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Differential expression analysis of ACE2 in relation to host/environmental factors 
Visualization and analyses of single gene and gene signature analyses were done using RLE 

normalized and COMBAT batch corrected gene expression from the DESeq2 and SVA packages 

in R. Linear regression models were fitted to evaluate associations between ACE2 expression 

(based on normalized count) and clinical variables. In SPIROMICS unadjusted models were 

evaluated along with models adjusted for potential confounders including smoking status, age, 

sex, body mass index (BMI), and race, as appropriate. For analyses of hypertension, adjusted 

analyses included anti-hypertensives as a covariate, in addition to sex, age, smoking status and 

race. In SARP adjusted analyses included covariates for asthma, steroid use (inhaled steroids 

alone or inhaled plus oral steroids), age, sex, race, and BMI, as appropriate. Analyses of 

hypertension were done only in participants with asthma (due to availability of data), but 

adjustments for sex, age, BMI, and race were still done. In MAST analyses were adjusted for age, 

sex, asthma disease status, race, and BMI. 

 

Differential exon usage 
Following alignment, we indexed and sliced the SPIROMICS BAM files to include 51.6 kb of the 

ACE2 genomic region (chrX:15,556,393-15,608,016 in the hg38 genome build) using samtools 

[1]. GTF files were manually curated to include the three exons that contribute to differential 

isoform expression of ACE2 [2]. Full length ACE2 transcripts are generated from two independent 

first exons, Exons 1a and 1b, with Exon 1b shared between these transcripts. The truncated ACE2 

transcript (dACE2) that does not bind the SARS-CoV-2 virus but is associated with an interferon-

stimulated gene response in experimental models originates from Exon 1c. Coordinates from the 

preprint manuscript by Onabajo et al. [2] were used to curate the GTF file: Exon 1a: 

chrX:15,601,956-15,602,158, Exon 1b: chrX:15,600,726-15,601,014, Exon 1c: chrX:15,580,281-

15,580,420. The exons were counted using the ASpli package in R [3]. As per the ASpli and 

EdgeR package recommendations, raw exon counts were adjusted for overall gene counts to 

remove the signal from differential gene expression using the formula: (Exon Count in each 

sample * mean raw ACE2 count)/raw ACE2 gene count in that sample. To adjust for differences 

in sequencing depth between samples the transformed counts were then multiplied by the size 

factor variable generated by the DESeq2 package from the sequencing analysis. Linear models 

adjusting for batch were then used to analyze differences in exon usage in association with 

covariates of interest. The primary analysis was to evaluate whether ACE2 exon 1c differential 

usage was associated with increases in our interferon-stimulated gene signature. In secondary 

analyses we determined whether clinical covariates were associated with differential exon 1c 



usage. Interpretation of differential exon usage requires consideration of the necessary 

adjustment for variation in total transcript count. Thus, if overall ACE2 expression is decreased in 

association with an outcome, a differential increase in one exon adjusts the expression of that 

isoform away from the overall negative association, but does not necessarily mean that the 

isoform is not negatively associated with the outcome to a lesser extent. 

 

Gene set enrichment analysis of expression changes induced by COVID-19 
Differential expression and gene set enrichment analyses were done using the limma and FGSEA 

packages in R [4, 5]. Data underwent TMM normalization and the voom transformation followed 

by linear model fit with empirical Bayes moderation of the standard errors. We built COVID-19 

relevant gene sets from publicly available differential gene expression data [6] from participants 

who underwent nasal/oropharyngeal swab sampling at the time of acute respiratory illness for 

COVID-19 diagnosis (94 participants with COVID-19, 41 with other viral illness, 103 with no virus 

identified, viruses identified by metagenomic sequencing analysis). Expression gene sets were 

built using the 100 genes most up- and downregulated in association with infection type. Biological 

pathway gene sets were built by inputting the genes differentially downregulated between SARS-

