



### Figure S1. Splenic viral titers during LCMV infection and differentiation profile of virusspecific CD8<sup>+</sup> T cells primed in established persistent infection 60 hours after priming. Related to Figure 1

(A) Splenic viral titers during LCMV-CI13 infection (left) and LCMV-Arm infection (right). Infectious viral titers were determined by plaque assay.

(B) Proportion of blasting Tn, Tep or Tlp P14 cells 60hrs after priming.

(C) Proportion of CD25<sup>hi</sup> CD62L<sup>lo</sup> P14 cells 60hrs after priming.

**(D)** GMFI of Tbet, Blimp1 and Eomes in Tn (gray), Tep (black) and Tlp (red) virus-specific P14 cell.

Data are representative of 3 or more independent experiments with 3-5 mice per group. Error bars indicate standard deviation (SD). Significance was determined by one-way ANOVA, \* p<0.05.







z-score

Ε.



### Figure S2. Virus-specific CD8<sup>+</sup> T cells primed in an established persistent infection undergo an alternative pathway of transcriptional and effector differentiation 8 days after priming. Related to Figure 2

(A) Proportion of CD62L, CD25, CD127 and Eomes positive Tn, Tep and Tlp P14 T cells 8 days after priming.

**(B)** Heat map depicts MSI or GMFI of indicated extracellular markers and transcription factors derived from CyTOF and flow cytometry. Rows are scaled by z-score. \*,represents p<0.05 between Tep and Tlp cells. Significance was calculated by t-test.

(C) Bar graph depicts the GMFI of GzmB<sup>+</sup> virus-specific P14 T cells.

(**D**) Percentage of cytolytic Tep or Tlp P14 cells to targets labeled with LCMV-GP<sub>33-41</sub> (solid) or non-specific OT-I peptide (patterned).

(E) Back gating of GzmB<sup>+</sup> and GzmB<sup>-</sup> Tep and Tlp populations by mass cytometry.

Data are representative of 3 or more independent experiments with 3-5 mice per group. Error bars indicate SD. Significance was determined by t-test or one-way ANOVA (Figure A). \*, p<0.05.







#### Figure S3. Characterization of liver-infiltrating Tep and Tlp, and viral titers pre- and postanti-PDL1 blockade. Related to Figure 3

(A) CD8<sup>+</sup> P14 Tep and Tlp cell responses were analyzed in the liver 8 days and 21 days following transfer. Flow plots and bar graphs show both proportion and number of GzmB<sup>+</sup> and TCF1<sup>+</sup> P14 Tep or Tlp cell subsets. Bar graphs also show GMFI of PD1 and GzmB in P14 T cells.

**(B)** Mice were CD4<sup>+</sup> depleted prior to LCMV infection to maintain high viral titers. Graph shows plasma viral titers pre- (day 20 after priming) and post- (day 35 after priming) isotype or anti-PDL1 antibody treatment.

Data are representative of 2 independent experiments with 5 mice per group. Error bars indicate SD. Significance was determined by t-test. \*, p<0.05.

### Figure S4





Prolif

MHC II

200

0

PBS DT

0

Na Na+ LP DC

LP+ DC



### Figure S4. Role of dendritic cells and T cell stimulatory signal strength in Tlp cell differentiation. Related to Figure 4

**(A)** Proportion and number of CD8α<sup>+</sup> and CD11b<sup>+</sup> DCs in naïve mice (day 0) and at 1 day and 22 days after LCMV-Cl13 infection (i.e., 1 day after early and late priming).

**(B)** GMFI of MHC I, CD80 and CD86 on macrophages (CD45<sup>+</sup>, CD3<sup>-,</sup> NK1.1<sup>-</sup>, B220<sup>-</sup>, CD11c<sup>-</sup>, Ly6G<sup>-</sup>, CD11b<sup>+</sup>) in naïve mice (day 0, gray) and at 1 day (black) and 22 days (red) after LCMV-Cl13 infection.

**(C)** CD8<sup>+</sup> P14 T cells were transferred into CD4<sup>-/-</sup> mice that had been infected 21 days earlier with LCMV-CI13. Four hours after P14 T cell transfer, mice were treated i.p. with anti-CD3 and anti-CD28 or isotype control. Flow plots and bar graphs depict the frequency of GzmB<sup>+</sup> CD25<sup>+</sup> effector and TCF-1<sup>+</sup> memory-like P14 cells 60 hours after transfer.

**(D)** Bar graphs represent the number of Tlp P14 cells in WT and CD4<sup>-/-</sup> mice 60 hours after priming and treatment with isotype, anti-CD3 and/or anti-CD28 agonist antibodies.

