Supplemental Online Content

Ortega RA, Wang C, Raymond D, et al. Association of dual *LRRK2* G2019S and *GBA* variation with Parkinson disease progression. *JAMA Netw Open*. 2021;4(4):e215845. doi:10.1001/jamanetworkopen.2021.5845

eTable. Interaction Between *LRRK2* and *GBA* for Rate of MoCA Decline **eFigure.** Interaction Between *LRRK2* and *GBA* for Rate of MoCA Decline

This supplemental material has been provided by the authors to give readers additional information about their work.

	Estimate: $B \pm SE^1$
Interaction effect between <i>LRRK2</i> and <i>GBA</i> mutations on the	
rate of cognitive progression*:	
<u>B</u> minus <u>A**:</u>	
Difference in presence of LRRK2 - difference in absence of	0.22 ± 0.11 points/year
<u>LRRK2</u>	p=0.044
** As well as <u>D</u> minus <u>C:</u>	
Difference in presence of GBA – difference in absence of GBA	
Effect of <i>GBA</i> mutations on non- <i>LRRK2</i> -G2019S carriers:	
Decline among <i>GBA</i> -PD	-0.52 ± 0.09 points/year
Decline among idiopathic PD	-0.29 \pm 0.05 points/year
<u>A:</u> Difference in absence of <i>LRRK2</i> -G2019S:	-0.23 ± 0.08 points/year
GBA-PD minus idiopathic PD	p=0.005
Effect of GBA mutations on LRRK2-G2019S carriers:	
Decline among <i>LRRK2/GBA</i> -PD	-0.21 ± 0.06 points/year
Decline among <i>LRRK2</i> -PD	-0.19 ± 0.06 points/year
B: Difference in presence of <i>LRRK2</i> -G2019S:	0.01 ± 0.07 points/year
<i>LRRK2/GBA-</i> PD minus <i>LRRK2-</i> PD	p=0.845
Effect of <i>LRRK2</i> mutations on non- <i>GBA</i> carriers	
Decline among <i>LRRK</i> 2-PD	-0.21 ± 0.06 points/year
Decline among idiopathic PD	-0.29 ± 0.05 points/year
2 come ming ratepante i 2	-0.27 ± 0.05 points/year
C. Difference in absence of GBA .	
<u>C.</u> Difference in absence of ODA.	0.10 ± 0.06 points/year

eTable. Interaction Between *LRRK2* and *GBA* for Rate of MoCA Decline

<i>LRRK2</i> -PD minus idiopathic PD	p=0.080
Effect of LRRK2 mutations on GBA carriers:	
Decline among <i>LRRK2/GBA</i> -PD	-0.21 ± 0.06 points/year
Decline among <i>GBA</i> -PD	-0.52 ± 0.09 points/year
<u>D:</u> Difference in presence of <i>GBA-PD</i> :	0.31 ± 0.092 points/year
LRRK2/GBA-PD minus GBA-PD	p<0.001

¹ This table demonstrates the requisite estimates involved in deriving the interaction effect between *LRRK2* and *GBA* mutations on the rate of cognitive progression. The interaction effect can be estimated by subtracting the effect of harboring a *GBA* mutation on rate of cognitive decline among non-*LRRK2*-G2019S mutation carriers (e.g. slopes in *GBA*-PD minus idiopathic PD) from the effect of harboring a *GBA* mutation on the rate of cognitive decline among *LRRK2*-G2019S mutation carriers (e.g. slopes in *LRRK2/GBA*-PD minus *LRRK2*-PD). Similarly, it could be estimated by subtracting the effect of harboring a *LRRK2* mutation on rate of cognitive decline among non-*GBA* mutation carriers (e.g. slopes in *LRRK2*-PD minus idiopathic PD) from the effect of harboring a *LRRK2* mutation on the rate of cognitive decline among *GBA* mutation carriers (e.g. slopes in *LRRK2/GBA*-PD minus *GBA*-PD).

eFigure. Interaction Between LRRK2 and GBA for Rate of MoCA Decline

eFigure 1. The interaction effect can be estimated by subtracting the effect of harboring a *GBA* mutation on rate of cognitive decline among non-*LRRK2* mutation carriers (e.g. slopes in *GBA*-PD minus idiopathic PD) from the effect of harboring a *GBA* mutation on the rate of cognitive decline among *LRRK2* mutation carriers (e.g. slopes in *LRRK2/GBA*-PD minus *LRRK2*-PD). Similarly, it could be estimated by subtracting the effect of harboring a *LRRK2* mutation on rate of cognitive decline among non-*GBA* mutation carriers (e.g. slopes in *LRRK2*-PD minus idiopathic PD) from the effect of harboring a *LRRK2* mutation on rate of cognitive decline among non-*GBA* mutation carriers (e.g. slopes in *LRRK2*-PD minus idiopathic PD) from the effect of harboring a *LRRK2* mutation on the rate of cognitive decline among *GBA* mutation carriers (e.g. slopes in *LRRK2/GBA*-PD minus idiopathic PD). See also Supplemental table 1.

© 2021 Ortega RA et al. JAMA Network Open.