CoV-2 infection and other viral illness (P < 0.05) into the Ingenuity Pathway Analysis canonical 

pathway function. The pathway assessments were limited to downregulated genes given the 

relationship between downregulated gene sets and comorbidities in the initial analyses of the 100 

gene sets. Gene set enrichment analyses were then performed using FGSEA [5] and the 

CAMERA function [7] in limma against gene lists ranked by their log fold change differential 

expression in association with comorbid clinical risk factors. Barcode plots were made using 

CAMERA. Normalized enrichment scores for heatmaps were extracted from FGSEA (not 

available through CAMERA, but CAMERA and FGSEA statistical results were similar). As 

smoking so strongly influences gene expression, in SPIROMICS differential expression analyses 

input into GSEA algorithms to evaluate clinical factors such as obesity, hypertension, 

cardiovascular conditions, and sex were first done in former smokers only to limit the effect of 

smoking, adjusting for age, sex and BMI if appropriate. In sensitivity analyses, we repeated the 

analyses in all subjects, adjusting for smoking status as well and found similar results. As asthma 

and steroid use so strongly influence gene expression, in SARP differential expression analyses 

of these other clinical factors were limited to asthma participants on inhaled but not oral steroids. 

Secondary analyses included all asthma participants adjusting for steroid use, with similar 

findings. Findings were considered significant at P < 0.05 and false discovery rate (FDR) < 0.05 

if multiple corrections were necessary. For Additional File 3: Figure S8, in which we evaluated 



COVID-19-related genes identified by experimental data from the SARS-CoV-2 ex vivo infection 

of primary human bronchial epithelial cells [8] or thought to be proteins that interact with SARS-

CoV-2 [9], we reported findings at the less stringent P < 0.05 as these analyses were hypothesis 

generating only. 

 

COVID-19-related genes 
We mined the growing body of COVID-19 related literature to identify host genes implicated in 

SARS-CoV-2 infection discovered using different analytical approaches. The following studies 

were used to compose a list of COVID-19 candidate genes: 1) Hoffmann et al. [10] that identified 

ACE2 as the receptor to be exploited by the SARS-CoV-2 for cellular entry, and proteases 

TMPRSS2 and cathepsin B/L both to be used by SARS-CoV-2 for S protein priming, whilst only 

TMPRSS2 is essential for viral entry and viral spread; 2) Gordon et al. [9] that identified 332 high-

confidence SARS-CoV-2-human protein-protein interactions; 3) Blanco-Melo et al. [8] that 

explored the transcriptional response to SARS-CoV-2 in vitro, ex vivo, and in vivo models; 4) 

COVID-19 Cell Atlas (www.covid19cellatlas.org, accessed 20 May 2020) that highlights 17 genes 

including cathepsins and other viral receptors or receptor associated enzymes; 5) Gassen et al. 

[11] that showed the role of SARS-CoV-2 infection in restricting AMPK/mTORC1 activation and 

autophagy; 6) Wang et al. [12] that reported a mediating role of CD147 (also known as BSG) in 

SARS-CoV-2 viral invasion. 

To narrow the list of differentially expressed genes following SARS-CoV-2 infection from Blanco-

Melo et al. [8], we focused on the results from the ex vivo infection of primary human bronchial 

epithelial cells. To include in our candidate list, we chose genes that 1) have adjusted P-value < 

0.05 in the differential expression analysis from primary cells and either cell lines (Calu-3 or ACE2-

expressing A549 cells, low-MOI infection; excluded genes with adjusted P = 0) or samples derived 

from COVID-19 patients, and 2) log2 fold change > 0.5 in absolute scale in primary cells and log2 

fold change > 1 in absolute scale in the other experiment.  

In total, we selected 514 candidate genes implicated in COVID-19 from six different sources. Of 

them, 496 genes were expressed in bronchial epithelium. 