**(E)** DT or control PBS was injected into LCMV-Cl13-infected CD11c-DTR mice to deplete CD11c<sup>+</sup> DCs prior to late priming of P14 T cells (on D20 after LCMV-Cl13 infection). Flow plots depict DC depletion with DT treatment at time of sacrifice (40 hours after P14 priming). Histogram depicts division of late primed P14 T cells with DT treatment (red) or with control PBS treatment (black). Bar graph show the number of divided P14 T cells.

**(F)** CD8<sup>+</sup> P14 T cells were transferred into naïve mice (Na) or into mice infected 21 days before with the LCMV-CI13(V35A) variant (TIp = LP). At the time of priming, a group of naïve (Na + DC) and LCMV-CI13(V35A) infected mice (LP + DC) received GP<sub>33-41</sub> peptide loaded bmDC (open bars). Bar graphs represent the percent of GzmB and CD25 expressing P14s 60 hours after transfer.

Data are representative of 2 independent experiments with 4-5 mice per group. Error bars indicate SD. Significance was determined by t-test. \*, p<0.05



Β.



C.



D.



# Figure S5. CD4<sup>+</sup> T cell help and IL-21 mediated effects on Tep and Tlp cells. Related to Figure 6

(A) Bar graphs depict the GMFI of phosphoSTAT5a and phoshoSTAT3 in P14 Tn, Tep or Tlp cells 60 hours after priming in vivo and then cultured without stimulation (media) or following IL-2 or IL-21 treatment for 30 minutes.

(**B-C**) Mice were either CD4<sup>+</sup> depleted (open bars) or isotype control treated (shaded bars) prior to LCMV-CI13 infection. CD8<sup>+</sup> P14 T cells were transferred into naïve mice that were immediately infected with LCMV-CI13 (black) or into mice that had been infected with LCMV-CI13 21 days before (red). (**B**) Bar graphs depict the number of IFN $\gamma$ , TNF $\alpha$  and IL-2 producing P14 T cells and (**C**) the plasma virus titers at day 8 (early prime) and day 29 (late prime) in isotype treated mice (i.e., CD4<sup>+</sup> non-depleted) or CD4<sup>+</sup> depleted mice.

**(D)** Mice were either CD4<sup>+</sup> depleted or isotype control treated prior to LCMV-Cl13 infection. CD8<sup>+</sup> P14 T cells were transferred into mice that had been infected with LCMV-Cl13 21 days before. Mice were either treated with isotype control (shaded bars) or anti-IL-21R blocking antibody (open bars) starting at day 20 through sacrifice at day 29. Bar graph depicts the number of total P14 T cells at day 8 post priming (day 29 of LCMV-Cl13 infection).

Data are representative of 2 independent experiments with 4-5 mice per group. Error bars indicate SD. Significance was determined by t-test \*, p<0.05.



0 4 8 12

Days post-tumor injection

# Figure S6. Tumor kinetics in chronically infected mice, effect of OT-I cells and dendritic cells. Related to Figure 7

**(A)** Naïve (black) or mice infected with LCMV-CI13 for 21 days (red) either received OT-I cells (shaded circles) or no cells (open circles). One day later EG7 tumors were injected into all mice. Graph depicts tumor growth kinetics on the indicated day after tumor injection.

**(B)** OT-I cells were injected into naïve mice (black) or mice that had been infected for 21 days with LCMV-CI13 (red). One day later EG7 tumors were injected into all mice either alone (closed squares) or in combination with OVA-peptide pulsed DCs (open squares). Graph depicts tumor growth kinetics on the indicated day after tumor injection.

Data are representative of 2 independent experiments with 4-5 mice per group. Error bars indicate SD. Statistical differences between groups was measured by two-way ANOVA \* p<0.05.

