bulb [24].

This contextual modulation of granule cell excitability relies on spatial constraints of information
driving Golgi and granule cell populations, which in turn depend on different anatomical properties
of the network. MFs show substantial anisotropic divergence in the granular layer [25], which
enables integration of various sources of information at the level of single granule cells, but prevents
the emergence of ordered, neocortical-like receptive fields. As a consequence, fast correlations
among Golgi cells (and inhibited clusters of granule cells) sharing MF input might be more evident
within distributed, scattered groups of cells [26].

Another important anatomical property is the presence of millimiter-long granule-Golgi cell con-
nections mediated by parallel fibres [27]. Parallel fibres have been linked to extended oscillations
in the granular layer during rest [28], possibly setting a global pace for network computations
and dynamics. Notably, these connections appear to be qualitatively different from local contacts
made by ascending granule cell axons onto Golgi cells, which resemble more the faster and stronger
MF-Golgi cell synapses [29, 30]. It follows that upon localised activation of MF terminals, parallel
fibres might preferentially contribute to slow correlation of granule cells across the transverse axis
[31], while ascending axons precisely entrain spiking of surrounding Golgi cells. Furthermore, the
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existence of electrical connections among Golgi cells further increases their sensitivity to temporal
coincidence of local excitation, enhancing synchrony or alternatively asynchrony in and between
granule cell clusters [32, 33, 34]. Therefore, different degrees of correlations might coexist in the
granular layer, following properties of MF input and connectivity structure within the network,
which might result in balanced dynamics of excitation and inhibition reflecting the statistics (pre-
cision) of information encoded.

Finally, precision-weighting for state estimation does not depend solely on properties intrinsic
to the inputs, but also on selective mechanisms modulating states of the network. Analogously,
Golgi cells are both driven by the same MF inputs that elicit activity in granule cells, and are
influenced by neural components located within or external to the cerebellum. In vivo, the granular
layer is characterised by endogenous activity due to spontaneous firing of MFs and Golgi cells
[82, 28, 79]; this autonomous state affects the evoked response elicited by a stimulus, and is itself
under the control of various mechanisms. In particular, within the cerebellar cortex, climbing
fibres, Lugaro cells and Purkinje cells all directly or indirectly modulate Golgi cell activity. [83,
84, 85]. From cerebellar nuclei instead, excitatory neurons give rise to MF collaterals innervating
glomeruli [86], and inhibitory neurons selectively contact Golgi cells through long-range axons [87].
Moreover, Golgi cells are also sensitive to a variety of neuromodulators including serotonin [88]
and noradrenaline [89], which exert opposing actions upon granular layer excitability. Clearly,
these sources of input exert very different effects on information processing, and their specific role
is still unresolved; nevertheless, this intricate circuit highlights the importance of properly tuning
inhibition in the granular layer in order to contextualise incoming information. This is central
for putative state estimation in the cerebellar cortex, as it depends not only on current local
observations, but also on past inference, system-wise states, and coordination with other brain
structures.

In conclusion, there appear to be a variety of mechanisms that could inform the granular layer
about precision of MF input, irrespectively of the extremely diversified nature of those input. These
mechanisms condition granule cell excitation through Golgi cell inhibition, which constitutes the
unique local feedback of the network. In this sense, Golgi cells emerge as a crucial hub for precise
state estimation in the cerebellar cortex (Figure 2).”

We also mention variability in Golgi-granule cell synapses in the discussion (lines
270-285):

“Testing these ideas requires both a theoretical and experimental efforts. Here we have assumed
a general principle, namely, that precision in neural representations should affect their propagation
across the different stages of inference – by tuning population gain. However, future work should
aim at investigate the exact nature of this probabilistic encoding throughout the cerebellar circuit.
From the experimental side, testing these ideas requires tracking and manipulation of spatiotem-
poral properties of excitation-inhibition balance in the granular layer, as MF input is transformed
into parallel fibre output. The exact shape of ensuing activity patterns depends on many fac-
tors, including kinetics variability at the Golgi-granule cell synapses [68], which might result from
plastic mechanisms in the granular layer [69]. Previous works have examined the consequences
of altering excitation levels in this network, showing a direct link to motor impairment, including
tremors, ataxia and reduced reflex adaptation [67, 70, 71]. Interestingly, Golgi cell ablation alters
the spatiotemporal patterns of activity in the granule cell population without necessarily produc-
ing overexcitation, as the result of compensatory mechanisms such as reduced NMDA activity
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[72]. This highlights the importance of fine-grained granule cell activity patterns for downstream
computations [71] – here argued to be the result of Golgi cell-mediated precision-weighting at the
first stage of state estimation in the cerebellar cortex. Ultimately, technical advances in the field
[73, 74] will make possible to verify or not these ideas.”