 

Expression quantitative trait mapping 
Expression quantitative trait (eQTL) mapping was performed in 144 unrelated individuals from the 

SPIROMICS bronchoscopy sub-study with WGS genotype data from TOPMed and gene 

expression from bronchial epithelium profiled with RNA-seq following the analysis pipeline from 



the Genotype-Tissue Expression (GTEx) Consortium [13]. Gene expression data was normalized 

as follows: 1) read counts were normalized between samples using TMM [14] with edgeR [15], 2) 

genes with TPM ≥ 0.1 and unnormalized read count ≥ 6 in at least 20% of samples were retained, 

3) expression values were transformed using rank-based inverse normal transformation across 

samples. 

Next, Probabilistic Estimation of Expression Residuals (PEER, [16]) was used to infer hidden 

determinants of variability in gene expression levels due to technical and biological sources. 

According to the optimization analysis for selection of PEERs by sample size to maximize cis-

eGene discovery done in GTEx [13], 15 PEERs were chosen to be used as covariates in eQTL 

mapping together with 4 genotype PCs and sex imputed from genotype data. 

To control population structure, principal component analysis (PCA) was conducted on post-

variant QC genotype data from unrelated SPIROMICS individuals. More precisely, PCA was 

performed on a set of LD-independent autosomal biallelic single nucleotide polymorphisms from 

not long-range LD regions [17] with a call rate ≥ 99% and MAF ≥ 0.05 using smartpca from 

EIGENSTRAT (https://github.com/argriffing/eigensoft/tree/master/EIGENSTRAT), turning off 

outlier removal (option -m 0). LD pruning was performed using Plink 1.9 [18] based on pairwise 

genotypic correlation of 200 SNPs at a time, with a step of 100 SNPs, and using LD threshold of 

> 0.1 to remove one of a pair of SNPs (option --indep-pairwise 200 100 0.1). Top 4 PCs 

were chosen to be used to correct for population stratification. The top 4 PCs explained > 0.1% 

of the variance, and were associated with subpopulations inferred from 1000 Genomes Project 

using k-nearest neighbors clustering (F-test P < 2×10−10, adj R2 = 0.36 − 0.98). 

Cis-eQTL mapping was performed using tensorQTL [19] across 22,738 genes and 6,605,907 

variants with MAF ≥ 0.05 and variant call rate ≥ 0.9. Window-size was set to 1 Mb from the 

transcription start site (TSS) of the gene according to the GENCODE version 33, 10,000 

permutations were used to correct for multiple testing, and false discovery rate (FDR) < 0.05 was 

used to identify genes with statistically significant eQTLs (eGenes). We also used tensorQTL to 

map conditionally independent cis-eQTLs. 

Lead cis-eQTL effect size was quantified as allelic fold change (aFC, [20]), ratio of expression of 

the haplotype carrying the alternative allele to expression of the haplotype carrying the reference 

allele of an eQTL. Gene expression data normalized with DESeq2 size factors [21] and log2-

transformed were used as input together with the processed genotype VCF file. aFC was 



calculated requiring at least 2 samples (--min_samps 2) and minimum 1 observation of each 

allele (--min_alleles 1), and adjusting for the same covariates as in cis-eQTL mapping. To 

calculate confidence intervals 100 bootstrap samples were used. aFC estimates that hit the 

absolute cap value (log2(100)) were set to missing. 

 

Cell type interacting expression quantitative trait mapping 
Firstly, we used xCell [22] to estimate 64 immune and stroma cell types from the gene expression 

signatures of bronchial epithelium. TPM expression matrix of 144 bronchial brush samples 

together with 30 samples from each tissue type from GTEx was uploaded to the UCSF xCell 

Webtool (https://xcell.ucsf.edu/). Then, the following linear regression model was used to map 

cell type interaction eQTLs (ieQTLs): p ~ g+i+g×i+C, where p is the phenotype vector (inverse 

normalized gene expression), g is the genotype vector, i is the cell type enrichment score from 

xCell (inverse normalized), g×i is the interaction term, and C is the covariates matrix as used in 

eQTL mapping. Cell types with a median xCell enrichment score > 0.05 were included in the 

analysis. There were 29 cell type signatures that met this criteria: B cells, basophils, CD4 TCM, 