| Antibody<br>Specificity | Metal Tag | Clone            | Manufacturer          | Catalog<br>number |
|-------------------------|-----------|------------------|-----------------------|-------------------|
| CD45                    | 89Y       | 30-F11           | Fluidigm (d)          | 3089005B          |
| Ly6c                    | 115Ln     | HK14             | BioLegend             | 128002            |
| CD44                    | 141Pr     | IM7              | BioLegend             | 103002            |
| CXCR5                   | 142Nd     | 145502           | BioLegend             | L138D7            |
| GzmB                    | 144 Nd    | GB11             | Thermofischer         | MA1-80734         |
| Eomes                   | 146 Nd    | Dan11mag         | eBioscience           | 14-4875-80        |
| Thy1.1                  | 147Sm     | HIS51            | eBioscience           | 14-0900-85        |
| CD11b                   | 148Nd     | M1/70            | Fluidigm (d)          | 3148003B          |
| CD69                    | 149Sm     | H1.273           | BioLegend             | 104502            |
| Ly6G                    | 150Nd     | 1A8              | BioLegend             | 127602            |
| CD25                    | 151Eu     | 3C7              | Fluidigm (d)          | 3151007B          |
| BCL6                    | 152Sm     | K112.91          | BD Bioscence          | 561520            |
| CD8a                    | 153Eu     | 53-6.7           | Fluidigm (d)          | 3153012B          |
| CD103                   | 155Gd     | M290             | BD<br>Bioscience      | 553699            |
| PDL1                    | 156Gd     | M1H5             | eBioscience           | 14-5982-85        |
| Thy1.2                  | 158Gd     | 53-21            | Thermofischer         | 14-0902-82        |
| CD39                    | 159Tb     | 24DMS1           | eBioscience           | 14-0391-82        |
| CD4                     | 160Gd     | rm4-5            | BioLegend             | 100506            |
| Tbet                    | 161Dy     | 4B10             | Fluidigm (d)          | 3161014B          |
| τςrβ                    | 165Ho     | 109202           | BioLegend             | H57-597           |
| B220                    | 166Er     | RA3-6B2          | Thermofischer         | 14-0452-85        |
| SLAM                    | 169Tm     | TC15-<br>12F12.2 | BioLegend             | 115933            |
| Nk1.1                   | 170Er     | PK136            | Fluidigm (d)          | 3170002B          |
| CD95                    | 172Yb     | 15A7             | eBioscience           | 14-0951-85        |
| CD11c                   | 174Yb     | N418             | BioLegend 117302      |                   |
| PD1                     | 175Lu     | RMP-30           | BloLegend 109104      |                   |
| MHC-II                  | 209Bi     | M5/114.15.2      | Fluidigm (d) 3209006B |                   |

#### Table S1. Antibody panel for mass cytometry. Related to Figure 1 and Figure 2

Antibodies that were purchased directly conjugated are labeled with (d). Other antibodies were conjugated with Fluidigm's Maxpar conjugation kit according to manufacturer's instructions.

| Pathway in Paper            | Pathway Name                | Database    | Accession number              |
|-----------------------------|-----------------------------|-------------|-------------------------------|
| Myc targets                 | HALLMARK_MYC_TARGETS_V1     | MSIGDB_C2   | HALLMARK_MYC_TARGETS_V<br>1   |
| Ribosome                    | RIBOSOME BIOGENESIS         | GOBP        | GO_0042254                    |
| Biogenesis                  |                             |             |                               |
| Translation                 | TRANSLATION                 | REACTOME    | R-HSA-72766.3                 |
| MTORC1 signaling            | HALLMARK_MTORC1_SIGNALING   | MSIGDB_C2   | HALLMARK_MTORC1_SIGNALI<br>NG |
| DNA replication             | DNA REPLICATION             | REACTOME    | 69306                         |
|                             |                             | DATABASE ID |                               |
|                             |                             | RELEASE 61  |                               |
| Glycolysis                  | GLYCOLYSIS                  | REACTOME    | 70171                         |
|                             |                             | DATABASE ID |                               |
| Integrin femily             |                             |             |                               |
|                             |                             |             |                               |
| Interactions                |                             | NATURE      | SURFACE INTERACTIONS          |
| Regulation of cell motility | REGULATION OF CELL MOTILITY | GOBP        | GO_2000145                    |
| Signaling by focal          | SIGNALING EVENTS MEDIATED   | PID NCI-    | SIGNALING EVENTS MEDIATED     |
| adhesion kinase             | BY FOCAL ADHESION KINASE    | NATURE      | BY FOCAL ADHESION KINASE      |
| Actin cytoskeleton          | REGULATION OF ACTIN         | GOBP        | GO_0032956                    |
| organization                | CYTOSKELETON ORGANIZATION   |             |                               |
| Cell-cell adhesion          | Cell-Cell adhesion          | GOBP        | GO_0098609                    |

 Table S2. Selected pathways from Enrichment Map Gene Set. Related to Figure 5B

| Pathway Name in Paper                | Standard Name                                 |
|--------------------------------------|-----------------------------------------------|
| Effector vs memory cells CD8 T cells | GOLDRATH_EFF_VS_MEMORY_CD8_TCELL_DN           |
|                                      | GOLDRATH_EFF_VS_MEMORY_CD8_TCELL_UP           |
|                                      |                                               |
| Acute vs chronic LCMV CD8 T cells    | GSE30962_ACUTE_VS_CHRONIC_LCMV_PRIMARY_INF_CD |
|                                      | 8_TCELL_DN                                    |
|                                      | GSE30962_ACUTE_VS_CHRONIC_LCMV_PRIMARY_INF_CD |
|                                      | 8_TCELL_UP                                    |
| IL-2 treated CD8 T cell              | GSE39110_UNTREATED_VS_IL2_TREATED_CD8_TCELL_D |
|                                      | AY3_POST_IMMUNIZATION_DN                      |
| IL-21 treated CD8 T cell             | GSE19198_CTRL_VS_IL21_TREATED_TCELL_24H_DN    |

Table S3. Selected pathways from immunesigDB. Related to Figure 5C and 5E