——————————————————————————————

10) It is unclear why the adaptive filter theory should be completely at odds with the precision-
weighting. Instead of assuming a stable or uniform set of temporal basis functions, inhibition can
change the dynamical repertoire of the network, that constrain or shape estimation at the output
layer. Further, the experimental studies all report granule cell responses to external sensory stimuli,
without any learning or predictive task component.

Thanks for the suggestion. Unfortunately, because of limited word count, we had
to omit the section about cerebellar models. As for learning or predictive task compo-
nents in granule cell activity, this has been seen in recent papers and is likely inherited
from mossy fibre stimulation. We address this issue in the last paragraph of the sec-
tion “Precision in state estimation” (lines 93-106):

“The cerebellar cortex receives input via MFs from virtually every part of the brain. This
input is rich, encompassing multiple sensory and motor modalities [5, 6, 7, 8, 9] as well as cogni-
tive domains [10]. Moreover, its nature can be both predictive (e.g. anticipatory reward-related
signals) and postdictive (e.g. sensory feedback) [11, 12, 13], encompassing the entire period of
movement execution (see e.g. [12]). Consequently, at any given time a huge amount of information
can potentially be transmitted to the granular layer via MFs. However, only a fraction of this
information is likely to be relevant at any given moment in time; this fact intimates the necessity
for the cerebellar cortex to select or prioritise some and not other sources of input, so that only
information that is relevant in a particular behavioural context can affect state estimation. For ex-
ample, while engaged in a visuomotor task, postsynaptic responses to MFs conveying confounding
auditory signals might be dampened. With respect to the cerebellar cortex, precision encoded in
various extracerebellar regions must be translated and implemented in a common way within the
granule cell population, in a manner which is instrumental for state estimation, that is, causing
downstream layers to appropriately respond to encoded precision. Accordingly, inhibition in the
input layer of the cerebellum appears capable of operating these fundamental operations.”
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[65] P. Chadderton, T. W. Margrie, and M. Häusser, “Integration of quanta in cerebellar granule
cells during sensory processing,” Nature, vol. 428, no. 6985, pp. 856–860, 2004.

[66] I. Duguid, T. Branco, M. London, P. Chadderton, and M. Häusser, “Tonic inhibition enhances
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Response to referees

2nd referee:

Comments to the Author(s) The authors have done a good job in revising the article, which
now acknowledges previous work on this subject and incorporates the latest research. There are
however a few minor typos to correct.

Ln 144 F-I not defined.
Ln 165 ’6’ should be subscript
Ln 205 Huang et al., eLife 2013 could be added here.
Ln 327 HaMori. The ’M’ should not be capitalized.

Thanks for spotting these typos. We amended the text as follow:

Ln 144 F-I not defined.

“As a result, Golgi cells can set the excitability or responsiveness of granule cells, approximated
by the operative point (position and slope) of their F-I (frequency-current) curve, controlling
propagation of MF activity within the cerebellar circuit.”

Ln 165 ’6’ should be subscript
“In these compartments, ambient concentrations of GABA are sufficient to persistently activate

high-affinity α6δ-subunit containing GABAA receptors”

Ln 205 Huang et al., eLife 2013 could be added here.

“MFs show substantial anisotropic divergence in the granular layer [1, 2], which enables in-
tegration of various sources of information at the level of single granule cells, but prevents the
emergence of ordered, neocortical-like receptive fields.”

Ln 327 HaMori. The ’M’ should not be capitalized.
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