CD4 TEM, CD8 naïve T cells, common lymphoid progenitor (CLP), common myeloid progenitor 

(CMP), class switched memory B cells, DCs, eosinophils, epithelial cells, HSCs, keratinocytes, 

M1 and M2 macrophages, monocytes, osteoblasts, plasma cells, preadipocytes, sebocytes, 

smooth muscle, TH2 cells, antigen-presenting, immature, classical and plasmacytoid dendritic 

cells, pro B cells, and microenvironment and immune scores. Mapping of ieQTLs was done using 

tensorQTL [19], and only variants within 1Mb of the TSS of each gene tested and with MAF > 0.1 

in the samples belonging to the top and bottom halves of the distribution of cell type abundance 

were included. Regression coefficients and P-values were calculated for all terms in the model, 

and ieQTLs were identified by testing for the significance of the interaction term. Top nominal P-

values for each gene were corrected for multiple testing at the gene level using eigenMT [23] as 

implemented in tensorQTL. Significance across genes was determined by adjusting eigenMT P-

values using the Benjamini-Hochberg procedure with FDR of 0.05. 

 

Replication of cis-eQTLs in GTEx 
We performed replication of cis-eQTLs (gene-variant pairs) found from bronchial epithelium in the 

Genotype-Tissue Expression (GTEx) project v8 release [13]. Using cis-eQTL summary statistics 

across 49 tissues from GTEx, we calculated the proportion of true positives [24], p1, to estimate 

the proportion of sharing of cis-eQTLs between bronchial epithelium and GTEx tissues. We 



assessed the allelic direction of the cis-eQTLs from bronchial epithelium and GTEx tissues by 

calculating concordance rate, the proportion of gene-variant pairs with the same allelic direction. 

This comparison was restricted to cis-eQTLs with nominal P-value < 1x10-4 in the given GTEx 

tissue. 

Next, we analyzed the replication and concordance measure as a function of sample size and 

median cell type enrichment scores for seven cell types [25]: adipocytes, epithelial cells, 

hepatocytes, keratinocytes, myocytes, neurons, and neutrophils. Tissues with median enrichment 

score > 0.1 were classified as being enriched for the given cell type. We used a two-sided 

Wilcoxon rank sum test to estimate the difference in replication and concordance estimates 

between tissues enriched or not enriched for the given cell type, and Spearman correlation 

coefficient to calculate correlation between sample size and the two concordance measures (p1 

and concordance rate). 

 

cis-eQTLs not identified in previous large eQTL catalogs 
To investigate the tissue-specificity of cis-eQTLs from bronchial epithelium, we performed gene-

level lookup in GTEx v8 and eQTLGen Consortium [26]. We identified genes with significant 

regulatory effects in SPIROMICS (FDR < 0.05) that were tested in neither catalog. 

Then, we used the functional profiling webtool g:GOSt (version e99_eg46_p14_f929183) from 

g:Profiler [27] to perform pathway analysis of the 492 significant eGenes in SPIROMICS not 

tested in GTEx v8 Lung. Method g:SCS was used for multiple testing correction corresponding to 

experiment-wide threshold of α = 0.05. Significant eGenes from SPIROMICS (n = 4,881) that 

have at least one annotation (option “Custom over annotated genes”) were used as a background 

in the enrichment test. 

 

pheWAS of lead COVID-19 cis-eQTLs in SPIROMICS 
We performed phenome-wide association studies (pheWAS) in 1,980 non-Hispanic White (NHW) 

and 696 individuals from other ethnic and racial groups from SPIROMICS for the 108 lead cis-

eQTLs to evaluate for phenotypic associations with spirometric measures, cell count differentials, 

immunoglobulin concentrations, longitudinal exacerbation risk, self-reported asthma history, 

cardiovascular diseases, CT scan measures of emphysema (bilateral percentage lung density  

< -950HFU at total lung capacity), CT scan functional small airways disease (PRM-fSAD), and 

alpha1-antitrypsin concentrations (subgroup of 1,191 NHW and 396 from other racial/ethnic 

groups). PheWAS regression-based models were performed using PLINK 2/0 and included 



principle components of ancestry, sex, BMI, age, and smoking pack-years. Models for CT scan 

measures also included site and height while alpha1-antitrypsin concentrations included c-

reactive protein. CT scan measures, eosinophil counts, and IgE concentrations were log-

transformed. Significance threshold was set for the number of eQTLs tested across phenotypes 

(P < 4.63x10-4). 
 

Lookup of phenome-wide associations with PhenoScanner v2 
PhenoScanner v2 [28, 29] was used to lookup phenotype associations for the cis-eQTL variants 

from large-scale genome-wide association studies (GWAS) with association P-value < 10-5. We 

queried PhenoScanner database based on the rs IDs of the lead cis-eQTLs obtained from dbSNP 

version 151 (GRCh38p7, including also former rs ID to query). The phenoscanner R package 

(https://github.com/phenoscanner/phenoscanner) was used to perform the queries. Query results 

were filtered to keep one association for each of the variants per trait, preferring summary 

statistics from newer studies, studies with larger sample size, or based on UK Biobank data 

(GWAS round 1 results from the Neale Lab). Description of Experimental Factor Ontology (EFO) 

terms and classification to EFO broader categories were obtained from the GWAS Catalog or by 

manually searching EMBL-EBI EFO webpage (https://www.ebi.ac.uk/efo/). 

The regulatory variants for CEP250, FAR2, and TLE3 have phenotypic associations with both 

body height and pulmonary function test (PFT) measures from Phenoscanner. As GWAS 

analyses from the Neale Lab using UK Biobank data do not include height as a covariate in the 

model, we used the results of the lung function GWAS by Shrine et al. [30] to confirm if the 

suggestive signal for PFT trait has been observed before or rather seems to be an artefact of 

incomplete adjustment for height. Of note, Shrine et al. have discovered 279 lung functions 

signals in the meta-analysis of UK Biobank and the SpiroMeta Consortium. We looked up the 

nearest GWAS hits to the eQTL, and calculated LD between the variants in the African and 

European populations using LDpop [31] web tool. 

  

Colocalization analysis 
Multiple trait associations observed for a single variant do not necessarily translate into shared 

genetic causality. To assess evidence for shared causal variant of a cis-eQTL and a GWAS trait, 

we used the Bayesian statistical test for colocalization, coloc. We used the newer version of coloc 

[32] that allows conditioning and masking to overcome one single causal variant assumption 

(condmask branch of coloc from https://github.com/chr1swallace/coloc). We only tested 



colocalization for loci where the eQTL had at least one phenotypic association based on the 

lookup analysis with Phenoscanner from the following EFO parent categories: hematological 

measurement, pulmonary function measurement, respiratory disease. From each of the smaller 

EFO categories, we chose one trait with the smallest P-value for which we were able to find 

summary statistics using GWAS Catalog REST API or among the Neale Lab GWAS round 2 

results (http://www.nealelab.is/uk-biobank/). Coloc was run on a 500-kb region centered on the 

lead cis-eQTL (+/- 250 kb from the variant) with priors set to p1 = 10-4, p2 = 10-4, p3 = 5x10-6. We 

used the coloc.signals() function with mode = iterative and method = mask for GWAS 

traits with LD data from the 1000 Genomes Project to match the ancestry of the discovery 

population (e.g., choosing CEU for LD if the discovery population is of European ancestry). We 

allowed for a maximum of three variants to mask, with an r2 threshold of 0.01 to call two signals 

independent and P-value threshold of 1x10-5 to call the secondary signal significant. We used 

method = single for the eQTLs, because the corresponding eGenes did not have secondary 

independent signals. We prioritized eGenes with posterior probability for colocalization (PP4) > 

0.5 as loci with evidence for colocalization. 
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